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Introduction

The objective of this work is to compute the value of the integral:

I =

Z b

a

f (x) dx:

We shall assume that the value of f(x) can be easily computed for all values of x

between a and b, but somtimes the �nding an antiderivative of f is impossible or

too complicated. for exemple when we want dinding an antiderivative of

Z 1

0

ex
2

dx or
Z 1

�1

p
1 + x3dx

The second scenario arises when the function is obtained from scienti�c observations

or collected data. There may be no formula for this function. In both cases we need

to use a numerical methods for calculate the values of the integrals.

This thesis is organized as follows:

Chapter 1: Has a theoritical aspects about the simple and double integrals like

de�nitions, properties, methods of calculus...etc.

Chapter 2: Includes the most used numerical methods to calculate the simple

integrals and double integrals like The Newton-cots formula, The Midpoint rule,

Trapezoidal and Simpson�s rules we discuss also the e¢ ciency and the errors.

Chapter 3: Concentrates on Matlab excution of the above methods with a selected
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Introduction

example by showing their numerical and graphical results and comparing the ob-

taining results to the exact results in order to compare between the performance of

these methods in terms of solution quality, time of calculus and convergence.
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Chapter 1

Theoretical generalities on

Integration

1.1 Simple integral

De�nite Integral:

Figure 1.1: Reimann integral

let f is a continuous function de�ned for a 6 x 6 b. We divide the interval [a; b] into

n subintervals of equal width �x: where �x = (b � a)=n:We choose sample points

x�
0
= a; x�1; x

�
2; :::; x

�
n = b in these subintervals and asume that x0 = a; x1 ; x2 ; :::; xn = b

is the endpoints of these subintervals , where x�i be in the i
th subinterval [xi�1; xi ] :

3



Chapter 1. Theoretical generalities on Integration

Then the de�nite integral of f from a to b is:

Z b

a

f (x) dx = lim
n�!+1

nX
i=1

f (x�i )�x:

(we calle Riemann sums for the integral the formula
Pn

i=1 f (x
�
i )�x , see �gure

(1.1)).

Graphical interpretation:
Z b

a

f (x) dx is the area inserted betwin the graph y =

f(x) and the x� axis and the vertical lines x = a; x = b.

Figure 1.2: Graphical interpretation

Example 1.1.1 We want calculate
Z 1

0

exdx.

Z 1

0

exdx = lim
n�!+1

nX
i=1

ex
�
i :�x with �x =

1� 0
n

=
1

n
and x�i =

i

n
:

so

Z 1

0

exdx = lim
n�!+1

nX
i=1

e
i
n

n
= lim

n�!+1

1

n

nX
i=1

e
i
n = lim

n�!+1

1

n

nX
i=1

�
e
1
n

�i
= lim

n�!+1

1

n
:e

1
n :

�
e
1
n

�n
� 1

e
1
n � 1

= lim
n�!+1

1

n
:e

1
n :
e
1
n
�n � 1
e
1
n � 1

= e� 1:

Theorem 1.1.1 (The Fundamental Theorem of Calculus) Suppose f is con-

tinuous on [a; b]:

4



Chapter 1. Theoretical generalities on Integration

1. if g (x) =
Z x

a

f (t) dt a 6 x 6 b: Then g0 (x) = f (x).

2.
Z b

a

f (x) dx = F (b)� F (a) : Where F is an antiderivative of f , that is F 0 = f .

Example 1.1.2 Let�s take the previous example:

Z 1

0

exdx = e1 � e0 = e� 1:

If we reverse a and b, then�x changes from (b� a) =n to (a� b) =n. By the de�nition

of the de�nit integral as a limit of Riemann sums have a sense even if a > b. Therefore

Z b

a

f (x) dx = �
Z a

b

f (x) dx:

If a = b, then �x = 0 and so: Z b

a

f (x) dx = 0

Properties 1.1.1 Suppose that f and g are continuous functions then.

1.
Z b

a

cdx = c (b� a) where c is a costant.

2.
Z b

a

[f (x) + g (x)] dx =

Z b

a

f (x) dx+

Z b

a

g (x) dx:

3.
Z b

a

cf (x) dx = c

Z b

a

f (x) dx where c is any costant.

4.
Z b

a

[f (x)� g (x)] dx =
Z b

a

f (x) dx�
Z b

a

g (x) dx:

5.
Z c

a

f (x) dx+

Z b

c

f (x) dx =

Z b

a

f (x) dx; where c 2 [a; b] :

1.2 The Substitution Rule

The Substitution Rule for De�nite Integrals:This method, which is preferred,

it consists transforming the limits of integral when the variable is changed.

5



Chapter 1. Theoretical generalities on Integration

. If g0 is continuous on [a; b] and f is continuous on the range of u = g (x), then:

Z b

a

f (g (x)) g0 (x) dx =

Z g(b)

g(a)

f (u) du:

Example 1.2.1 Evaluate
Z 4

0

p
2x+ 1dx

Solution: We use the follwoing substitution u = 2x+1 and dx =
du

2
: Then the new

limits of integral as follows , when x = 0; u = 1 and when x = 4; u = 9: Therefore:

Z 4

0

p
2x+ 1dx =

Z 9

1

1

2

p
udu

=

�
1

2
:
2

3
u
3
2

�9
1

=
1

3

�
9
3
2 � 1 32

�
=
26

3
:

1.3 The integration by part rule

We assume that f and g are di¤erentiable functions, then:

d

dx
f (x) g (x) = f 0 (x) g (x) + f (x) g0 (x) :

We can evaluate de�nite integrals by parts. Evaluating both sides between a and b,

assuming f 0 and g0 are continuous, and using the Fundamental Theorem, we obtain:

Z b

a

f (x) g0 (x) dx = [f (x) g (x)]ba �
Z b

a

f 0 (x) g (x) dx

Example 1.3.1 We wante to calculate
Z 1

0

arctan (x) dx

6



Chapter 1. Theoretical generalities on Integration

so we integrating by part

Z 1

0

arctan (x) dx = [x arctan (x)]10 �
Z 1

0

x

1 + x2
dx

= 1: arctan (1)� 0: arctan (0)�
Z 1

0

x

1 + x2
dx

=
�

4
�
Z 1

0

x

1 + x2
dx

To evaluate this integral we use the substitution t = 1 + x2. Then dt = 2xdx, so

xdx = dt=2. When a = 0; t = 1; when x = 1; t = 2; so

Z 1

0

x

1 + x2
dx =

1

2

Z 2

1

dt

t
=
1

2
[ln jtj]21 =

1

2
(ln (2)� ln (1)) = 1

2
ln (2)

Therefore Z 1

0

arctan (x) dx =
�

4
� ln (2)

2

1.4 Double integrals

Considering f is a function of two variables de�ned on a closed rectangle:

R = [a; b]� [c; d] =
�
(x; y) 2 R2,a 6 x 6 b; c 6 y 6 d

	
:

We begining with divide the rectangle R into subrectangles. Then dividing the

interval [a; b] into m subintervals [xi�1; xi ] of equal width �x = (b � a)=m and

dividing [c; d] into n subintervals
�
y
j�1 ; yj

�
of equal width �y = (d � c)=n . Let

�A = �x�y: Then

Rij = [xi�1; xi ]�
�
y
j�1 ; yj

�
=
�
(x; y) 2 R2; xi�1 6 x 6 xi ; yj�1 6 y 6 yj

	
:

we choose a sample point (x�; y�) in each Rij.

7



Chapter 1. Theoretical generalities on Integration

De�nition 1.4.1 The double integral of over the rectangle R is:

Z Z
R

f (x; y) dA =

Z b

a

Z d

c

f (x; y) dxdy = lim
m;n�!+1

mX
i=1

nX
j=1

f
�
x�ij; y

�
ij

�
�x�y:

(
Pm

i=1

Pn
j=1 f

�
x�ij; y

�
ij

�
�x�y is called a double Riemann sum and is used as

an approximation to the value of the double integral).

1.
R R
R

[f (x; y) + g (x; y)] dA =
R R
R

f (x; y) dA+
R R
R

g (x; y) dA:

2.
R R

c:
R

f (x; y) dA = c:
R R

c:
R

f (x; y) dA where c is a constant.

3. If (x; y) > g (x; y) for all (x; y) in R, then
R R
R

f (x; y) dA >
R R
R

g (x; y) dA:

Theorem 1.4.1 (Fubini�s Theorem) If f is continuous on the rectangle

R = f(x; y) 2 R; a 6 x 6 b; c 6 y 6 dg, then

Z Z
R

f (x; y) dA =

Z b

a

Z d

c

f (x; y) dxdy =

Z d

c

Z b

a

f (x; y) dydx

More generally, this is true if we assume that f is bounded on R, f is discontinuous

only on a �nite number of smooth curves, and the iterated integrals exist.

Example 1.4.1 Evaluate the double integral
R R
R

x�3y2dA, where R = f(x; y) 2 R2; 0 6 x 6 2; 1 6 y 6 2g :

Solution 1.4.1 Fubini�s Theorem gives:

R R
R

x� 3y2dA =
R 2
0

R 2
1
x� 3y2dydx

=
R 2
0
[xy � y3]y=2y=1 dx

=
R 2
0
x� 7dx =

�
x2

2
� 7x

�2
0

= �12

8



Chapter 1. Theoretical generalities on Integration

Again applying Fubini�s Theorem, but this time integrating with resp �rst, we have:

R R
R

x� 3y2dA =
R 2
0

R 2
1
x� 3y2dydx

=
R 2
1

�
x2

2
� 3xy2

�x=2
x=0

dx

=
R 2
0
2� 6y2dy = [2y � 2y2]21 = �12

Double Integrals over General Regions: Here we have two cases,the �rst case

is when yje region D lies between the graphs of two continue functions of x, that is,

D =
�
(x; y) 2 R2; a 6 x 6 b; g1 (x) 6 y 6 g2 (x)

	
;

where g1 and g2 are continuous on [a; b]. then:

Z Z
D

f (x; y) dA =

Z b

a

Z g2 (x)

g1 (x)

f (x; y) dydx:

The integral on the right side is an iterated integral that is similar to the ones we

considered in the preceeding section, except that in the inner integral we regard x

as being constant not only in f (x; y) but also in the limits of integration, g1 (x)and

g2 (x).

For the second case, we consider plane regions as the following:

D =
�
(x; y) 2 R2; c 6 y 6 d; h1 (y) 6 x 6 h2 (y)

	
;

where h1 and h2 are tow continuous functions of y .

In a similar manner in the case one,using the same methods , we can show that:

Z Z
D

f (x; y) dA =

Z d

c

Z h2(y)

h1(y)

f (x; y) dxdy:

9



Chapter 1. Theoretical generalities on Integration

Example 1.4.2 Suppose that D1 is the region bounded by the parabolas y = x2 and

y = 1 + x2:Evaluate the following integral
R R
D1

(x+ 2y) dA:

Figure 1.3: Area1

The parabolas intersect when 2x2 = 1 + �2, that is, x2 = 1, so x = �1. We note

that the region D1, sketched in �gure (1.3) is a type (1) region but not a type(2)

region and we can write:

D1 =
�
(x; y) 2 R2;�1 6 x 6 1; 2x2 6 y 6 1 + x2

	
Notice that the lower boundary of D1 is y = 2x2and the upper boundary is

1 + x2 then

10



Chapter 1. Theoretical generalities on Integration

Example 1.4.3

R R
D

(x+ 2y) dA =
R 1
�1
R 1+x2
2x2

x+ 2ydydx

=
R 1
�1 [xy + 2y

2]
1+x2

2x2 dydx

=
R 1
�1

h
x (1 + x2) + (1 + x2)

2 � x (2x2)� (2x2)2
i
dx

=
R 1
�1 (�3x

4 � x3 + 2x2 + x+ 1) dx

=
h
�3x5

5
� x4

4
+ 2x

3

3
+ x2

2
+ x

i1
�1
= 32

15

Example 1.4.4 For D2 = f(x; y) 2 R2; 0 6 y 6 1; y 6 x 6 5g Calculate the integ-

ral
R R
D2

(x+ 1) dA: The region D2 sketched in �gure (1.4).

Figure 1.4: Area2

11



Chapter 1. Theoretical generalities on Integration

R R
D

(x+ 1) dA =

Z 1

0

Z 3

y

(x+ 1) dxdy

=

Z 1

0

�
x2

2
+ x

�3
y

dy

=

Z 1

0

�
9

2
+ 3� y

2

2
� y

�
dy

=

�
15

2
y � y

3

6
� y

2

2

�1
0

=
15

2
� 1
6
� 1
2
=
41

6

12



Chapter 2

Review on some numerical

methods to solve integrals

2.1 Methodes for simple integrals

2.1.1 The Newton-cotes rule

We want to evaluate the integral
Z b

a

f (x) dx ,we begin with the Lagrange interpola-

tion,where x0 ; x1 ; :::; xn is nodes in [a; b]:

li (x) =

nY
j=0
j 6=i

x� xj
xi � xj

; 0 6 i 6 n:

We take up polynomial interpolation,these are the fondamental polynmials for inter-

polation. The polynomial of degree 6 n that interpolate f at the nodes is:

p (x) =
nX
i=0

f (xi) li (x) :

Then, integrate the both sides:

13



Chapter 2. Review on some numerical methods to solve integrals

Z b

a

f (x) dx �
Z b

a

p (x) dx =

nX
i=0

f (xi)

Z b

a

li (x) :

Then we obtain a formula that can be used on any f , it been as follows:

Z b

a

f (x) dx �
nX
i=0

Aif (xi) ;

where

Ai =

Z b

a

li (x) :

If the nodes are equally spaced, a formula of previousely forme is called a Newton-

cotes formula. There are more than way for determine the error of Newton-cotes

formula, we chose using the following theorem:

Theorem 2.1.1 (Error of Newton-cotes formula) (a) For n even, assume f(x)

is n+ 2 times continuously di¤erentiable on [a; b]. Then

I (f)� In (f) = Cnhn+3f (n+2) (�) some � 2 [a; b]

with

Cn =
1

(n+ 2)!

Z n

0

�2(� � 1):::(� � n)d�

(b) For n odd, assume f(x) is n+1 times continuously di¤erentiable on [a; b]. Then

I (f)� In (f) = Cnhn+2f (n+1) (�) some � 2 [a; b]

with

Cn =
1

(n+ 1)!

Z n

0

�2(� � 1):::(� � n)d�

14



Chapter 2. Review on some numerical methods to solve integrals

2.1.2 The Midpoint rule

There are additional Newton-Cotes formulas in which one or both of the endpoints

of integration are deleted from the interpolation (and integration) node points. The

best known of these is also the simplest, the midpoint rule. It is based on interpola-

tion of the integrand I(x) by the constant.

Z b

a

f (x) dx = (b� a) f
�
a+ b

2

�
+
(b� a)3

24
f 00 (�) some � 2 [a; b] :

Composite midpoint rule: For composite form of midpoint rule, we de�ne:

xj = a+

�
j � 1

2

�
h; j = 1; 2; :::; n:

We obtain the midpoints of the intervals [a+ (j � 1)h; a+ jh]. Therfore:

Z b

a

f (x) dx = In (f) + En (f)

In (f) = h [f1 + f2 + :::+ fn]

En (f) =
h2 (b� a)

24

00

(�) some � 2 [a; b] :

2.1.3 Trapezoidal Rule

Starting with the simplest case results when choosing n = 1 and the nodes are

x0 = 1; x1 = b. The fundamental polynomials for interpolation are

l0 (x) =
b� x
b� a l1 (x) =

x� a
b� a

Then:

A0 =

Z b

a0

l0 (x) dx =
1

2
(b� a) =

Z b

a0

l1 (x) dx = A1

15



Chapter 2. Review on some numerical methods to solve integrals

And the corresponding quadrature formula is

Z b

a

f (x) dx � b� a
2

[f (a) + f (b)]

this is known as The trapezidal rule. It is exact for all f 2 R1 [x] (that is

,polynomials of degree at most 1). Moreovere it�s error term can be detrmined by

the previous theorem so:

I (f)� I1 (f) = C1h3f (2) (�) some � 2 [a; b]

E1(f) =
1
2
h3f 00 (�)

R 1
0
� (�� 1) d� some a 6 � 6 b:�

1
2
f 00 (�)

� �
�1
6
(b� a)3

�
some � 2 [a; b] :Whith h = b� a:

E1 (f) = � (b�a)3
12

f 00 (�) some � 2 [a; b] :

Compostite trapezoidal rule: Now,we divide the interval [a; b] into n subinter-

vals like this:

a = x0 < x1 < ::: < xn = b

And appling the trapezoid rule to each subinterval. Here the nodes are not necessarly

equally spaced. Then, we obtain the composite trapezoid rule:

Z b

a

f (x) dx =

nX
i=1

Z xi

xi�1

f (x) dx � 1

2

nX
i=1

(xi � xi�1) [f (xi�1) + f (xi)] :

Remark 2.1.1 (A compostite rule) It is one obtained by applying an integration

formula for a single inteval to each subinterval of partitioned interval.The composite

trapezoid rule also arises if the integrand f is replaced by an interpolating spline

function of degree 1,that is broken line. With uniform spacing h = (b� a) =n and

16



Chapter 2. Review on some numerical methods to solve integrals

xi = a+ ih, the compostite trapezoid rule takes the form:

Z b

a

f (x) dx � I1;n (f) =
h

2

"
f (a) + 2

n�1X
i=1

f (a+ ih) + f (b)

#
;

and the erorr term is

E1;n(f) =
nX
i=1

�h
3

12
f 00 (�i) = �

h3n

12

"
1

n

nX
i=1

f 00 (�i)

#
;

for the term in braket

min
a6x6b

f 00 (�i) 6
1

n

nX
i=1

f 00 (�i) 6 max
a6x6b

f 00 (�i) ;

since ½f(x) is cntinuous for a 6 x 6 b, it must attain all values between its munimum

and maximum at some point of [a; b] ; thus f" (�) =M for some � 2 [a; b] : Thus we

can write:

E1;n (f) = �
(b� a)h2

12
f" (�) some � 2 [a; b] :

2.1.4 The Simpson�s rule

We use a quadratic interpolating polynomial p2 (f) to approximate f (x) on [a; b].

Let c =
a+ b

2
; and de�ne:

I2 (f) =

Z b

a

(x� c) (x� b)
(a� c) (a� b)f (a) +

(x� a) (x� b)
(c� a) (c� b) f (c) +

(x� c) (x� c)
(b� a) (b� c) f (b) dx

carring out the integration, we obtain:

17
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I2 (f) =
h

3

�
f (a) + 4f

�
a+ b

2

�
+ f (b)

�
h =

b� a
2

This is called Simson�s rule. An illustration is given in �gure, with shaded region

denoting the area under the graph of y = p2 (x) : We can calculat he Simpsn�s error

from the error theorem as:

I (f)� I2 (f) = C2h5f (4) (�) some � 2 [a; b]

E2(f) =
1

24
h5f (4) (�)

R 2
0
�2 (�� 1) (�� 2)d� some a 6 � 6 b:

=

�
1

24
h5f (4) (�)

� �
� 4
15

�
some � 2 [a; b] :

= �h
5

90
f (4) (�) � 2 [a; b] :

Composite simpson�s rule: Again we create a composite rule. For n > 2 and

even, de�ne h = (b� a)=n, xj = a+ jh for j = 0; 1; :::; n. Then

Z b

a

f (x) dx =

n
2X
j=1

Z x2i

x2i�2

f (x) dx �
n
2X
j=1

�
h

3
[f2j�2 + 4f2j�1 + f2j]�

h5

90
f (4) (�j)

�

with x
2j�2 6 �j 6 x2j . Simplifying the �rst terms in the sum, we obtain the composite

Simpson rule:

In (f) =
h

3
[f0 + 4f1 + 2f2 + 4f3 + 2f4 + :::+ 2fn�2 + 4fn�1 + fn]

As before, we will simply call this Simpson�s rule. It is probably the most well-used

numerical integration rule. It is simple, easy to use, and reasonably accurate for a

18
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wide variety of integrals. For the error, as with the trapezoidal rule:

En (f) = I (f)� In (f) = �
h5 (n=2)

90

2

n

n
2X
j=1

f (4) (�j)

En (f) = �
h4 (b� a)
180

f (4) (�) some � 2 [a; b]

2.2 Methods for double integrals

2.2.1 The Midpoint rule for double integrals

We can using the same methods for approximating single integrals (the Midpoint

Rule, the Trapezoidal Rule, Simpson�s Rule) to approximate the double integrals.

In a similar manner we de�ne the Midpoint Rule for double integrals. This means

that we use a double Riemann sum to approximate the double integral, where the

sample point (x�; y�) in Rij is chosen to be the center
�
�
xi;

�
yj

�
of Rij.

Z b

a

Z d

c

f (x; y) dxdy =
mX
i=1

nX
j=1

f
�
x�ij; y

�
ij

�
�x�y

where
�
xi is the midpoint of

�
xi�1 ; xi

�
and

�
yj is the midpoint of

�
y
j�1 ; yj

�
.

2.2.2 Composite Simpson�s Rule for double integrals

Consider the double integral

Z
R

f (x; y) dxdy where R =
�
(x; y) 2 R2; a 6 x 6 b; c 6 y 6 d

	
:

for some constants a; b; c; and d, is a rectangular region in the plane. To apply the

Composite Simpson�s rule, we divide the region R by partitioning both [a; b] and

[c; d] into an even number of subintervals. To simplify the notation, we choose even
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integers n and m and partition [a; b] and [c; d] with the evenly spaced mesh points

x0; x1; :::; xn and y0; y1; :::; ym respectively. These subdivisions determine step sizes

h = (b�a)=n and k = (d�c)=m. Writing the double integral as the iterated integral

Z
R

f (x; y) dxdy =

Z b

a

�Z d

c

f (x; y) dy

�
dx

we �rst use the Composite Simpson�s rule to approximate:

Z d

c

f (x; y) dy:

treating x as a constant. Let yj = c+ jk , for each j = 0; 1; :::;m. Then

Z d

c

f (x; y) dy =
k

3

24f (x; y0) + 2(m=2)�1X
j=1

f (x; y2j) + 4

m=2X
j=1

f (x; y2j�1) + f (x; ym)

35
� (d� c) k

4

180

@4f (x; �)

@y4
:

for some �, in (c; d).Thus:

Z b

a

Z d

c

f (x; y) dydx =
k

3

24Z b

a

f (x; y0) dx+ 2

(m=2)�1X
j=1

Z b

a

f (x; y2j) dx+ 4

m=2X
j=1

Z b

a

f (x; y2j�1) dx

+

Z b

a

f (x; ym) dx

�
� (d� c) k

4

180

Z b

a

@4f (x; �)

@y4
dx:

The Composite Simpson�s rule is now employed on the integrals in this equation.

Let xi = a+ ih, for each i = 0; 1; :::; n: Then for eachj = 0; 1; :::;m, we have:

Z b

a

f (x; yj) dx =
h

3

24f (x0; yj) + 2(n=2)�1X
i=1

f (x2i; yj) + 4

n=2X
i=1

f (x2i�1; yj) + f (xn; yj)

35
� (d� c)h

4

180

@4f (�j; yj)

@x4
:
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for some �j in (a; b). The resulting approximation has the form:

R b
a

R d
c
f (x; y) dydx � hk

3

8<:
24f (x0; y0) + 2(m=2)�1X

j=1

f (x2i; y0) + 4

m=2X
j=1

f (x2i�1; y0) + f (xn; y0)

35
+2

24(m=2)�1X
j=1

f (x0; yj) + 2

(m=2)�1X
j=1

(n=2)�1X
i=1

f (x2i; yj) + 4

(m=2)�1X
j=1

n=2X
i=1

f (x2i�1; yj)

+

(m=2)�1X
j=1

f (xn; yj)

35
+4

24m=2X
j=1

f (x0; y2j�1) + 2

m=2X
j=1

(n=2)�1X
i=1

f (x2i; y2j�1) + 4

m=2X
j=1

n=2X
i=1

f (x2i�1; y2j�1)

+

m=2X
j=1

f (xn; y2j�1)

35
+

24f (x0; ym) + 2(m=2)�1X
j=1

f (x2i; ym) + 4

m=2X
j=1

f (x2�1; ym) + f (x; ym)

359=; :
The error term E is given by:

E =
�k (b� a)h2

540

24@4f (�0; y0)
@x4

+ 2

(m=2)�1X
j=1

@4f (�2j; y2j)

@x4
+ 4

m=2X
j=1

@4f (�2j�1; y2j�1)

@x4
dx

+
@4f (�m; ym)

@x4

�
� (d� c) k

4

180

Z b

a

@4f (x; �)

@y4
dx:

If @4f=@x4 is continuous, the Intermediate Value Theorem can be repeatedly applied

to show that the evaluation of the partial derivatives with respect to x can be replaced

by a common value and that:

E =
�k (b� a)h2

540

�
3m
@4f (��; ��)

@x4

�
� (d� c) k

4

180

Z b

a

@4f (x; �)

@y4
dx:

for some (��; ��) in R.]f d4f/dy4 is also continuous, the Weighted Mean Value Theorem
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for Integrals implies that:

Z b

a

@4f (x; �)

@y4
dx = (b� a) @

4f (�̂; �̂)

@y4
:

for some (�̂; �̂) in R. Since m = (d� c)=k, the error term has the form:

E =
�k (b� a)h2

540

�
3m
@4f (��; ��)

@x4

�
� (d� c)

180
k4 (b� a) @

4f (�̂; �̂)

@y4
:

or

E = �(d� c) (b� a)
180

�
h4
@4f (��; ��)

@x4
� k4@

4f (�̂; �̂)

@y4

�
:

for some (��; ��) and (�̂; �̂) in R.

The use of approximation methods for double integrals is not limited to integrals

with rectangular regions of integration. The techniques previously discussed can be

modi�ed to approximate double integrals of the form

Z b

a

Z d(x)

c(x)

f (x; y) dydx:

or

Z d

c

Z b(y)

a(y)

f (x; y) dydx:

In fact, integrals on regions not of this type can also be approximated by perform-

ing appropriate partitions of the region. To describe the technique involved with

approximating an integral in the form:

Z b

a

Z d(x)

c(x)

f (x; y) dydx:
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we will use the basic Simpson�s rule to integrate with respect to both variables. The

step size for the variable x is h = (b� a)=2, but the step size for y varies with x and

is written:

k (x) =
d (x)� c (x)

2
:

Consequently,

R b
a

R d(x)
c(x)

f (x; y) dydx �
R b
a
k(x)
3
[f (x; c (x)) + 4f (x; c (x) + k (x)) + f (x; d (x))] dx

� h
3

n
k(a)
3
[f (a; c (a)) + 4f (a; c (a) + k (a)) + f (a; d (a))]

+4k(a+h)
3

[f (a+ h; c (a+ h)) + 4f (a+ h; c (a+ h) + k (a+ h))

+f (a+ h; d (a+ h)) ]

+k(b)
3
[f (b; c (b)) + 4f (b; c (b) + k (b)) + f (b; d (b))] :
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Chapter 3

Application by Matlab software

3.1 Simple integral

In this section we try to apply the previous methods to the following example:

I (f) =

Z �

0

sin (x) dx

3.1.1 The Composite Midpoint rule with matlab

In the command window, we �nd the follwoing result: The de�nite integral of sin (x)

from 0 to � has an exact value equal 2. Using the composite midpoint rule, MATLAB

computes an approximate value of 2:0333. The second result is an aproximate value

of the area under the curve.

The midpoint rule estimates area using rectangles whose height is determined at the

midpoint of each subinterval and whose width is the length of subinterval. Fewer

intervals typically result in a greater error, while more intervals reduce it. In this

case, the error is about 0:0333, wich almost 1:67% of the true value. This is a

reasonably small error for such a simple approximation method.
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The midpoint rule is generally more accurate than the left or right Riemann sum. It

strikes a good balance between simplicity and e¢ ciency.

Figure 3.1: Midpoint rule approximation.

Graphically, the midpoint rectangles cover the area under the curve quite closely see

�g (3.1). However, near the peaks of the sine curve, some over-coverage occurs. This

visual gap helps explain the slightly higher or somtimes is lower result. Increasing

the number of subintervals would bring the estimate closer to 2. The midpoint rule

is a good choice for fast, approximate solutions where high precision isn�t critical.

3.1.2 The Composite Trapezoidal rule with matlab

Trapezoidal Rule Approximation: 1:9338, while the exact integral value is 2. Using

the trapezoidal rule, the integral of sin (x) from 0 to � is approximated as 1:9338. So

the trapezoidal method underestimates the true area. This is expected, since sin (x)

is a concave function on the interval [0; �]. In such cases, the trapezoids formed by

straight lines between function values lie below the actual curve.

The gap between the curved area and the linear approximation accounts for the neg-

ative error. The relative error here is small but noticeable about 0:0662. This un-

derestimation can be reduced by dividing the interval into more, smaller trapezoids.
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Figure 3.2: Trapezoidal rule approximation.

Despite the error, the trapezoidal rule gives a reasonable �rst approximation. It is a

commonly used method due to its simple logic and implementation. Unlike midpoint

or Simpson�s rule, it doesn�t require evaluating the function at interior midpoints.

Instead, it uses only the function values at the interval endpoints and subinterval

points. This makes it computationally e¢ cient, especially when data is discrete or

limited. However, it is more sensitive to the curvature of the function than midpoint

rule.

Graphically, the trapezoids lie beneath the curve of sin (x), especially near the peak.

This results in missing area between the curve and the tops of the trapezoids. The

straight edges connect the endpoints of each subinterval, forming slanted tops. Since

the sine curve is arched, the trapezoids cannot fully capture its curvature. This

visual gap clearly explains the underestimation in the numerical result.

Overall, the plot highlights how the trapezoidal rule simpli�es curves into piecewise

linear segments, see �g (3.2).
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3.1.3 The Composite Simpson�s rule with matlab

Approximate integral value using Simpson�s rule: 2:0009. While the exact integral

value is 2. The application of Simpson�s Rule in this case produced an impressively

accurate approximation of the de�nite integral. The computed value, 2:0009, is

extremely close to the exact value, 2., di¤ering by only 0:0009. This minimal error

re�ects the strength of Simpson�s Rule. Since the method relies on �tting parabolas

through intervals of the function, it tends to perform particularly well when the

integrand has continuous derivatives and low curvature.

In this situation, the function�s behavior seems to align well with these conditions,

allowing the parabolic segments to closely follow the true shape of the curve. The

visual representation likely con�rms this, showing how the approximated areas align

nearly perfectly with the actual region under the curve. Such a small discrepancy is

often negligible in practical scenarios, including physics, engineering, and computa-

tional modeling.

This result also suggests that the number of subintervals chosen was su¢ cient to

achieve high precision without excessive computational e¤ort. Compared to meth-

ods like the trapezoidal or midpoint rule, Simpson�s Rule generally o¤ers superior

accuracy with fewer subintervals, as it captures the function�s curvature more e¤ect-

ively. The near-exact match between approximation and truth here is a testament

to the method�s reliability.

The use of Simpson�s Rule in this case was both appropriate and successful. The

extremely low error highlights the e¤ectiveness of the technique and shows that, when

its assumptions are met, it can serve as a powerful tool for numerical integration. The

result serves as a strong example of how numerical methods can closely approximate

exact mathematical values with e¢ ciency and precision.

Graphicaly, the Simpson�s rule plot shows parabolic curves closely matching the
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Figure 3.3: Simpson�s rule approximation.

sine wave. Unlike trapezoids or rectangles, these parabolic segments hug the curve

tightly. There is minimal visible gap between the approximation and the actual func-

tion. This explains the extremely small error of only 0:0009 in the result. Visually,

the smooth arcs make Simpson�s rule appear more accurate and re�ned. The plot

e¤ectively demonstrates why Simpson�s rule outperforms simpler methods, see �g

(3.3).

3.1.4 copmarison betwen methods

This is a comparative commentary between the Midpoint Rule, Trapezoidal Rule,

and Simpson�s Rule for approximating the integral of sin (x) over [0; �]. We applied

three numerical integration methods to approximate:

I (f) =

Z �

0

sin (x) dx:

The exact value of the integral is 2 . The Midpoint Rule gave an approximation of

2:0333, slightly overestimating the true value. This occurs because the rectangles

evaluated at midpoints overshoot the curve on concave intervals. Visually, the mid-
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point rectangles extend above the sine curve�s arch. The Trapezoidal Rule produced

an approximation of 1:9338, underestimating the actual area. Since the sine curve

is concave on [0; �] the trapezoids lie beneath the curve. The linear segments fail to

match the curvature, creating visible gaps and a larger error. Simpson�s Rule, on the

other hand, gave a result of 2:0009, which is extremely close to the exact value. It

uses parabolic arcs to approximate the function, capturing its curvature much more

accurately.

Graphically, Simpson�s method closely follows the sine curve with minimal devi-

ation. In terms of accuracy, Simpson�s rule is clearly superior. The midpoint rule

performed better than the trapezoidal rule for this function but still had notice-

able error. All three methods bene�t from increasing the number of subintervals.

However, Simpson�s rule generally achieves higher precision with fewer intervals.

In conclusion, for smooth and well-behaved functions like sin (x) Simpson�s rule is

the most reliable. Midpoint and trapezoidal rules are useful for quick estimates

but are more sensitive to function shape. The visual comparisons reinforce these

observations, making the di¤erences easy to interpret.

3.2 Double integrale

3.2.1 The midpoint rule for double integrale with matlab

In this section we try to apply the previous methods to the following example:

I (f) =

Z �

0

Z �
2

0

sin (x) cos (y) dydx

Approximate value of the double integral is 2:028819 and the exact double integral

value is 2.

The double integral I (f) =
R �
0

R �
2

0
sin (x) cos (y) dydx was evaluated both analyt-
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ically and numerically using the midpoint rule in MATLAB. The exact value of

the integral is 2 , which was obtained by �rst integrating cos (y) from 0 to �
2
and

then integrating sin (x) from 0 to � . This con�rms the exact area under the surface

de�ned by the function over the given region is 2. In contrast, the approximate value

obtained using the midpoint rule was 2:028819. This method estimates the integral

by evaluating the function at the midpoint of each subrectangle in the integration

domain. The result slightly overestimates the exact value, which is a typical behavior

when using the midpoint rule for functions with curvature, such as sine and cosine.

Despite the minor discrepancy, the approximation is quite close, demonstrating the

method�s e¤ectiveness .

The error could be further reduced by increasing the number of subintervals used

in both the x and y directions. This exercise illustrates how numerical integration

techniques, like the midpoint rule, o¤er practical tools for evaluating de�nite in-

tegrals when analytical solutions are complecat or unavailable. MATLAB provides

a straightforward platform for implementing such numerical methods. Overall, the

comparison highlights both the accuracy and limitations of the midpoint rule. It also

emphasizes the importance of validating numerical results against known analytical

values when possible. The smooth nature of the sine and cosine functions contributed

to the small error observed. Using a �ner grid would enhance accuracy but at the cost

of more computations. In real applications, such trade-o¤s must be balanced based

on precision requirements. The example e¤ectively demonstrates MATLAB�s utility

in approximating double integrals and reinforces fundamental concepts in numerical

analysis.

The graph of the function sin (x) cos (y) over the region [0; �]�
h
0;
�

2

i
shows a smooth,

wave-like surface. It rises and falls gently due to the sin variation in x and cosine

variation in y. The surface reaches its maximum where both sine and cosine are near

their peaks. The midpoint rule samples the height at the center of each subrectangle,
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Figure 3.4: Midpoint rule approximation for double integral.

slightly overestimating areas under curved regions. This results in a small numerical

error, as seen in the approximation. Overall, the graph visually con�rms the smooth

behavior that makes this integral well-suited for midpoint approximation, see �g

(3.4).

3.2.2 Simpson�s rule for double integral with matlab

The approximate value of the double integral is: 2:000916. The double integral I (f) =R �
0

R �
2

0
sin (x) cos (y) dydx was approximated using Simpson�s rule in MATLAB. The

result obtained was 2:000916, which is extremely close to the exact value of 2:000000.

Simpson�s rule is a higher-order numerical integration technique that �ts parabolas

through sets of data points, resulting in signi�cantly better accuracy than meth-

ods like the midpoint or trapezoidal rules. In this case, the surface formed by

sin (x) cos (y) is smooth and wave-like, making it ideal for Simpson�s rule.

The small error of less than 0:001 demonstrates the method�s high precision. This

level of accuracy is usually su¢ cient for engineering, physics, and applied mathem-
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atics problems. The graph of the function con�rms the smoothness and symmetry in

both variables, supporting the e¤ectiveness of Simpson�s method. MATLAB allows

for e¢ cient implementation of Simpson�s rule using matrix operations and grid evalu-

ations. As expected, the accuracy improves with increased subdivisions, particularly

when they are even, which Simpson�s rule requires. Compared to the midpoint rule�s

result of 2:028819, Simpson�s result is far superior in accuracy.

Figure 3.5: Simpson�s rule approximation for doble integral.

This highlights the advantage of using higher-order interpolation in numerical integ-

ration. However, Simpson�s rule can be slightly more complex to implement due to

its requirement for an even number of intervals. In practice, this is a small price

to pay for the accuracy gained. The method is especially useful when the exact

solution is di¢ cult or impossible to compute analytically. Overall, Simpson�s rule

provides a powerful and reliable tool for double integrals over rectangular domains.

The MATLAB result illustrates this beautifully, showing nearly perfect agreement

with the analytical solution. Such precision emphasizes the importance of choosing

the right numerical method for a given problem.

The graph of the function sin (x) cos (y) over the region [0; �] �
�
0; �

2

�
displays a
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smooth, undulating surface that gently rises and falls. This smoothness makes it

ideal for Simpson�s rule, which uses parabolic approximations to estimate area more

accurately. The surface reaches its maximum where both sine and cosine values are

high, creating a gentle peak. In the graph, the grid used for Simpson�s rule aligns well

with the curvature of the surface. This alignment explains the extremely small error

in the result. The visual representation con�rms that the method closely follows the

shape of the function, leading to a highly accurate approximation, see �g (3.5).
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Conclusion

Numerical integration is a powerful tool for approximating de�nite integrals when

analytical solutions are di¢ cult or impossible to obtain. It is widely used in en-

gineering, physics, and computational sciences. Techniques such as the Trapezoidal

Rule, Simpson�s Rule, and more advanced adaptive methods o¤er varying trade-o¤s

between accuracy and e¢ ciency. While simple methods are easy to implement, they

may lack precision for complex functions.

Adaptive and higher-order methods provide greater accuracy but at higher compu-

tational costs. The choice of method depends on the function behavior and required

precision. Numerical integration is especially valuable in real-world applications in-

volving experimental data or irregular functions. With advancements in computing,

it is now feasible to integrate highly complex functions numerically. However, aware-

ness of potential errors and convergence behavior remains critical.

Overall, numerical integration bridges the gap between theory and practice in modern

applied mathematics.
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Annexe A: Abreviations and

Notations

The various abbreviations and notations used throughout this thesis are explained

below:

Symbol Abreviation

f (x) ; g (x) functions

li (x) polynom of lagrange bases.

En (f) ; E1;n(f) the error

p (x) the polynom of degree less than or equal n to interpolat f .

f (x; y) unction of tow veriables.

I (f) exact integral of f .

In (f) aproch integral of f with n subdevisions.
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Annexe B: What is Matlab?

MATLAB, short for MATrix LABoratory, is a high-level programming language and

interactive environment developed by MathWorks, primarily designed for numerical

computing and data analysis. Its core strength lies in matrix manipulation and lin-

ear algebra operations, making it especially powerful for engineers, scientists, and

economists. MATLAB (see �g (??)) provides an intuitive syntax that resembles

mathematical notation, simplifying tasks like algorithm development, simulation,

and prototyping. It includes extensive built-in functions for applications such as sig-

nal processing, image analysis, machine learning, and control systems. Visualization

is a key feature, with support for 2D and 3D plotting.

MATLAB integrates seamlessly with Simulink for model-based design and simula-

tion, and it supports parallel computing, GPU acceleration, and code integration

with languages like C, C++, Python, and Java. The environment includes a full-

Figure 3.6: matlab icon
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featured IDE with a script editor, debugger, and command window, as well as sup-

port for Live Scripts that combine code, output, and formatted text in a single doc-

ument. Though it requires a paid license, MATLAB is widely used in both academia

and industry for its robust capabilities and rich ecosystem of toolboxes tailored to

speci�c domains.

38



Annexe C: Code Matlab used in

chapter 3

The Composite Midpoint rule with matlab

% Define the function to integrate

f = @(x) sin(x); % Example function (f(x) = sin(x))

% Define the interval [a, b]

a = 0; b = pi;

% Number of subintervals (rectangles)

n = 5;

% Step size

h = (b - a) / n;

% Midpoints of the subintervals

x_mid = a + h/2 : h : b - h/2;

% Midpoint Rule Approximation

I_midpoint = h * sum(f(x_mid));

% Display the result of the integration

fprintf(�Midpoint Rule Approximation: %.4f\n�, I_midpoint);

% Plot the function and the rectangles

x = linspace(a, b, 100); % Fine x values for plotting the function

y = f(x); % Function values at x
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figure;hold on;

% Plot the function

plot(x, y, �b-�, �LineWidth�, 2); % Plot the function in blue

% Color the area under the curve

fill([x, \ddag iplr(x)], [zeros(size(x)), \ddag iplr(y)], �c�,

�FaceAlpha�, 0.2, �EdgeColor�, �none�);

% Plot the empty rectangles (with edges only)

for i = 1:n

% Coordinates of each rectangle

rect_x = [x_mid(i)-h/2, x_mid(i)+h/2, x_mid(i)+h/2, x_mid(i)-h/2];

rect_y = [0, 0, f(x_mid(i)), f(x_mid(i))];

% Plot the rectangle with no fill (empty rectangle)

plot(rect_x([1, 2]), rect_y([1, 2]), �r-�, �LineWidth�, 2); % Bottom edge

plot(rect_x([2, 3]), rect_y([2, 3]), �r-�, �LineWidth�, 2); % Right edge

plot(rect_x([3, 4]), rect_y([3, 4]), �r-�, �LineWidth�, 2); % Top edge

plot(rect_x([4, 1]), rect_y([4, 1]), �r-�, �LineWidth�, 2); % Left edge

end

% Add labels and title

xlabel(�x�); ylabel(�f(x)�);

title(�Midpoint Rule Approximation �);

grid on;

% Display the exact area under the curve for comparison

I_exact = integral(f, a, b);

fprintf(�Exact Area under the Curve: %.4f\n�, I_exact);

Code Matlab of Trapezoidal Rule

% Define the function to be integrated

f = @(x) sin(x); % Example function f(x) = sin(x)
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% Define the integration limits

a = 0; b = pi; % Lower limit an Upper limit

% Number of trapezoids

n = 5;

% Create a vector of x values for plotting

x = linspace(a, b, 100);

y = f(x);

% Trapezoidal Rule calculation

x_trap = linspace(a, b, n+1); % n+1 points for n trapezoids

y_trap = f(x_trap);

trap_area = 0; % Initialize area

% Loop to calculate the area using trapezoidal rule

for i = 1:n

trap_area = trap_area + (y_trap(i) + y_trap(i+1)) *

(x_trap(i+1) - x_trap(i)) / 2;

end

% Display the result

disp([�Trapezoidal Rule Approximation: �, num2str(trap_area)]);

exact_integral = integral(f, a, b);

disp(�Exact integral value:�);

disp(exact_integral);

% Plot the function and the filled trapezoidal areas

figure; hold on;

% Plot the function f(x)

plot(x, y, �b-�, �LineWidth�, 2);

% Plot the filled trapezoids (colored area under the curve)

for i = 1:n
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% Define the x and y coordinates of the trapezoid

x_vals = [x_trap(i), x_trap(i), x_trap(i+1), x_trap(i+1)];

y_vals = [0, y_trap(i), y_trap(i+1), 0];

% Fill the trapezoid area with a transparent color

fill(x_vals, y_vals, �c�, �FaceAlpha�, 0.3, �EdgeColor�, �r�,

�LineWidth�, 1.5); % Cyan with transparency

end

% Set labels and title

xlabel(�x�); ylabel(�f(x)�);

title(�Trapezoidal Rule for Numerical Integration (Colored Area)�);

grid on; hold off;

Code Matlab of Simpson�s Rule

% Define the function to integrate

f = @(x) sin(x);

% Set integration limits

a = 0; b = 2*pi;

% Number of subintervals (even number)

n = 6;

% Step size

h = (b - a) / n; x = a:h:b; y = f(x);

% Simpson�s Rule Calculation

integral_approx = (h/3)*(y(1)+y(end)+4*sum(y(2:2:end-1))+2*sum(y(3:2:end-2)));

% Display results

disp(�Approximate integral value using Simpson"s rule:�);

disp(integral_approx);

exact_integral = integral(f, a, b);
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disp(�Exact integral value:�);

disp(exact_integral);

% Plot

x_fine = linspace(a, b, 1000);

y_fine = f(x_\ldots ne);

\ldots gure;

hold on;

plot(x_fine, y_fine, �m�, �LineWidth�,2);

scatter(x, y, �ro�, �MarkerFaceColor�, �r�);

title(�Simpson"s Rule Approximation�);

xlabel(�x�); ylabel(�f(x)�);

fill([x_fine, \ddag iplr(x_fine)], [y_fine, zeros(1,

length(y_fine))], �g�, �FaceAlpha�, 0.2);

% Plot parabolic arcs for each pair of subintervals

for i = 1:2:n-1

% Three points for Simpson�s rule segment

x0 = x(i); x1 = x(i+1); x2 = x(i+2);

y0 = f(x0); y1 = f(x1); y2 = f(x2);

% Generate fine x values between x0 and x2

x_parabola = linspace(x0, x2, 100);

% Lagrange interpolation

L0 = ((x_parabola - x1) .* (x_parabola - x2)) / ((x0 - x1) * (x0 - x2));

L1 = ((x_parabola - x0) .* (x_parabola - x2)) / ((x1 - x0) * (x1 - x2));

L2 = ((x_parabola - x0) .* (x_parabola - x1)) / ((x2 - x0) * (x2 - x1));

y_parabola = y0 * L0 + y1 * L1 + y2 * L2;

plot(x_parabola, y_parabola, �b--�, �LineWidth�, 0.5);

end
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% Draw vertical lines from x-axis to points

for i = 1:length(x)

plot([x(i), x(i)], [0, y(i)], �b--�);

end

title(�Simpson"s Rule Approximation�);

xlabel(�x�); ylabel(�f(x)�);

grid on;

hold on;

Code Matlab of Midpoint Rule for Double Integral

% Midpoint Rule for Double Integral with Visualization

clc; clear; close all;

% Define the function to integrate

f = @(x, y) sin(x) .* cos(y); % Example function

% Define integration limits

a = 0; b = pi; % x-limits

c = 0; d = pi/2; % y-limits

% Number of subintervals

nx = 6; % Number of intervals in x

ny = 6; % Number of intervals in y

% Step sizes

hx = (b - a) / nx;

hy = (d - c) / ny;

% Initialize sum

I = 0;

% Prepare grid for plotting

[X, Y] = meshgrid(linspace(a, b, 50), linspace(c, d, 50));

Z = f(X, Y);
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% Plot the surface

figure;

surf(X, Y, Z, �EdgeColor�, �none�);

hold on;

title(�Double integral with Midpoints�);

xlabel(�x�); ylabel(�y�); zlabel(�f(x,y)�);

% Loop through subrectangles

for i = 1:nx

for j = 1:ny

% Midpoint coordinates

xi = a + (i - 0.5) * hx;

yj = c + (j - 0.5) * hy;

% Evaluate function at midpoint

fxy = f(xi, yj);

% Add contribution to total integral

I = I + fxy * hx * hy;

% Plot midpoint

plot3(xi, yj, fxy, �ko�, �MarkerFaceColor�, �r�);

plot3([xi xi], [yj yj], [0 fxy], �k--�, �LineWidth�,0.1);

end

end

% Display result

fprintf(�Approximate value of the double integral: %.6f\n�, I);

I_exact = integral2(f, a, b, c, d);

fprintf(�exact double integral value: %.6f\n�, I_exact);
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Code Matlab of Simpsn�s Rule for Double Integral

clc;

clear;

% Define the function to integrate

f = @(x,y) sin(x) .* cos(y); % Example function

% Integration limits

a = 0; b = pi; % x-limits

c = 0; d = pi/2; % y-limits

% Number of subintervals (must be even)

n = 6; % x-direction

m = 6; % y-direction

% Step sizes

hx = (b - a) / n;

hy = (d - c) / m;

% Generate grid

x = linspace(a, b, n+1);

y = linspace(c, d, m+1);

[X, Y] = meshgrid(x, y);

% Evaluate the function over the grid

Z = f(X, Y);

% Simpson�s weights

Wx = ones(1, n+1);

Wx(2:2:end-1) = 4;

Wx(3:2:end-2) = 2;

Wy = ones(1, m+1);

Wy(2:2:end-1) = 4;

Wy(3:2:end-2) = 2;
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% Compute Simpson�s double integral

I = 0;

for i = 1:m+1

for j = 1:n+1

I = I + Wx(j)*Wy(i)*Z(i,j);

end

end

I = I * (hx * hy) / 9; % 9 comes from 3*3 (Simpson�s 1/3 rule in 2D)

% Display result

fprintf(�The approximate value of the double integral is: %.6f\n�, I);

% Plotting the surface and the region

figure;

surf(X, Y, Z);

xlabel(�x�); ylabel(�y�); zlabel(�f(x,y)�);

title(�Double integral with simpson�);

grid on;
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Abstract 
 
 
 

In this work, we will study the numerical integration,we starting with some 
theoretical generalities on integration ,the definite integral ,theorems and 
properties, after that we pass to review some numerical methods on 
integration like Newton-cots formula for simple and double integral ,and we 
finsh with some applications by Matlab software. 
 
Key words : Numerical integration, The Newton-cots rule, The Midpoint rule, 
Trapezoidal Rule, The Simpsons rule. 

 
 
 

Résumé 
 
 
 

Dans ce travail, nous étudierons l'intégration numérique, en commençant par 
quelques généralités théoriques sur l'intégration, l'intégrale définie, des 
théorèmes et des propriétés, après cela nous passerons en revue certaines 
méthodes numériques sur l'intégration comme la formule de Newton-cots 
pour l'intégrale simple et double, et nous terminerons par quelques 
applications par le logiciel Matlab. 
 
Mots clés : Intégration numérique, la méthode de Newton-cots, la méthode de 
Midpoint, la méthode de  Trapezoidal Rule, la méthode de Simpsons. 
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