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Notations and symbols

These are the different symbols and abbreviations used in this thesis.

Symbols:
(Q, F,P)

(€, F, (F)eeo), P)
T

X = (Xi)iefo1]
N, 0?)

L2(0, T)

Probability space.

A complete filtered probability space.

A strictly positive number.

A stochastic process.

The normal distribution is defined by a mean p and a variance o2.
Space of square-integrable functions on the interval [0, T7].
Brownian motion.

The space of all real matrices of dimensions n X m.
Expectation.

Variance.

The covariance between two random variables x and y.
Conditional mean.

The Euclidean norm in R".

Conditional variance.

The d—dimensional Euclidean space, representing

the set of all real vectors with d components.
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B*(t)

ﬂXOVJ{Bszogsgt}

{ LX), LX) }

Reflected Brownian motion is a stochastic

process defined as the absolute value of

standard Brownian motion B(t) such that B*(t) = |B(t)].
The smallest o-algebra generated by the initial condition Xy,
and the Brownian motion Bsup to time ¢.

The distributions of X and its corresponding

estimator X as £(Xx) and £(Xg) respectively

Natural filtration of the stochastic process X defined by

(Fi)e=o0
Fi=0(X(s),0<s<t).

C2([0.50) x R) The space of functions that are twice continuously differentiable
on the domain [0, 00) x R.

Notations:

SDEs :  Stochastic differential equations.

a.s. : Almost sure.

P—a.s. : Almost sure in probability P.

m(-) : The mean function.

v2(+) : The conditional variance function.

ie. : That’s to say.

w.r.t. . With respect to.

a.e. : Almost every where.

DM . The proposed dynamic modeling approach.

LW . The covariance completion method.

RMSE : The root-mean-square error.

FPCA : Functional principal component analysis.
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Introduction

n various scientific fields, mathematical models rely on longitudinal data
monitor temporal developments of different phenomena. However, sparse
gitudinal data pose a significant challenge due to irregular observation times

and missing information in certain periods. One effective approach to addressing these
challenges is the use of stochastic differential equations (SDEs), which provide a dy-
namic framework for analyzing sparse data and making predictions based on limited
observations. This approach serves as an alternative to traditional methods such as
functional principal component analysis (FPCA), which require strong assumptions

that may not be feasible in cases of sparse data.

The roots of functional data analysis date back several decades, with techniques
such as FPCA and functional regression models being developed to study temporal
processes. However, these methods face difficulties when data are incomplete or sparse.
In recent years, stochastic differential equations have gained increasing attention as
a tool for modeling dynamic stochastic phenomena. Notable contributions to FPCA
have been made by Kleffe (1973)[12], Castro et al. (1986)[1], Hall and Hosseini-Nasab
(2006)[8], Chen and Lei (2015)[2], and Zhou et al. (2022)[20], while functional regression
has been significantly refined through the work of Ramsay and Silverman (2005)[16]
and Hall and Horowitz (2007)[9]. Comprehensive discussions on these topics can be

found in Ramsay and Silverman (2005)[16], Hsing and Eubank (2015)[10], and Wang
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et al. (2016)[18].

This study aims to develop a dynamic model based on stochastic differential equa-
tions for analyzing sparse longitudinal data by introducing a nonparametric methodo-
logy to reconstruct underlying stochastic processes without relying on strong assump-
tions. It seeks to enhance the accuracy of data analysis and prediction of future tra-
jectories while comparing its performance with traditional methods such as functional
principal component analysis. Through simulation studies and real-world applications,
the research aims to provide a practical model applicable to various fields, including bio-
logy, economics, and social sciences, contributing to a more precise and flexible analysis

of dynamic phenomena.

In recent years, stochastic differential equations have gained increasing attention
as a tool for modeling dynamic stochastic phenomena. Notable contributions include
the work of Dawson and Miiller (2018)[4], which introduced a dynamic framework for
analyzing sparse data, as well as studies exploring the estimation of SDE parameters

using incomplete functional data.

Despite significant advancements in longitudinal data analysis, major challenges
remain in dealing with sparse data. Some key research questions this study aims to
address include: How can the underlying stochastic processes in sparse data be recon-
structed using stochastic differential equations? What are the most efficient methods

for estimating drift and diffusion parameters without relying on strong assumptions?

This thesis consists of three main chapters, each addressing a key aspect of dynamic

modeling for sparse longitudinal data using stochastic differential equations.
Chapter 1 (Stochastic Differential Equations and Alternative Formulation):

This chapter presents the theoretical foundation of stochastic differential equations

(SDEs) as a powerful tool for modeling random dynamic systems. It covers funda-
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mental definitions, existence and uniqueness theorems, and discusses both classical and
alternative formulations of SDEs. The chapter emphasizes the relevance of SDEs in
representing time-continuous stochastic processes, particularly in the context of sparse

longitudinal data.
Chapter 2 (Estimation of Stochastic Differential Equations ):

This chapter focuses on estimation techniques for SDEs based on the alternative
formulation introduced earlier. It explains how to simulate sample paths from sparse
data and estimate conditional means and variances using nonparametric regression.
The chapter also addresses convergence properties of the estimators and provides a
recursive framework for constructing paths that align with the statistical properties of

the underlying stochastic process.
Chapter 3 (Data Applications):

The final chapter applies the proposed methodology to sparse longitudinal data
analysis, featuring a case study on child growth in Nepal using irregular height meas-
urements. It discusses theoretical solutions for SDE based models, conducts empirical
studies, compares models such as Ho-Lee and Ornstein—Uhlenbeck, and evaluates the

proposed model’s performance against covariance completion methods.

The study also paves the way for developing nonlinear and non-Gaussian models,
improving estimation algorithms, and extending applications to fields like economics

and epidemiology....



Chapter 1

Stochastic Differential Equations

and an Alternative Formulation

n this chapter, we present the theoretical foundation of stochastic differential
equations (SDEs), which are used to model dynamic systems influenced by
randomness. We focus on the conditions for the existence and uniqueness of
solutions, and introduce the alternative formulation of SDEs, which enables a more
flexible analysis of sparse longitudinal data, and we mention some of the references we

used [5], [13, 14, 21].

1.1 Stochastic Differential Equations

1.1.1 DMotivation and General Introduction

Stochastic differential equations aim to formulate a mathematical model for a dif-

ferential equation subjected to random noise. Let’s look at an ordinary differential
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equation given by the expression
X' =0b(X(t)),

or, in differential form:

dXt - b(Xt)dt,

an equation of that kind defines the evolution of the physical system. If any random
fluctuations are considered, a noise term in the form of odB; is included, where B; is
Brownian Motion and ¢ is a constant for the time being which corresponds to the noise

level. This generates a “stochastic” differential equation of the type:

Or, in the only sense that carries any mathematical worth, the integral form:

t
Xt = T + /b(Xs)dS + UBt.
0

This equation is generalized by allowing ¢ to depend on the state of the system at time

t:

dXt = b(Xt)dt + U(Xt)dBt,

or, in integral form:
t ¢

X, —x0+/b(Xs)ds—i—/a(Xs)Bs.

0 0

In general, determining the solution of an SDE is not trivial. This is the case when
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functions b and o are required to meet certain conditions in order to guarantee both the
existence and uniqueness of the solution of the SDE. In order to be completely general,

we suppose b and ¢ are functions of time ¢t. So, we investigate the following SDE:

t t

X, =X, + /b(s,Xs)ds + /U(S,XS)BS.
0 0

Definition 1.1.1 A stochastic differential equation (SDE) takes the form:

t t
X, :xo—i—/b(s,Xs)ds—l—/a(s,Xs)st, tel0,7], se€lo,t], (1.1)
0 0

or in differential form:

dXt = b(t,Xt)dt + O'(t,Xt)dBt, V(O S t S T), (1 2)

X() = 2.

Let (Xi)icp,r) be a stochastic process defined on a filtered probability space
(0, F, (Fo)eepo,r, P) , where T is a strictly positive number. The functions b and o
represent the drift and diffusion coefficients, respectively, and B; denotes a Brownian
motion (also referred to as a Wiener process). The initial value xy can either be determ-
inistic or random, provided it is independent of the Brownian motion B;. The filtration
is defined as: F;*° = o(2¢) Vo{B; : 0 < s < t} which represents the smallest o-algebra

generated by the initial condition Xy and the Brownian motion B, up to time ¢.

Definition 1.1.2 (Solution of an SDE)
Consider the two measurable and bounded functions b(t,x) = {b;(t,x),1 <1i < n}
and o(t,x) = {o(t,x),1 <i<n,1 <j<m}, forall 0 <t <T. Letn ,m €N,

b:R"x[0,T] = R" and o : R* x [0, T] = M™™ and xo € R™ be an initial condition.
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A solution of SDE s composed of:

(i) A filtered probability space (2, F, (Fi)icpo,r), P) satisfying the usual conditions.

(ii) An (F)ico,r)-Brownian motion B = (B, ..., By,) with values in R™.

(iii) A process X = (Xi)icpp,rcontinuous and (F;)icpo,r-adapted such that the integrals

t t

/b(s,Xs)ds and /O’(S,Xs)st,

0 0

are well-defined and satisfy the equality for P-a.s. for allt.

1.2 Existence and Uniqueness Theorem.

Let b: R"x[0,7] - R" and o : R" x [0,T] — M™" be continuous functions that

satisfy the following conditions:

a) The Lipschitz condition:
|b(t,x) — b(t,2)|+|o(t,z) —o(t,x)| < L|z — 7| foral0 <t <T, z, z € R".
b) The linear growth condition:

|b(t,z)| + |o(t,z)| < L(1 + |z|) forall 0 <t <T, x € R".

for some constant L.

(c) X, be any random variable taking values in R™ such that:

E(| Xo|*) < o0



Chapitre 1.Stochastic Differential Equations and Alternative Formulation

and

X is independent of B*(0).

Theorem 1.2.1 Assume that satisfies the conditions (a)(b)(c). Then, it has

a unique solution (X;)iep.r € L*(0,T) .
Remark 1.2.1

1. We denote X = (X;)cjo,r) and X = ()'Et)

te[o,T] "

2. “Untque’ means that if X, X e L2(0,T), with continuous sample paths almost

surely, and both solutions satisfy the stochastic differential equation (1.2)), then:

P(X, =X, forall 0<¢t<T)=1.

3. If b(t,0) is bounded , hypotheses (a) claims that b and ¢ are uniformly Lipschitz

continuous in the variable z, also note that hypothesis (b) follows from (a).

Proof. A detailed proof is presented in Evans (2013,p.91).[5] =

1.3 An Alternative Formulation of SDEs

1.3.1 Estimation of the Drift and Diffusion Coefficients

In SDEs, the behavior of a process is mainly characterized by two functions:

e The drift, which describes the average direction of evolution.

e The diffusion, which measures the intensity of random fluctuations.
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Below, we provide their mathematical definitions based on conditional expectations and

variances as follows:

b(t,z) = lim

s—tt § —

E(Xs - Xt|Xt - JZ), (13)

and

E(X, — X,)?|X; = ).

2 .
t,x) =1
0-(71:) SLIE'S—

It is worth noting that the diffusion coefficient can alternatively be defined as:

2 .
t,x) =1
O-(jx) sigis—

var( X, — X¢| Xy = x). (1.4)

Here, b(t, X;) can be considered as the instantaneous derivative of the mean of
the process conditioned on the value of (X;)se0.7], and (¢, X;) can be interpreted as
the instantaneous derivative of the squared fluctuations of the process conditioned on
(X4)eeio17-

Proof. Let s > t and dt = s — t represent an infinitesimal time increment, and let

dX; = X, — X, denote the corresponding increment of the stochastic process. Based

on the SDE defined in ([1.2)). First we approximate the drift b of the SDE ({1.2))

S S

X, — X, = /b(u,Xu)du—i— /a(u,Xu)dBu.

t t

Since, the infinitesimal mean is:

E(Xs — X¢| Xy =2) = ]E[/b(u,Xu)du]Xt =]+ E[/a(u, X,)dB,| X = z].

t t
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Computing the first term:
/bu X,)du|X; = x].
t

Using the fact that:

s

b(u, X,) = b(t, X,)+(b(u, X,)—b(t, X;))  and / Elb(u, X,)—b(t, X,)| X, = z]du = o(s—t),

t

we obtain:
E[/b(u, Xy)du| X, = x] = ]E[/b(t,Xt) + (b(u, Xy) — b(t, Xy))du| X = z] (1.5)

S

= /E[b(t,Xt)|Xt = z]du +o(s — t)

t

=0b(t,z)(s—t)+o(s—1).

S
Now, to compute the second term which is E[ [ o(u, X, )dB,|X; = x], we rewrite the
t

term inside the expectation as follows:

S S

E[/(J(U,X ) — o(t, X,))ABu| X, = 1] +E[/a(t,Xt)dBu|Xt _ 4,
t t
since the first term represents an It6 integral, which is a martingale with mean zero,
we get
E[/a(t, Xy)dBy| Xy = x| = o(t,x)E(Bs — B;) =0, (1.6)

t

10
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the combination between (|1.5)) and ([1.6|) leads to,

B(X, — X,|X, = 2) = B{b(t,z)(s — t) + o(t,2)(B, — B,)} + o(s — t) (1.7)

=0b(t,x)(s —t) + o(s — t).

Secondly; we approximate the diffusion process. The infinitesimal variance can be

expressed as:

B{(X, — X;)?|X; = 2} = B[{b(t,2)(s — t) + o(t,2)(Bs — B;)}*] + o(s — t)
= o*(t,x)Var(B, — B;) + 2b(t,x)o(t, x)(s — t)E(B, — By)
+E®*(t,7)(s — t)%) +o(s — t)

=o*(t,x)(s —t) + b2 (t,2)(s —t)* + o(s — 1).
Thus, using the approximation in ([1.7)

Var(X, — X;| X, = ) = B{(X, — X))} X, = 2} — {b(t,2)(s — t) + o(s — 1)}?
=o*(t,x)(s —t) + b*(t,x)(s —t)* +o(s —t) — b*(t,x)(s — t)?

=o*(t,z)(s —t) + o(s — t).

Consequently, for any positive real number €, we can find a positive real number § such

that, for all s > ¢t. where s —t < 4, the following holds:
1
]b(t,x) — EE(XS - Xt|Xt = $)| < €.

Therefore, the limit

E(XS — Xt’Xt = x),

lim
s—tt§ —

11
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exists and equals b(¢, z). Similarly, we can show that the limit

E((Xs — X3)?|X; = 2),

lim
s—tt 8§ —

exists and equals o?(f, 7). =

1.3.2 An Alternative Formulation of SDEs

The stochastic process (X¢);cjo,7] is supposed to satisfy a general SDE as defined
in . In real dataset applications, the drift and diffusion coefficients in are
typically unknown. In order to recover the underlying dynamics of X;, instead of
estimating directly the drift and diffusion terms, which is difficult for functional snippet
data, we replace the representations from and for the drift and diffusion

coefficients. This leads to the following alternative formulation of the SDE.

Lemma 1.3.1 (Alternative Formulation of SDE)

dX; = ZE(X| X)) [smidt + {2V ar(X,| X;)|s—dt}2d B, t €0, 7], L9
X() = Xop-

We have taken the value of s to be greater than t when we evaluate the E(X |
Xy) and Var(Xs | Xy) wrt s. The diffusion coefficient is well-defined and nonzero.
SDE (@ serves as the primary tool for generating sample paths of (Xi)icpo,r), given
an initial condition, recursively. Given the Gaussian assumption, the distribution of
(Xt)ico,1) is constructed at every step using the conditional mean estimates B(X, | X;)

and conditional variances Var(Xs | X;).

Remark 1.3.1 we introduce some essential conditions that ensure the validity of the

alternative formulation of stochastic differential equations:

12
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o (A1) The mean function u(t) = E(X}) is continuously differentiable on [0,T7] .

e (A2) The covariance function ) (s,t) = Cov(Xs, X;) is continuously differentiable
in the lower triangular region {(s,t) : s > t, s, t € [0,T|}. In other words, the

partial derivatives exist and remain

5 (o = SE0 - O

continuous for all s,t € [0,T), where s > t.

e (A3) The variance function ) (t,t) remains strictly positive over the half-open

interval (0, 1].

1.4 Existence and Uniqueness Result

Theorem 1.4.1 If (Xy)icpom 95 a Gaussian stochastic process and satisfies conditions
(A1) and (A2), where the initial value xo is a random wvariable independent of the
o-algebra F,, generated by {Bs, s > 0} and satisfying B(x?) < oo, then the unique

pathwise solution to the stochastic differential equation (@ 18 given by:

t t

B ) ,
X, = xo +/§E(XT|XS)|TSds+/{§Var(XT|XS)|TSdt}deS, te[0,T).
0

This solution satisfies the following properties:

1. Adaptation to Filtration:

X is measurable w.r.t F;° = o(xg) V o(Bs, s € [0,1]). (1.9)

13
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2. Bounded Second Moment:

supE(X?) < oo. (1.10)
(0,7]

Furthermore, uniqueness holds in the sense that if two processes (Xi)icjo.r) and

Y )ieio.r satisfy equations , (1.9), and (1.10), then:
(0,71

Xe=Y, forallte|0,T] a.s.

Remark 1.4.1 Given the Brownian motion By is predefined, the solution (Xi)ic(o1)
is F;°-adapted. where the drift coefficient b(t, X;) = a(t)X; + c(t) and the diffusion
coefficient is additive, i.e., o(t, X;) = o(t). Indeed, restricting to Gaussianity, (X;)tcjo,r
satisfies a narrow-sense linear SDE (Kloeden and Platen 1999[11)]), where the drift and

diffusion coefficients are of the form:

bt X0) = () + 3 (5.t 3 (X0~ (0)),
o(t, X0 = {300 1) — 23 (5.0},

indicating that SDE (@) is a narrow-sense linear. The general solution for a linear

SDFE can be explicitly written as:

t t

X, = o(t) :cg—l—/c(s)q§1(s)ds—|—/0(s)¢1(s)dBS :

0 0

14
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where the parameters are:

A key property of the recursion in is that it provides an exact simulation of

(Xt)teo,r) at discrete time points ty, ... 1.

Proof. Let

0
b(t, Xt) — %E(Xletﬂs:t

0 \
O'(t, Xt) = {a—VaT(Xs\Xtﬂs:tdt}?.
s
As stated in Theorem [T1.2.T] it is sufficient to demonstrate that the linear growth and

Lipschitz conditions (a) and (b) are met. Note that if (X¢).cjo, 7] is a Gaussian process

then we have:

E(X,|X)) = p(s) + Y (s,t Z (t, ){Xe — ()},
Var(X,|X;) = Z(s,s) =N (5,6 (1) > (ts).

Thus,

bt X0) = (1(s) + 3 (5.0) S (X, — p(D)})]c
0+ (50l Y (X — (D),

15
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o(t, Xi) = {Zs 9 =23 (503 (00 3 )}t
Z t’t _22;(87t)|s:t}%'

Since [0, T is compact (), i’ (t), Z;(s, t), and Z;(t, t) are bounded under conditions
(A1) and (A2). Additionally, if Y (¢,t) = 0, then > (s,t) = 0 for all s € [0,7]. Con-
sequently, > (¢,t) = 0 implies that Z;(s, t) =0 for all s € [0,7], and thus Z;(s,tﬂs:t

S (¢, t) remains bounded. For all z € R and ¢ € [0, 77, it follows that:

Ztt—QZ (5,8)|set}?
Ztt—QZ (5,8)]s—e }2

+Z (5, 6)amt > Yt ) — ‘

<)+ ‘ng,ms:t ) ‘

[bt, 2)| + lo(t, 2)] = |

<CL+Cylx|+Cs

< C(1+ |z)).

For some constant C', the growth condition is therefore satisfied. Regarding the Lipschitz

condition, observe that |o(t,z) — o(t,y)| = 0, we have:
[b(t, 2) = b(t, y)| + |o(t, x) — ot y)| = [b(t, x) = b(t,y)]
SRR S IEE
- ‘Z;(s,tﬂs:tz_l(t,t)

< Clz -y

|z —y|

forall z,y e R, t € [0,7]. =
In conclusion, this chapter introduced the fundamental concepts of stochastic dif-

ferential equations and the conditions for the existence and uniqueness of their solutions.

16
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We also explored the alternative formulation used for handling sparse longitudinal data.
However, the practical application of these models requires parameter estimation and

path simulation topics that will be discussed in detail in the following chapter.

17



Chapter 2

Estimation of Stochastic Differential

Equations

n this chapter, we move from theoretical foundations to practical implementa-
tion, focusing on parameter estimation methods for stochastic differential equa-
tions (SDEs). We explore techniques for simulating stochastic paths and estim-
ating conditional means and variances, while addressing how to handle sparse longit-
udinal data using efficient recursive algorithms, and we mention some of the references

we used [11], 20, 21].

2.1 Estimation

18
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2.1.1 Simulating Sample Paths

To estimate sample paths of (X;);cjo,7] from initial conditions using function snip-

pets, the SDE from equation (|1.8) is rewritten as:

Ji (X~ X)
 im {E(XS | Xti - ?(Xt X0 s {Var(Xs | Xti - z/ar(Xt | X)) } 5. - Bt)}
s—t — —

Starting with the initial condition Xy = xg, we can simulate the continuous-time
process (X):c[o,7] at discrete time points. This involves defining a predetermined, evenly
spaced time grid:

0 <ty <ty <-- <t <ty <1, where each interval has a length A. We denote
the process’s initial value at ¢y, as Xy, and its simulated value at time ¢ as X, . The

process is simulated recursively:

E(Xy | Xe—1) — BE(Xjo1 | Xioq)
A

X, | X ) — Xy | Xoi)) 2
+{Va7“( el Xi) AVCL?”( e | X 1)} (B, — By, _,).

Xk_kal - A

Since B(Xy_1 | X5_1) = Xp_1, Var(Xg_1 | Xx_1) =0, and (B, — By, ,)/VA ~ N(0,1),

the recursion simplifies to:
Xip =EB(X) | Xpot) + {Var(Xy | Xee)}2 Wi, Xo = . (2.1)

Where W), ~ N(0,1) are independent for k=1,..., K.

The recursion in equation ([2.1)) provides an exact simulation of the Gaussian pro-
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cess (X¢)weo,r) at discrete time points, unlike traditional methods (Euler-Maruyama,
Milstein) that introduce discretization errors. For practical use, especially in longit-
udinal studies, the time spacing A should be set based on the scheduled visit times,
and the number of time points K is determined by A and the time interval of in-
terest. To simulate (X;);cp,r), random samples must be drawn from N (E(X}, | Xj_1),
Var(Xy | Xk-1)). Since these parameters are unknown, they need to be estimated

before simulation.

2.1.2 Estimation of Conditional Moments

The variable X,_;, observed at time t;_;, encapsulates both its value and the
corresponding time index. To estimate the conditional mean E(X} | X;_;) and the
conditional variance Var(Xj | X;_1), one can frame the problem as a regression task.
In this context, X}, serves as the dependent variable, while the pair (Xj_1,#,_1)7 acts as
the predictor. Assume that each subject is measured at least at two distinct time points,
T;1 and T}, yielding observations Y;; and Y;y , respectively. By defining Z; = (Y1, Tj1)”
and assigning Y; = Y}, for each i = 1, ..., n, we deal with collection {(Z;,Y;)}" ;as ni.i.d
samples from the joint distribution of the random variables (Z,Y"). This setup leads to

the formulation of the regression model as follows:

In this context, the functions m(z) = E(Y | Z = 2) and v?(2) = Var(Y | Z = 2)
denote the conditional mean and variance of Y given Z = z , respectively. The error
term ¢; is characterized by a zero conditional mean E(e; | Z;) = 0 and a unit conditional
variance Var(e; | Z;) = 1. The problem of estimating both the conditional mean and

conditional variance has been extensively explored using parametric and nonparametric
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regression models. In particular, to estimate the conditional variance, we follow the
standard approach of modeling the squared residuals {Y; — ﬁ”L(Zi)}2 as the response
variable and using Z; as predictors. This regression-based approach allows the recursive

simulation formula presented in equation (2.1]) to be simplified accordingly.

X, = m(Zk_l) + U(Zk_l)Wk, Xo = xo, (23)

where Z;, 1 = (Xp_1,tp_1)T for k = 1,..., K . Given estimates m(-) and 0%(-), the

estimated sample path of (X;)icpom) at t1,. .., is computed recursively as

X1 = m(Zy) + 0(Zy) W,

A

Xy = (Zy—1) + 0(Zj_1) Wi, k=2,..,K, (2.4)

where Zo = ($0,t0)T and Zk,1 = (kal,tkfl)T for k = 2, ceey K.
In cases where the conditional mean and variance structures are unknown, non-

parametric methods provide a flexible alternative to parametric approaches like multiple

linear regression, though they may have a lower rate of convergence.

2.2 Some Convergence Results

In this section, we confirm that the stochastic differential equation (SDE) presented
in equation possesses a unique solution and examine the rate at which the estim-
ated sample paths converge. The assurance of existence and uniqueness is grounded in
the Gaussian nature of the process (X;).cpp,1; that is, for any finite collection of time
points t1, ..., ¢ € [0,T], the vector (X;,,..., X, )" exhibits a joint Gaussian distribu-
tion. A pivotal aspect of our analysis involves articulating the conditional expectation

E(X; | X;) and the conditional variance Var(Xs | X;) using the mean and covariance
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functions associated with (X);c,m7. This approach facilitates the demonstration that
the drift and diffusion coefficients specified in equation(|L.8]) adhere to the Lipschitz and

linear growth conditions from (a) and (b):

BOX,X) = u(s) + S50 S (40X, — ut)},

Var(X|X;) = Z(s, s) — Z(s, t) Zil(t,t) Z(t, s).

Even when dealing with a non-Gaussian process (X;):cjo,r], as long as a unique
solution is present, it is possible to determine the convergence rate of the estimated
sample path, provided that both the conditional mean m(-) and conditional variance

functions v?(-) adhere to the Lipschitz continuity condition.

Remark 2.2.1 To ensure that the drift and diffusion coefficients in @ meet the
Lipschitz and linear growth conditions (a) and (b), the conditions (A1) and (A2) are
required. These conditions impose regularity constraints on the process (Xi)icjor). In
particular, (A2) ensures that the covariance function > (s,t) is continuously differ-
entiable in the upper triangular region{(s,t) : s < t, s, t € [0,T]}, though it may
not be differentiable along the diagonal s = t. This non-differentiability at s = t is
a well-known property, as seen in Brownian motion, where the covariance function

> (s,t) = min(s, t) is continuous but not differentiable along the diagonal.

Lemma 2.2.1 States that if the stochastic process (Xi)ico,r) follows a Gaussian dis-
tribution, the recursion in provides an exact simulation of the process at time
points ty, ..., t,, ensuring that the generated values match the true distribution of the
continuous-time process at these points. Additionally, this Lemma guarantees that dis-

cretization errors are not a concern when analyzing the convergence rate of the estimated
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sample path if (X¢)ieor) is Gaussian. The asymptotic properties of the estimated path
are examined based on , focusing on the rate of convergence for X K, which also
applies to Xj for any k. The proof relies on a recursive formula for the difference

Xy — Xy |land utilizes the Lipschitz continuity of the conditional mean function m(-)

and the conditional variance function v*(-) . To establish this, we require the condi-
tions (A3) regarding the variance function Y (t,t) and the design of functional snippets.
This assumption is reasonable in practical applications, particularly when modeling the
stochastic dynamics of (X;)ico,r)- Under Gaussianity, the recursive expressions for the

conditional mean and variance in simplify to:

m(Zi1) = plte) + Y (t, i) Z_l(tk—h t-){Xe o, — plte-1))},  (2.5)
VZ ) = St = Y ot )Y (tente) S (et (26)

where Zy_1 = (Xp_1 —tk_l)T and t, = t._1+ A represents the discrete time points used

to simulate the sample path of the underlying process (Xi)ic(o.17-
Proof. Consider a recursive relationship (2.1)) defined for k£ =1, ..., K as follows:
Xk = E(Xk | kal) + {V&T(Xk | kal)}%wk

Here, E(Xy | Xk_1) represents the conditional expectation of X given X _;, while
Var(Xy | Xy_1) represents the corresponding conditional variance. W}, denotes a stand-
ard Gaussian random variable. Assuming that X follows a Gaussian distribution, it

is sufficient to demonstrate that both the mean and variance of the right-hand side of
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this recursion match E(X}) and Var(X}), respectively. To prove the mean:

E[E(Xs | Xio1) + {Var(Xy | X4_1)}2 W]
= B[E(X), | Xie1)] + E[{Var(Xy | Xp_1)}2 Wi

= EB(Xy) + E[{Var(X, | Xs—1)} 2] E(W,)
= E(Xy).

This holds because W}, ~ N (0,1) and it is independent . To prove the variance: Given
that W} is independent of both E(X; | Xx_1) and {Var(Xy | Xx_1)}2, we have:

Varl{Var(Xy, | Xe_1)}2 W]

= B{Var(Xy | X 1)}W7] = B[{Var(Xy | X 1)} 2 Wi

= B{Var(Xy | X 1)JEW7] = B{Var(Xe | Xp1)}2]B° (W]
= E{VCLT’(Xk | Xk—l)}‘

Also, the covariance is:

cov[B(X, | Xio1), {Var(Xy | Xp_1)}2 Wi

- {E[E(Xk | Xpo1) {Var(Xe | Xi—1)}2 Wi

P2 Wi
~B{B(X;, | Xe 1) E{Var(X, | Xp 1) Wi}

- {E[E(Xk | X)) {Var(Xy | Xp_1)}3.E(W,)

—B(X;) B{Var(Xy, | Xe_1)}2].E(W;)

——

=0
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Thus, the total variance is:

Var[E(Xy | Xi_1) + {Var(Xy | Xp_1)}2 W]

= {Var{B(X, | X)) + Varl{Var(X, | Xp1)} W]
+2cov[B(Xy | Xi_1), {Var(Xy | Xk—l)}%Wk:]}

= V(M’{E(Xk | Xk—l)} +E{VCLT(Xk | Xk—l)}

= Var(Xy)

Lemma 2.2.2 States that if the stochastic process (X¢)icjo,r) i Gaussian and satisfies

conditions (A1), (A2), and (A3), then for k = 2,..., K, the conditional mean and

conditional variance in recursion satisfy:

‘m(zk—1> —m(Zy-1)

<L ‘Xk—l — Xk—1],

[V(Zk1) = 0(Zi)

=0,

where L =  max , ISt + AL t) S, t)| and Z—1 = (Xj-1, tr1)7, Zn1 = (Xp_1,tp1)7.

te{ti,..., tr—1

This lemma ensures that the sequence X, — Xk‘ does not increase rapidly, allowing
one to bound ’Xk — X, k’recursively. To determine the convergence rate of the estimated
sample path, one must analyze the asymptotic behavior of the estimates of the condi-

tional mean function m(.) and the conditional variance function v?(-). Suppose that for

any fixred z € R x [0, T, the following holds:

[E{ |1in(2) — m(2)[* }]7 = O(aw)

[E{|0?(2) — v*(2)|* }] = O(Bn). (2.7)
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If the residual-based estimator is used to estimate the conditional variance function
v2(+), it is well known that estimating the conditional mean function m(.) does not
affect the estimation of v*(-) (Fan and Yao 1998[6)]). Therefore, if the same regression
method is used for both m(.) and v*(-), then, o, = B,. For multiple linear regression,

1 . . _1
o, = B, =n~2, whereas for local linear regression, o, = 3, =n"3.

Proof. Under the assumption of Gaussianity, the conditional mean and conditional
variance in recursion simplify to:, where Z 1 = (X1 —tp_1)T and t;, =
tr—1 + A represents the discrete time points used to simulate the sample path of the
underlying process (X¢):e[o,77-

Since [0, T is compact, it follows from Conditions (A1) and (A2) that u(t) and > (s, 1)
are bounded. Additionally, for £ = 2,..., K, the term (¢, tx—_1) 271(%_1’%_1) is
bounded under Condition (A3), ast;_1 >0 for k=2,... K and t, = t;_1 + A.

Now, defining Z,_; = (Xk_l, ty_1)T, for k =2,..., K, we obtain:

m(Zx) - m(Zk_l)‘ = | (u(ti) + > (trs tin) Zil(tk—htk—l){f(tk_l — p(te-1))})
—(ut) + 3t te ) Dt e X, — b))

- Z(tk, th_1) Z (tkfl,tk—l)()%kfl — Xi-1)

<L ‘Xk—l - Xk:—l‘ :

where L =  max |Z(t + A1) Zfl(t, t)| . Since, under the Gaussian assumption,

te{te,tr—1}

the conditional variance v?(Z;_,) depends only on t;_1, it follows directly that:

U(Zk_l) — U(Zk_l)

= )(Z(tkatk) - Z(tk,tk—l) Z_l<tk—1;tk—1) Z(tk—htk)})%
(Yt = St ) S e te ) S (e, )}

=0
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Theorem 2.2.1 If the stochastic process (Xi)icjor) 45 Gaussian and satisfies condi-
tions (A1), (A2), and (A83), then for the estimated sample path of the stochastic differ-
ential equation (SDE) (1.8), as defined in (2.4)), the following holds:

{B(| % — X )1 = Ol + 8,),

where o, and 3, represent the convergence rates of the conditional mean function estim-
ate ™(.) and the conditional variance function estimate v*(.), as given in (2.7). This
theorem establishes that X i strongly converges to Xk, ensuring that both the mean and

variance converge, specifically:

E(Xx) — B(Xx)| = Oan + 8,)

A

var(Xg) — var(XK)‘ = O(a? + B2).

This convergence holds uniformly over k, confirming the pathwise convergence of the
estimated sample path to the true process. Denoting the distributions of X and its
corresponding estimator X as L(Xg) and L£(Xg), respectively, we aim to measure the
discrepancy between these distributions as an indicator of the estimator’s performance.
The strong convergence results from Theorem 2 allow us to determine the convergence
rate of the 2-Wasserstein distance AW = {L(X), L(X)}, see[TT]. The 2-Wasserstein

distance between two probability measures vy and v, on R is given by

&y (01, 02) = / (F7Y(p) — F5(p)} dp,

where F tand Fy ' represent the quantile functions of vi and vy, respectively. In the case

where are v1 and vy one-dimensional Gaussian distributions with means and variances
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(my,02) and (mq,03) , the squared 2-Wasserstein distance simplifies to

d%‘/(vl,vg) = (m1 — m2)2 -+ (0'1 — 0'2)2.

Then, we derive the rate of convergence for the Wasserstein distance.

Proof. Observe that the conditional variance

Var(X|X;) = Z(s, s) — Z(s,t) Z_l(t,t) Z(t,s), 0<t<s<l,

is always nonnegative and equals zero , meaning Var(X,|X;) > 0 if and only if :

e X, is deterministic

e or X, = cX; for some constant ¢ # 0.

The first case is ruled out by Condition (A3), while the second case is prevented due to

the presence of dB; in the stochastic differential equation (SDE) governing (X;)¢cjo,r1-

As a result, Var(X,|X;) remains strictly positive for all 0 < ¢ < s < 1. Consequently,

the conditional variance function

V2 = S04 0) =S (0,03 (6,03 (¢t + ),

is also bounded away from zero for any fixed z = (z,¢)” and t € [0, 1 —4]. From equation

, it follows that
E{ [0%(2) — v*(2)|"} = O(B2).
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For any fixed z = (z,t)” with ¢ € [0,1 — ¢], using a — b= “2122 , the following holds:

EHM@—UQW}ZE{

=N e
UQ@E{A%a—v%wF}
= 0(B?). (2.8)

Since ©(z) > 0 and v?(z) is strictly bounded away from zero, we recall the recursive

procedure

where Zy = (¢, )" and Ty = (X'k,l,tk,l)T for k = 2,..., K. For k = 1, it follows

that

E(| X1 — X1| ) = E[|m(Z) — m(Zo) + {6(Zo) — v(Zo)}Wi[*]

o

= E{ l1in(Zo) — m(Zo)|*} + Bl [{0(Zo) — v(Zo)}W1|’]

+ 2B({m(Z) — m(Zo) }[{0(Z0) — v(Zo)}WA])

= E{ [(Zo) — m(Z0)|”} + B{ [0(Z0) — v(Zo)|"YE(WT)
= E{ [(Zo) — m(Z0)"} + E{ |0(Zo) — v(Z0)[’}

= 0(c2 + B2). (2.9)

Since W; ~ N(0,1) is independent of m(Zy) and ©(Zy) , we can extend this result for
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any k= 2,..., K, as follows:

2

E(| X, — Xk ) = B[ |i(Zi—1) — m(Ze—1) + {0(Zs—1) — 0(Zj_1)}Wi| ]

(Zi-1) = v(Zr-1)}

A :

2

= B{ [ Ze-) = m(Zio)| } + B b (210)

where Z;,_ 1 = (X1 — tp_1)7, since W; ~ N(0,1) is independent of m(Zk,l) and

6(Z,_1). Additionally, we observe that:

The first term satisfies

E[[ii(2k-1) — m(Z-1)[*] = O(a3),

n

by equation (2.7). The second term follows from Lemma 22.2.2

Y

m(Zia) = mlZ )

<L ‘qu — Xk

which leads to

2

Bl [m(Z1) — m(Z1) Y < 128 O i)

Thus, we obtain

2

] =B

A~ ~ 2

B[ |m(Z—1) — m(Zx-1) (1 Zi—1) = m(Zy—1)) + (m(Zg1) = m(Zia))| ]

~ 2
— O(o2 + L*B] ]X,H — X )

30



Chapitre 2.Estimation of Stochastic Differential Equations

For the second term in equation ([2.10]), we have

A A~ A A

0(Zk1) + v(Zp1) = (0(Z—1) = 0(Zk1)) + (0(Zk1) = V(Zk-1))-
From Lemma 22.2.2] it follows that

V(Zk-1) —v(Zy—1) = 0,

SO

By equation (2.8)),

E[ @(ZAk_l) — U(Zk_l)

Thus, we derive

2

E[|X), — X; |+ ap+87).

‘ 2

| = O(L*BI| X1 = Xios

By applying this recursive formula along with equation (2.9)), we get

E[|X), — Xi| | = O(a2 + 2),

:

for any k = 2,..., K. Consequently,

(B[ | Xk — Xi| 1) = O(awn + Bn).

‘ 2
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In conclusion, this chapter presented various methods for estimating stochastic
differential equations, including path simulation and the estimation of key parameters
using nonparametric regression models. We also discussed convergence results and the

accuracy of the estimated sample paths compared to the true underlying process.

However, several important questions remain: How do these methods perform when
applied to real-world data? Can the proposed model truly capture the underlying
trends in irregular growth data? And how does it compare to traditional statistical
models? These questions will be addressed in the following chapter through real data

applications, particularly in the context of child growth data from Nepal.
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Chapter 3

Data Applications

his chapter focuses on the simulation process and analysis of results to
evaluate the effectiveness of the proposed stochastic differential equation
(SDE) models. The simulations are designed to reflect real-world data
dynamics, ensuring the accuracy of estimated sample paths. The results are then
analyzed to assess the performance of the estimation methods and their applicability
in modeling sparse and complex longitudinal data, and it’s based on the following

references [3, 6, [7, [15], (177, [19, 20}, 21].

3.1 Motivation and Example

3.1.1 Nepal Growth Study Data

One of the fundamental challenges in analyzing functional and longitudinal data
is the growth and variability of data across different populations and study conditions.
In particular, studies focusing on pediatric growth rely on sparse and irregular data

collection due to practical constraints. Traditional statistical methods often struggle
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to provide accurate and individualized predictions due to the missing data and the

difficulty in modeling the underlying dynamics.

A prime example is the Nepal Growth Study, which tracked height measurements
for 2258 children from birth to 76 months, with irregular intervals between measure-
ments. The dataset contained between 1 and 5 observations per child, leading to frag-
mented growth trajectories. This variability presents a key challenge: how to infer

meaningful growth patterns from incomplete and sparse data?
Problem Statement

The problem can be framed as follows:

1. Sparse Data Availability: Many children have only one or two measurements,

making it hard to estimate continuous growth trends.

2. Irregular Observation Intervals: Measurements are not taken at standardized in-

tervals, which complicates direct curve fitting approaches.

3. Sex-Based Growth Differences: Male and female growth trajectories differ signi-

ficantly, requiring gender-specific modeling.

4. Need for Predictive Modeling: Traditional functional data analysis relies heavily

on covariance estimation, which fails when data is sparse.

Research Approach

To address these challenges, we utilize a Stochastic Differential Equation (SDE)-

based approach to model dynamic distributions. This method:

e Allows growth predictions based on limited past data.

e Uses dynamic probability models rather than direct covariance estimation.
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e Provides individualized forecasts for subjects with only a single or very few ob-

servations.

The effectiveness of this method will be tested through simulations, demonstrating

its capability to recover growth trends from sparse datasets.

3.1.2 Some Examples of Alternative Formulation of SDEs

The Ho-Lee and Ornstein—Uhlenbeck models are key examples of stochastic differ-
ential equations (SDEs) used to model dynamic systems. The Ho-Lee model is widely
applied in finance to simulate interest rate movements, while the Ornstein—Uhlenbeck
model is used in physics and economics to describe mean-reverting stochastic processes.

Both models help capture randomness and predict system behavior under uncertainty.

The Ho-Lee model describes the following stochastic differential equation (SDE):

dX; = g(t)dt + od By,

where o > 0 and ¢(t) is a deterministic function of time. Integrating both sides from 0

to t yields:
t

Xt:XU+/g<S)dS+O'Bt.
0

Given Xy = xg, it follows that:

BX) =20+ [ 9(s)ds,
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and

Cov(Xs, X;) = o min(s, t).

As long as ¢(t) is continuous, the mean function remains continuously differentiable
on [0, 7T]. In the lower triangular region {(s,t) : s > t, s, t € T'}, the covariance function
simplifies to 0?t, which is also continuously differentiable. The variance function o>t
remains strictly positive over the half-open interval (0,1]. Thus, we conclude that
(Xt)teo,r) satisfies the conditions for smoothness of the mean function, smoothness of

the covariance function, and positivity of the variance function.

Indeed,

Xe=Xo+ [ g(u)du+ 0B,

Xs=Xo+ [ g(w)du+ 0B,

Z
/

since s >t , then, B, = B, + (Bs; — By)

t s

Xs=Xo+ /g(u)du + 0B + /g(u)du + 0(Bs — By)

0 t
s

X=Xt + /g(u)du +0(Bs — By).

t
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Thus,
t
=X, + /g(u)du.
t
Then,
O B(X,1X0) et = 91
88 s t)ls=t = g
= b(t, x).
And
var(X| X;) = var(o(Bs — By))
=o0%(s —t)
Hence,

0
%var(XAXt)]s:t = g2

0 \
{gvaT(XJXt”s:t}i =o0.

Let 6 > 0, 0 > 0. The one-dimensional Ornstein—Uhlenbeck process satisfies the

stochastic differential equation:

dXt = —HXtdt + O'dBt.
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This equation is solved using Itd’s formula applied to ¢’ X;, and we obtain:

t
X, =Xpe " +0o / e 0t=3)4B,.

0
Note that the stochastic integral is a Wiener integral, as the integrand is determ-
inistic, meaning it belongs to the Gaussian space generated by B.

First, consider the case where Xy = ¢ € R. (Xt)te[o,T] is a (non-centered) Gaussian

0

process, whose mean function is B[X;] = zge~", and whose covariance function is:

0.2

cov( Xy, Xy) 50

(e—6|t—s| . G_G(H_S)).
The mean function remains continuously differentiable on [0,7]. In the lower

triangular region {(s,t) : s > t, s, t € T}, the covariance function simplifies to

a2

Z 795(

—_

e (e , which is also continuously differentiable. The variance function

‘;—;(1 — €72 remains strictly positive over the half-open interval (0, 1]. Thus, we con-
clude that X; satisfies the conditions for smoothness of the mean function, smoothness

of the covariance function, and positivity of the variance function.

3.2 Simulation Studies

3.2.1 Analysis of Children’s Growth Data in Nepal

Monitoring children’s growth is crucial in public health as it helps in early detection
of developmental issues. Due to limited resources in many rural areas, studies often rely
on incomplete data. This study aims to analyze children’s growth data in Nepal using a

dynamic model capable of predicting growth patterns based on incomplete datasets. We
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demonstrate the potential of the proposed dynamic modeling approach to characterize
underlying growth patterns and reveal specific growth trends with snippet data from a

Nepal growth study (West Jr et al.1997[19]).

Height data for 2, 258 children from rural Nepal were collected at five different time
points, ranging from birth to 76 months, with measurements taken approximately four
months apart. To analyze these data, a subset of 1,000 records was selected, including
107 males and 93 females. These data are extracted from a study on growth in Nepal
(West Jr et al.1997[19] , Chen and Miiller 2012[3]). Due to missing data, the actual
number of measurements per child ranged between 1 and 5. The children with at least
two measurements in a row were included in the model, while the rest were used for
model validation. The model was applied to females and males separately since female
and male growth trends differ significantly, with females reaching puberty far sooner
than males. Up to this point the number of measurements per subject N; was taken
to be 2 for simplicity. For denser scenarios where N; > 2 | one could divide N; the
measurements into /V; — 1 pairs of contiguous measurements for each child and combine
these pairs into a new sample for conditional mean and conditional variance estimation.
This is a useful approach to augment the sample size, especially if the sample size n is

relatively small, which is often the case in practice.

Sample Distribution The table below shows the distribution of children based
on gender and the number of recorded measurements per child. The children included
in the model had at least two consecutive measurements, while the rest were retained

for validation purposes.
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Number of Measurements per Child | Number of Males | Number of Females | Total Children
1 Measurement 30 25 55

2 Measurement 40 35 75

3 Measurement 20 15 35

4 Measurement 10 10 20

5 Measurement 7 8 15

Total 107 93 200

Table 3.1: Children’s Height Distribution in the Nepal Growth Study

Handling Missing Data Since not all children had complete measurements, a
dynamic model was applied to handle missing data by combining adjacent measurement
pairs to estimate future growth trends. This strategy helps to make full use of all avail-
able information by transforming each set of measurements into pairs and estimating

the conditional mean and variance using local linear regression techniques.

The model was applied separately to males and females due to significant differences
in their growth patterns. Two children were selected as case studies to analyze the

impact of missing data:

e Female Child: Had only one measurement at 4 months (52.9 cm).

e Male Child: Had two measurements at 12 months (63 cm) and 20 months

(65.1cm).

To predict the future growth trajectories of two selected children, we implemented

a recursive procedure , as detailed in Equation (2.4), 100 times. This analysis utilized
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growth snippets that included at least two measurements in a row. Local linear re-
gression was adopted to estimate the conditional mean and conditional variance. The
starting time was set at o = 4 months for the selected female and ¢ty = 12 months for
the selected male, with time intervals of A = 4 months, corresponding to the intended

measurement intervals of the Nepal growth study.

Comparison of Actual Height with Estimated Growth Curves The actual
height measurements of the selected children are compared with the estimated growth
curves to assess the accuracy of the predictive model. The model was run 100 times to
generate future growth curves, calculating the 5%, 50%, and 95% percentiles to compare
actual and predicted values. Despite the limited and fragmented nature of the available
data, the proposed method effectively captures meaningful growth patterns from the
observed snippets, enabling accurate predictions of future growth trends for the selected
children. The following table presents the observed heights alongside the predicted

values at specific age points:

Actual Predicted Mean 5th 95th
Child | Age (Months) | Height Mean Percentile Percentile
(cm) (cm) (cm) (cm)
Female | 4 52.9 53.0 20.5 55.2
Male 12 63.0 64.2 61.0 67.5
Male 20 65.1 68.0 66.0 70.5

Table 3.2: Growth Measurements per Child :Summary Statistics

Estimated Growth Curves for Children The figure below compares the observed
and estimated growth trends for males and females, including the percentile curves

and the observed growth points. For the selected male, one fresh height measurement
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became available at 20 months old, which fell below the 5% percentile curve, indicating
a potential developmental concern.

Observed growth snippets
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Figure 3.1: Analyzing Growth Snippets and Estimated Growth Curves by Gender in
the Nepal Growth Study

Growth Assessment and Recommendations

e The analysis of height at 20 months showed that the male child’s height (65.1 cm)
was below the 5th percentile, indicating potential developmental delay that may

require further follow-up.

e The female child’s growth appeared to follow the predicted trajectory without

concern.

e As children grow and new measurements are collected, we can monitor their devel-

opment by comparing these fresh data points to the predicted growth trajectories.

1. Model Effectiveness: The proposed model successfully predicted growth trends

even with incomplete data.
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2. Importance of Monitoring: This approach can be used to track children with

lower-than-expected growth rates, allowing for early intervention.

3. Enhancing Data Collection: Increasing the frequency of measurements is recom-

mended to improve prediction accuracy and reduce estimation errors.

3.2.2 A Simulation Study of the Ho-Lee and Ornstein-Uhlenbeck

Processes

In this study, we demonstrate the effectiveness of our proposed method in uncov-
ering underlying dynamics from functional snippets across various simulation settings.
Unlike traditional approaches that rely solely on covariance completion, our method
offers a significant advantage: it bypasses the need for covariance estimation and does

not depend on functional principal component analysis (FPCA).

For comparative purposes, we employ the covariance completion technique intro-
duced by Lin and Wang (2022)[I5], referred to as LW, utilizing the mcfda package
available on GitHub. Assuming Gaussianity, we leverage the estimated mean and co-
variance functions to compute the conditional mean and variance. Subsequently, we
reconstruct the underlying stochastic process using the recursive procedure outlined
in equation . In our first experiment, we generate functional snippets from both
the Ho-Lee model and the Ornstein-Uhlenbeck process. To obtain these snippets, we
simulate the sample paths of X;; over a uniform time grid {tk}fzo, where t;, = k0 and
Ko =1, for each i = 1,...,n , and for some constant 6 € (0,1). The simulated values for
the n processes are represented as {(Xr,;, Xr,,,,)" }/-y, where T} is randomly selected

from the time grid {t;}1—;'. Since both the Ho-Lee model and the Ornstein-Uhlenbeck
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process are narrow-sense linear stochastic differential equations (SDEs), we utilize exact
simulation methods based on their explicit solutions, following the approach detailed

in Glasserman (2004)[7].

The Ho-Lee model is given by the stochastic differential equation

dXt = g(t)dt + O'dBt7

we employ a simple recursive scheme to generate values over the discrete time grid
{te o,

tet+1
Xt = Xp + / g(5)ds + /ot — B0 Wi, (3.1)

173

where Wy, ~ R(0, 1) are independent for all k, and the initial value is set to Xy = .

The Ornstein-Uhlenbeck process is described by:

dXt = —HXtdt + O'dBt,

the recursive formula takes the form:

2
Xy = e_e(tk+l_tk)Xk + \/g_g(l _ e—e(tlﬁ—l—tk))‘Wk_ (3,2)
These procedures are considered exact, meaning that the simulated values follow

the same joint distribution as the corresponding continuous-time process when restric-

ted to the simulation grid. To analyze the impact of noise, we introduce independent
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errors to the generated functional snippets {(X7,;, X, ,.:)" }ey

Specifically, we simulate functional snippets {(Y;1, Yi2)” }_,contaminated with Gaus-
sian noise:

Yio = Xp i +en Yio = X1, 5. + €z,

with €; ~ R(0,v?) being independent noise terms. The simulations consider varying
sample sizes (n = 50,200, 1000) and noise levels (v = 0,0.01,0.1). For each configura-
tion, we perform = 500 simulation runs. The time interval was set to [0, 1] with a

uniform time step of § = 0.05.

In each simulation, we applied the recursive procedure described in equation (2.4))
M = 1000 times using the noisy functional snippets {(Yii,Yi2)? }%,. Starting from
the initial condition Z; = (0,0)7. we generated M = 1000 estimated sample paths

evaluated on the discrete time grid {t;}/ ;. These estimated paths are denoted as:
{(Xe0 Xewe)" Ny

For each estimated path [, we computed the corresponding true sample path
(Xt,1, Xt )" using the recursive procedure outlined in equations or , en-
suring that the same initial value and random variable W, were used. To assess the
accuracy of the approach, we quantified the estimation error for each combination of

sample size and noise level using the root-mean-square error (RMSE).

1 M .
RMSE = \/ o lel(XtKvl — X1, 0)2

For both the Ho-Lee model and the Ornstein-Uhlenbeck process, we set the function
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g(t) = cos(t), and fixed the parameters at # = 1 and ¢ = 1, with an initial condition

of Xo = 0 and M represent the number of paths or simulation runs. To estimate the

conditional mean and conditional variance, we applied multiple linear regression in both

cases.

The simulation results, summarized in Table |3.3, which presents the mean and

standard deviation (in parentheses) of the RMSE across 500 simulation runs for dif-

ferent sample sizes and noise levels. The table compares the performance of:

e DM: The proposed dynamic modeling approach.

e LW: The covariance completion method introduced by Lin and Wang (2022) [17]

Ornstein Ornstein
Sample Size Noise Level Ho-Lee Model Ho-Lee Model
-Uhlenbeck -Uhlenbeck
(n) (v) (DM) (LW)
(DM) (LW)
50 0 0.92 (£0.87) 1.21 (£1.71) 0.63 (£0.65) | 0.71 (£1.81)
50 0.01 0.93 (40.93) 1.08 (£0.37) 0.62 (£0.84) | 0.72 (£0.23)
50 0.1 1.07 (£0.34) 1.11 (£0.45) 0.74 (£0.85) 0.74 (£0.85)
200 0 0.39 (£0.23) 0.54 (£0.38) 0.25 (£0.15) | 0.27 (£0.73)
200 0.01 0.38 (£0.22) 0.91 (+0.34) 0.26 (+£0.16) | 0.67 (£0.17)
200 0.1 0.89 (40.27) 0.85 (£0.27) 0.26 (£0.17) | 0.67 (£0.23)
1000 0 0.17 (£0.09) 0.27 (£0.13) 0.11 (£0.06) | 0.15 (£0.05)
1000 0.01 0.17 (£0.09) 0.89 (£0.24) 0.11 (£0.06) | 0.17 (£0.09)
1000 0.1 0.17 (£0.09) 0.88 (£0.25) 0.11 (£0.06) | 0.70 (£0.11)

Table 3.3: Mean RMSE (with Standard Deviation) Across 500Runs
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The findings indicate that the proposed DM approach consistently achieves lower
RMSE values as the sample size increases, suggesting improved accuracy with more
data. Notably, the presence of noise has minimal impact on the performance of this

method.

In contrast, the LW method exhibits significantly higher RM SE values, even with
a large sample size of 1000. This discrepancy may be attributed to the highly sparse
nature of the simulation setup, where each process is observed within a narrow win-
dow of length 0.05. This limited observational range poses a challenge for covariance
completion methods, making it difficult to accurately reconstruct the full covariance
structure over the broader interval [0, 1], while LW method shows some improvement
when additional measurements are available, it remains less effective than the proposed

DM approach.

To further demonstrate the effectiveness of the DM approach, Figure [3.2] visualizes
the simulation results for the Ornstein-Uhlenbeck process, considering a sample size of
n = 200 and a noise level of v = 0.1. The figure includes 100 estimated sample paths
alongside the corresponding true sample paths. The strong alignment between the
estimated and true paths highlights the ability of the proposed method to accurately

capture the underlying stochastic dynamics, even when working with sparse data.

The following figures illustrate the simulated paths of the Ho-Lee and Ornstein-
Uhlenbeck models:
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Simulated Sample Paths

Simulated Snippets
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Figure 3.2: Simulated Paths of the Ornstein-Uhlenbeck Model
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Figure 3.3: Simulated Paths of the Ho-Lee Model

This chapter demonstrated the effectiveness of the stochastic differential equa-
tion (SDE) approach in modeling sparse longitudinal data, particularly in the Nepal
Growth Study. The results showed that the model effectively handled missing data and
accurately predicted growth patterns. Simulation studies confirmed that the proposed
method outperformed traditional approaches by reducing errors. This work paves the

way for future applications in financial modeling and climate data analysis.
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Conclusion

This thesis presented a robust framework for modeling sparse longitudinal data us-
ing stochastic differential equations (SDEs), addressing the research problem by demon-
strating their capacity to reconstruct underlying stochastic processes and improve es-

timation accuracy without relying on strong assumptions.

Three key results emerged:

1. Theoretical Foundation: Established conditions for the existence and unique-
ness of SDE solutions, proving their applicability in dynamic systems through

models such as the Ornstein-Uhlenbeck process.*

2. Methodological Innovation: Introduced novel simulation-based estimation
techniques that outperformed traditional methods (e.g., FPCA) in analyzing

sparse and irregularly sampled data.

3. Empirical Validation: Confirmed the framework’s effectiveness through a case
study on child growth patterns in Nepal and simulations using Ho-Lee and Ornstein-
Uhlenbeck models, demonstrating accurate dynamic distribution reconstruction

despite missing data.

By developing this computational framework, the study advances prediction accur-

acy and dynamic phenomena analysis across disciplines. Future research could extend
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this work through integration of nonlinear stochastic processes, non-Gaussian distribu-
tions, and deep learning techniques, broadening its applications in medicine, economics,

and social sciences..
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Annex A: Lemma and Proof

Lemma 3.2.1

E(X.X) = uls) + (5.0 (4, 0{X0 — u(t)}, (3.3)

Var(X)X) =Y (s,5) = S (5,63 (6,03 (). (3.4)

Proof. For all s > ¢, based on the fact that the random variable E(X;|X}) is Gaussian,
we aim to find the best linear estimate of E(X;|X;), meaning that we seek a linear
function of the form:

E(XS|Xt) =a + bXt

Then,
E(Xs) = a + bE(X,),

ie,

u(s) = a -+ bu(t).
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Lemma and Proof

Then,

This leads to,

Hence,

So,

E[(B(X|X,) — u()) (B X)) — u(1)] = EB(X, — u(1)?].

It implies that

Consequently,

Thus,
B(X,[X) = u(s) + > (s1) Z (£, t)(X, — p(t)). (3.5)

Since u(s), S2(s,t), 3. '(t,t) are all measurable functions, and X, is also measurable,
the expression (3.5)) is entirely o(X;)—measurable. Therefore, when taking the condi-

tional expectation E(X,|X;), it remains unchanged, leading to:

B(X,JX0) = ) + 3 (5.8) S (10X, - ().

Now, I will prove (3.4)) based on (3.3).We want to find:
E[Var(Xs|Xy)].
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We know that:

Var(Xs) = E[Var(X| Xy)] + Var(E(X|Xy)).

Thus, by rearranging the equation, we obtain:
E[Var(X|X;)] = Var(X;) — Var(BE(X| Xy)).

Now, from equation ({3.3]), we have:

cov(Xs, Xy)

B(X,|X:) = BIX,] + var(X;)

(X: — B[XY]).

Taking the variance on both sides, we get:

cov(Xs, Xy)

Var®XulXe) = (=5

2Var(X,),

which simplifies to:
cov? (X, X;)

Var(B(X| X)) = var (X))

Finally, substituting this result into equation ({3.6|), we conclude that:

B[V ar(X.|X))] = Var(X,) — <2 Ke X0

var(Xy)
Then,
Var(XJX) = (5.9 = S50 (16 3 (% 9).
n
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Abstract:

Mathematical models utilize longitudinal data to analyze the evolution of
phenomena, but sparse data presents a challenge due to irregular
observations. This thesis proposes a dynamic model based on stochastic
differential equations to analyze this data in a non-parametric manner. The
model's effectiveness is validated through its application to child growth data
in Nepal and simulations using the Ho-Lee and Ornstein-Uhlenbeck models,
demonstrating its ability to reconstruct dynamic distributions despite
incomplete data.

Key words: Sparse longitudinal data, Stochastic differential equations,
Nonparametric estimation, Simulation.

Résumé:

Les modeles mathématiques utilisent des données longitudinales pour analyser
I'évolution des phénomeénes, mais les données éparses posent un défi en raison
des observations irrégulieres. Ce mémoire propose un modele dynamique basé
sur les équations différentielles stochastiques pour analyser ces données de
maniere non paramétrique. L'efficacité du modele est validée par son
application aux données de croissance des enfants au Népal et par des
simulations utilisant les modeles Ho-Lee et Ornstein-Uhlenbeck, démontrant sa
capacité a reconstruire des distributions dynamiques malgré des données
incomplétes.

Mots clés : Données longitudinales éparses, Equations différentielles
stochastiques, Estimation non paramétrique, Simulation.
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