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Introduction

The mathematical theory of stochastic di¤erential equations was developed in the 1940s through

the groundbreaking work of Japanese mathematician Kiyosi Itô, who introduced the concept of

stochastic integral and initiated the study of nonlinear stochastic di¤erential equations (SDEs).

The linear backward stochastic di¤erential equations (LBSDEs in short) related to the stochastic

version of Pontryagin�s maximum principle, has been studied by Bismut [5]. After that, the non

linear BSDEs have been introduced by Pardoux and Peng [10]. Forward-backward stochastic dif-

ferential equations (FBSDEs in short) were �rst studied by Antonelli (see [2]), where the system

of such equations is driven by Brownian motion on a small time interval. The proof there relies on

the �xed point theorem. There are also many other methods to study forward-backward stochastic

di¤erential equations on an arbitrarily given time interval. For example, the four-step scheme ap-

proach of Ma et al. [9], in which the authors proved the result of existence and uniqueness of

solutions for fully coupled FBSDEs on an arbitrarily given time interval, where the di¤usion coef-

�cients were assumed to be nondegenerate and deterministic. Their work is based on continuation

method.

A new class of stochastic di¤erential equations with terminal condition, called backward doubly

stochastic di¤erential equation (BDSDE) have been introduced by Pardoux and Peng in [11]. The

authors show existence and uniqueness for this kind of stochastic di¤erential equation.

This memoir focuses on the existence of optimal controls for systems governed by a linear forward-

backward doubly stochastic di¤erential equations of mean-�eld type (MF-FBDSDE). These systems

exhibit a coupling between forward and backward components, along with dependencies on the

expected values of the processes, which makes their analysis both theoretically rich and technically

challenging. In particulary, we prove existence of strong optimal control (that is adapted to the

initial ��algebra) for the following linear forward-backward doubly stochastic di¤erential equations,
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Introduction

8>>>>>>><>>>>>>>:

dXt =
�
AXt + ÂE [Xt] + but

�
dt+

�
CXt + ĈE [Xt] + b̂ut

�
dWt;

dYt = �
�
DXt + D̂E [Xt] + EYt + ÊE [Yt] + FZt + F̂E [Zt] +Gut

�
dt

�
�
HXt + ĤE [Xt] +KYt + K̂E [Yt] +MZt + M̂E [Zt] + Ĝut

� �
dBt + ZtdWt;

X0 = x; YT = �;

The objective is to �nd a control ut that minimizes the following cost functional:

J (u:) := E

"
� (Xt;E [Xt]) + � (Y0;E [Y0]) +

Z T

0

` (t;Xt;E [Xt] ; Yt;E [Yt] ; Zt;E [Zt] ; ut) dt

#
:

With real coe¢ cients and non linear functional cost. The control domain and the cost function

were assumed convex. The proof strategy relies on weak convergence results of admissible controls

and the application of Mazur�s theorem to extract strong convergence, which allows us to prove the

existence of an optimal control.

The �rst chapter presents the theoretical background of stochastic calculus, including �ltration,

adaptedness, Brownian motion, martingales, and stochastic integration, along with essential results

used in building such systems.

The second chapter is devoted to the existence of an optimal controls for systems governed by a

linear forward-backward doubly stochastic di¤erential equations of mean-�eld type (MF-FBDSDE),

under suitable assumptions. It uses analytical tools and convergence techniques to establish the

main result.
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Chapter 1

Stochastic Calculus

1.1 Stochastic Process

Stochastic processes describe dynamical systems whose time-evolution is of probabilistic nature.
The precise de�nition is given below :

De�nition 1.1.1 (Stochastic process): Let T be an ordered set, (
;F ;P) a probability space and

(E;G) a measurable space. A stochastic process is a collection of random variables X = fXt; t 2 Tg

where, for each �xed t 2 T; Xt is a random variable from (
;F ;P) to (E;G) : 
 is known as the

sample space, where E is the state space of the stochastic process Xt:

The set T can be either discrete, for example the set of positive integers Z+; or continuous, T = R:

The state space E will usually be Rd equipped with the �-algebra of Borel sets.

A stochastic process X may be viewed as a function of both t 2 T and ! 2 R: We will sometimes

write: X(t); X(t; !) or Xt(!) instead of Xt: For a �xed sample point ! 2 
; the function

Xt (!) : T ! E;

is called a (realization, trajectory) of the process X:

De�nition 1.1.2 (Filtration): We will be interested in phenomena that depend on time. What is

known at date t is gathered in a ��algebra Ft; which is the information at date t:

A �ltration is an inceasing family of sub-�-algabras of F ; meaninig that Ft � Fs for all t � s:

It is often required that negligible sets are contained in F0:

3



Chapter 1. Stochastic Calculus Preliminaries

We speak of usual hypotheses if:

- The negligible sets are contained in F0:

- The �ltration is right-continuous in the sense that Ft = \s�tFs:

A �ltration G is said to be larger than F if Ft � Gt;8t:

De�nition 1.1.3 (Measurability): Let (
;F) and (E; ") be two measurable spaces. A function f

from 
 to E is said to be (F ; ")-measurable if f�1 (A) 2 F for all A 2 "; where

f�1 (A)
def
= f! 2 
jf (!) 2 Ag :

When there is no ambiguity about the sigma-algebras used, we simply say that f is measurable.

A function f from R to R is Borel measurable if it is (BR;BR)-measurable, meaning f�1 (A) 2 BR

for all A 2 BR: It su¢ ces that this property be veri�ed for intervals A: Continuous functions are

Borel measurable.

De�nition 1.1.4 Let (
;F) be a measurable space. A real random variable (r.v.) X is a measur-

able function from (
;F) to R (such that X�1 (A) 2 F ;8A 2 BR):

A constant is a random variable in the same way as an indicator function of a set in the �-algebra

F :

Proposition 1.1.1 If X is a real G-measurable random variable and f is a Borel function, then

f (X) is G-measurable.

A G-measurable random variable is an increasing limit of random variables of the type

nX
i=1

aiIAi
;

with Ai 2 G; A Borel function is an increasing limit of functions of the type
nX
i=1

aiIAi ; where Ai is

an interval.

De�nition 1.1.5 (Adapted process): A sochastic processes Xt; t 2 [0; T ] is a adapted to �ltration

Ft if Xt is measurable for any t 2 [0; T ] :

Let fXngn2N be a stochastic process on (
;F ;P) : It is said that the process is adapted to the

�ltration Fn if Xn is measurable with respect to Fn for every n:

4



Chapter 1. Stochastic Calculus Preliminaries

A minimal choice of adapted �ltration is the canonical (or natural) �ltration:

Fn = � (X0; X1; :::; Xn) :

In this case, Fn represents the information available at time n if the stochastic process is observed.

1.2 Conditional Expectation

Let X;Y be random variables (integrable) de�ned on (
;F ; P ) and let G be a sub-sigma-algabra

of F :

De�nition 1.2.1 The conditional expectation E [XjG] of X; given G; is the unique random variable

that satis�es:

� It is G�measurable.

� Such that Z
A

E [XjG] dP =
Z
A

XdP; 8A 2 G:

Propreties of Conditional Expectation

1 Linearity. Let a and b be two constants, we have

E [aX + bY jG] = aE [XjG] + bE [Y jG] :

2 Monotonicity. Let X and Y be two random variables such that X � Y: Then:

E [XjG] � E [Y jG] :

3 We have also

E [E (XjG)] = E [X] :

4 If X is G�measurable, then:

E [XjG] = X:

5



Chapter 1. Stochastic Calculus Preliminaries

5 If Y is G�measurable, then:

E [XY jG] = Y E [XjG] :

6 If X is independent of G; then:

E [XjG] = E [X] :

7 If G and H are two sigma-algabras such that H � G; then:

E [XjH] = E [E [(XjG)]H] :

1.3 Martingales

De�nition 1.3.1 (Martingales): A martingale is a model of a fair game. We will let fFng denote

an increasing collection of information. By this we mean for each n; we have a collection of random

variables An such that Am � An if m < n: The information that we have at time n is the value

of all of the variables in An: The assumption Am � An means that we do not lose information. A

random variable X is Fn-measurable if we can determine the value of X if we know the value of all

the random variables in An: The increasing sequence of information Fn is often called a �ltration.

We say that a sequence of random variables M0;M1;M2; ::: with E [jMij] <1; is a martingale with

respect to fFng if each Mn is measurable with respect to Fn; and for each m < n;

E [MnjFm] =Mm:

Or equivalently,

E [Mn �MmjFm] = 0:

The condition E [jMij] <1 is needed to guarantee that the conditional expectations are well de�ned.

If Fn is the information in random variables X1; :::; Xn; then we will also say that M0;M1; ::: is

a martingale with respect to X0; X1; :::;. Sometimes we will just say M0;M1; ::: is a martingale

without making reference to the �ltration Fn: In this case it will mean that the sequence Mn is

a martingale with respect to itself (in which case the �rst condition is trivially true). In order to

verify it su¢ ces to prove that for all n;

E [Mn+1jFm] =Mn:

6



Chapter 1. Stochastic Calculus Preliminaries

Since if this holds,

E [Mn+2jFm] = E [E [Mn+2jFn+1] jFn]

= E [Mn+1jFm] =Mn;

And so on.

De�nition 1.3.2 Example 1.3.1 Let X1; X2; ::: be independent random variables each with mean

�: Let S0 = 0 and for n > 0 let Sn be the partial sum of X0; X1; :::

Sn = X1 + :::+Xn:

Then Mn = Sn � n� is a martingale with respect to Fn; the information contained in X0; :::; Xn:

This can easily be checked,

E [Mn+1jFn] = E [Sn+1 � (n+ 1)�jFn] = E [Sn+1jFn]� (n+ 1)�

= (Sn + �)� (n+ 1)� =Mn:

In particular, if � = 0; then Sn is a martingale with respect to Fn:

De�nition 1.3.3 (Martingale, Submartingale and Supermartingale): Let (
;F ; fFng ;P) be a �ltered

probability space. A martingale with respect to the �ltration fFngn2N is a stochastic process

fXngn2N such that:

1. E [jXnj] <1 for all n 2 N;

2. fXngn2N is adapted to the �ltration fFngn2N ;

3. And

E [Xn+1jFn] = Xn;

For all n 2 N:

If the last condition is replaced by E [Xn+1jFn] � Xn; then fXngn2N is called a supermartingale,

and if it is replaced by E [Xn+1jFn] � Xn; it is called a submartingale.

It should be noted that, in terms of gambling, a supermartingale is unfavorable to the player,

7



Chapter 1. Stochastic Calculus Preliminaries

whereas a submartingale is favorable to them (this terminology originates from the concept of a

subharmonic function).

1.4 Brownian Motion

Let (
;A;P) be a probability space. To simplify things, we assume that our interval of study is

bounded (we will often take [0; T ] with T = 1; but this does not change anything).

Brownian motion is a continuous process (Bt)t2[0;1] whose increments are independent, stationary,

and Gaussian. More precisely.

De�nition 1.4.1 (Brownian Motion): A standard Brownian montion (Wiener process) is a pro-

cess (Bt)t2[0;1] satisfying :

1. B0 = 0 P � a:s:

2. B is Bt continuous, i.e. t! Bt (!) is continuous for P-almost every !:

3. B has independent increments: If t > s; then Bt �Bs is independent of FBs = � (Bu; u � s) :

4. The increments of B are stationary and Gaussian: If t � s then Bt � Bs follows a normal

distribution N (0; t� s) :

Theorem 1.4.1 (Properties of Brownian motion): The following symmetries exist:

1. Time-homogeneity: For any s > 0; the process eBt = Bt+s � Bs is a Brownian motion

independent of � (Bu; u � s) :

2. Re�ection symmetry: The process eBt = �Bt is a Brownian motion.
3. Brownian scaling: For every c > 0; the process eBt = cB1=c2 is a Brownian motion.

4. Time inversion: The process eB0 = 0; eBt = tB1=t; t > 0 is a Brownian motion.

Proof. Properties (1),(2) and (3): in each case, eBt is a continuous centered Gaussian process with
continuous paths, independent increments and variance t:

(4) eB is a centered Gaussian process with covariance

8



Chapter 1. Stochastic Calculus Preliminaries

cov
h eBs;fBti = E h eBs;fBti = st:E

�
B1=s; B1=t

�
= st: inf

�
1

s
;
1

t

�
= inf (s; t) :

Continuity of fBt is obvious for t > 0; We have to check continuity only for t = 0; but since
E
h eB2si = s! 0;

For s! 0; we know that eBs ! 0 almost everywhere.

1.5 Stochastic Integral

The Ito integral is de�ned in a way that is similar to the Riemann integral. The Ito integral is

taken with respect to in�nitesimal increments of a Brownian motion, dBt; which are random vari-

ables, while the Riemann integral considers integration with respect to the predictable in�nitesimal

changes dt: It is worth noting that the Ito integral is a random variable, while the Riemann integral

is just a real number. Despite this fact, there are several common properties and relations between

these two types of integrals.

In this section we will brie�y review the de�nition and some properties of the stochastic integral.

1.5.1 Construction of Itô�s Integral

Let (
;F ; (Ft)0�t�T ;P) be a �xed �ltered probability space satisfying the usual condition.

Let us denote by L2F (0; T;R) the space of all stochastic processes f (t; !) ; 0 � t � T; ! 2 
:

satisfying the following conditions

1. f (t; !) is adapted to the �ltration fFtg ;

2.
R T
0
E [f (t)]2 dt <1:

For any f and g 2 L2F (0; T;R) we de�ne aninner product hf; gi = E
hR T
0
f (t) g (t) dt

i
and it�s norm

kfk = hf; fi
1
2 =

r
E
hR T
0
f2 (t) dt

i
: It can be shown that L2F (0; T;R) is a Hilbert space with norm.

Thus

9



Chapter 1. Stochastic Calculus Preliminaries

We want to de�ne the stochastic integral

Z T

0

f (t; !) dBt;

For elements f of L2F (0; T;R) : We start with a de�nition for a simple class of functions f

De�nition of the Ito Integral for Step Functions (step1)

Divide the interval [0; T ] into n subintervals using the partition points

0 = t0 < t1 < ::: < tn�1 < tn = T;

Suppose f is a step stochastic process given by

f =

nX
k=1

fk�11[tk�1;tk];

Where fk�1 is Fk�1�measurble and E [fk�1]2 <1:we de�ne the following linear operator

I (f) =
nX
k=1

fk�1 (B (tk)�B (tk�1)) :

Lemma 1.5.1 Let I (f) be a linear random variable with mean E [I (f)] = 0; and variance E
h
jI (f)j2

i
=R T

0
E
h
jf j2

i
dt:

Proof. For each 0 � k � n, we have

E [fk�1 (B (tk)�B (tk�1))] = E [E [fk�1 (B (tk)�B (tk�1)) =Fk�1]]

= E [fk�1E [(B (tk)�B (tk�1)) =Fk�1]]

= E [fk�1E [(B (tk)�B (tk�1))]]

= 0:

Hence E [I (f)] = 0. On the other hand, we have

E
h
jI (f)j2

i
=

nX
k;l=1

fk�1fl�1 (B (tk)�B (tk�1)) (B (tl)�B (tl�1)) :

If k 6= l, where k < l

10
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E [fk�1fl�1 (B (tk)�B (tk�1)) (B (tl)�B (tl�1))]

= E [E [fk�1fl�1 (B (tk)�B (tk�1)) (B (tl)�B (tl�1)) =Fl�1]]

= E [fk�1fl�1 (B (tk)�B (tk�1))E [(B (tl)�B (tl�1)) =Fl�1]]

= E [fk�1fl�1 (B (tk)�B (tk�1))E [(B (tl)�B (tl�1))]]

= 0:

On the other hand, for k = l we have from the independence of B (tk)�B (tk�1) of Fk�1;

E
h
f2k�1 (B (tk)�B (tk�1))

2
i
= E

h
E
h
f2k�1 (B (tk)�B (tk�1))

2
=Fk�1

ii
= E

h
f2k�1E

h
(B (tk)�B (tk�1))2 =Fk�1

ii
= E

h
f2k�1E

h
(B (tk)�B (tk�1))2

ii
= E

�
f2k�1 (tk � tk�1)

�
= (tk � tk�1)E

�
f2k�1

�
:

So, we get

E
h
jI (f)j2

i
=

nX
k=1

(tk � tk�1)E
�
f2k�1

�
:

An approximation lemma (step2)

We need to prove an approximation lemma in this step in order to be able to de�ne the stochastic

integral
R T
0
f (t) dBt for general stochastic processes L2F (0; T;R) :

Lemma 1.5.2 Suppose f 2 L2F (0; T;R) : Then there exists a sequence ffn; n � 1g of step pro-

cesses in L2F (0; T;R) such that

lim
n!1

Z T

0

E
h
jf (t)� fn (t)j2

i
dt = 0: (1.1)

Stochastic integral (step3)

Now we can use what we proved in Step 1and Step 2 to de�ne the stochastic integral

Z T

0

f (t) dBt;

For f 2 L2F (0; T;R) : Apply �rst Lemma 1.5.2 to get a sequence ffn; n � 1g of adapted step

stochastic processes such that 1.1 holds.

11
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For each n, I (fn) is de�ned by (Step1). By Lemma 1.5.1 we have

E
h
jfn (t)� fm (t)j2

i
=

Z T

0

E
h
jfn (t)� fm (t)j2

i
dt! 0; as n;m! 0:

It follows that fI (fn)g is a Cauchy sequence in L2 (
;F ;P) : Thus fI (fn)g has a unique limit in

L2; denoted by I (f) is called the Itô integral, so

I (f) =

Z T

0

f (t) dBt:

The integral is independent of the choice of the approximating sequence ffn; n � 1g

1.5.2 Some Properties of Itô Integral

1. Linearity: let �; � 2 R and f; g 2 L2F (0; T;R). Then �f + �g 2 L2F (0; T;R)

Z T

0

(�f (t) + �g (t)) dBt = �

Z T

0

f (t) dBt + �

Z T

0

g (t) dBt:

2. Partition property

Z T

0

f (t) dBt =

Z c

0

f (t) dBt +

Z T

c

f (t) dBt; 80 < c < T:

3. Zero mean

E

"Z T

0

f (t) dBt

#
= 0:

4. Isometry

E

24 Z T

0

f (t) dBt

!235 = Z T

0

E
�
f2 (t) dt

�
:

5. Covariance

E

" Z T

0

f (t) dBt

! Z T

0

g (t) dBt

!#
= E

"Z T

0

f (t) g (t) dt

#
:

Theorem 1.5.1 (Martingale Property) Suppose L2F (0; T;R) Then the stochastic process

Xt =

Z t

0

f (s) dBs; 0 � t � T;

Is a martingale with respect to the �ltration fFt; 0 � t � Tg :

12
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1.6 Itô Processes

Let (
;F ;P) be the canonical probability space and let Ft be the �-algebra generated by the

Brownian motion Bt (!) :

De�nition 1.6.1 (Itô Processes): Xt (!) is an Itô processes if there exist stochastic processes

f (t; !) and � (t; !) such that

1. f (t; !) and � (t; !) are Ft-measurable ,

2.

tZ
0

jf j ds <1 and

tZ
0

j�j2 ds <1 almost surely,

3. X0 (!) is F0-measurable ,

4. With probability one the following holds

Xt (!) =

tZ
0

fs (!) ds+

tZ
0

�s (!) dBs (!) :

The processes f (t; !) and � (t; !) are referred to as drift and di¤usion coe¢ cients of Xt:

For brevity, one often writes as

dXt (!) = ft (!) dt+ �t (!) dBt (!) :

But this is just notation for the integral equation above.

Integral with respect to an Itô process

Let X be an Itô process with decomposition

dXt = btdt+ �tdBt:

The intgral is de�ned as :

tZ
0

�sdXs
def
=

tZ
0

�sbsds+

tZ
0

�s�sdBs:

De�nition 1.6.2 A (generalized) Itô process is an adapted and continuous process on [0; T ] of the

form

13
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Xt = X0 +

tZ
0

 sds+

tZ
0

�sdBs;

Where  2 H2
loc (
� [0; T ]) ; � 2 H1

loc (
� [0; T ]) and X0 is FB0 measurable. We often adopt the

following di¤erential notation

dXt =  sds+ �sdBs:

Itô�s formula

Itô�s formula is a basic tool of stochastic calculus. We �rst demonstrate this formula and then

present several applications.

If x : R! R is a C1 function and if F : R! R is also C1; then

F (x (t)) = F (x (0)) +

tZ
0

F 0 (x (s))x0 (s) ds:

More generally, if

x = (x1; :::; xd) : R! Rd;

Is C1; then

F (x (t)) = F (x (0)) +
dX
i=1

tZ
0

@F

@xi
(x (s))x0i (s) ds:

Theorem 1.6.1 (Itô�s formula)

1. (One-dimensional case). Let X be a continuous semimartingale and let F : R ! R be a

function of class C2: Almost surely, for all t � 0;

F (Xt) = F (X0) +

tZ
0

F 0 (Xs) dXs +
1

2

tZ
0

F 00 (Xs) d hXis :

2. (Multidimensional case). Let X =
�
X1; :::; Xd

�
be continuos semi martingales and let

F : Rd ! R be a function of class C2: Almost surely, for all t � 0;

14
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F (Xt) = F (X0) +
dX
i=1

tZ
0

@F

@xi
(Xs) dX

i
s +

1

2

dX
i;j=1

tZ
0

@2F

@xi@xj
(Xs) d



Xi; Xj

�
s
:

Where Xt =
�
X1
t ; :::; X

d
t

�
; 8t � 0:

1.7 Control Classes

Let (
;F ;Ft�0;P) be a complete �ltred probability space.

1. Admissible Control: An admissible control is Ft�adapted process ut with values in a

borelian A � Rn

U := fu: : [0; T ]� 
! A : ut is Ft � adaptedg :

2. Optimal Control: The optimal control problem consists to minimize a cost functional

J (u) over the set of admissible control U : We say that the control u�: is an optimal control if

J (u�t ) � J (ut) ; for all u: 2 U :

3. Near-Optimal Control: Let " > 0; a control u" is a near-optimal control (or "�optimal)

if for all control u 2 U we have

J (u"t ) � J (ut) + "; for all u: 2 U :

4. Feedback Control: We say that u is a feedback control if u depends on the state variable

X:

If FXt the natural �ltration generated by the process X; then u is a feedback control if u is

FXt �adapted.

5. Relaxed Control: The idea is then to compactify the space of controls U by extending

the defnition of controls to include the space of probability measures on U: The set of relaxed

controls �t (du) dt; where �t is a probability measure, is the closure under weak* topology of

the measures �ut (du) dt corresponding to usual, or strict, controls.

15
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1.8 Preliminary Theorems and Inequalities

1.8.1 Probability spaces

Let 
 be a nonempty set and F be a collection of subsets of 
.

De�nition 1.8.1 The sample space 
 of an experiment is the set of all possible outcomes.

De�nition 1.8.2 We say that F is ��algebra or ���eld if

1. 
 2 F ;

2. A 2 F =)Ac 2 F ;

3. (An)n2N � F =)
S
n2N

An 2 F ;

If F and G are both ���elds on 
 and G � F , then G is called a sub �� �eld of F .

The pair (
;F) is called a measurable space.

Example 1.8.1 The following are always ���elds

1. F0 = f�;
g ( trivial ���eld),

2. P (
) = fall subsets of 
g ( complete ���eld).

Let fFng be a family of ���elds on 
: De�ne

_
n
Fn = �

�
[
n
Fn
�
;

n̂
Fn = �

�
\
n
Fn
�
:

It is easy to show that _
n
Fn and

n̂
Fn are both ���elds and that they are the smallest ���eld

containing all Fn and the largest ���eld contained in all Fn respectively.

De�nition 1.8.3 A probability measure P on (
;F) is a function

P : F ! [0; 1] ;

With the properties

16
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1. P (�) = 0 and P (
) = 1;

2. Let the family (An)n2N � F is disjoint ( Ai \Aj = � if i 6= j), then

P

 [
n2N

An

!
=
X
n�0

P (An) :

The triple (
;F ;P) is called a probability space. The subsets A of 
 which belong to F are

called F�measurable sets. In a probability context these sets are called events and we use the

interpretation

P (A) = "the probability that the event A occurs":

In particular, if P (A) = 1 we say that A occurs with probability 1; or "almost surely (a.s.)".

De�nition 1.8.4 A family of events fAi; i 2 Ig is independent if

P(
\
i2J

Ai) =
Y
i2J
P(Ai);

For all �nite subsets J of I.

De�nition 1.8.5 Let (
;F ;P) be a probability space

An event A is said to be independent of a ���eld F if A is independent of any B 2 F .

Two ��algebras F1 and F2 are said to be independent if any event A 2 F1 is independent of F2:

De�nition 1.8.6 An event A is a P�null event if P(A) = 0:

A probability space (
;F ;P) is said to be complete if for any P�null set A 2 F ; one has B 2 F

whenever A � B (thus, it is necessary that B is also a P-null set).

For any given probability space (
;F ;P); we de�ne

N = fB � 
= 9A 2 F ; P(A) = 0 and A � Bg :

1.8.2 Types of convergence

The space (
;F ;P) is �xed. Random variables are de�ned on this space. We distinguish several

types of convergence:

17
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Almost sure convergence

A sequence of random variables Xn converges almost surely a.s. to X if for almost every !;

Xn (!)! X (!) ; as n!1:

This is denoted as:

Xn
a:s:! X:

This notion of convergence depends on the choice of the probability P: If the probability Q is

equivalent to P such that

Xn
P:a:s:! X;

then we have

Xn
Q:a:s:! X:

Convergence in Probability

A sequence of random variable Xn converges in probability to X if:

8� > 0; P (jXn �Xj � �)! 0; as n!1:

Remark 1.8.1 We remark that

Almost sure (a.s.) convergence implies convergence in probability.

Convergence in probability implies that there exists a subsequence which converges almost surely.

Convergence in Distribution

A sequence of random variable Xn converges in distribution to X if:

E [� (Xn)]! E [� (X)] ; as n!1:

For every function � that is continuous and bounded.

The convergence in distribution is denoted by

Xn
d! X:

18
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The convergence in distribution is also de�ned by the simple convergence of the characteristic

function, i.e. 	n (t) ! 	(t) for all t; where 	n is the characteristic function of Xn and 	 that of

X:

Remark 1.8.2 1. If X is a continuous random variable with distribution function F; and if Xn

is a sequence of random variable with distribution function Fn such that Fn (x) converges to F (x)

for all x; then Xn converges in distribution to X and conversely.

2. Convergence in probability implies convergence in distribution.

1.8.3 Strong and Weak Convergence

De�nition 1.8.7 A sequence (xn) of element in a pre-Hilbert space H converges strongly to x

in H (denoted xn ! x) if it converges in norm in H:

De�nition 1.8.8 A sequence (xn) of element in a pre-Hilbert space H converges weakly to x in

H

(denoted xn
w! x) if:

lim
n!1

(xn; y) = (x; y) 8y 2 H:

One may ask what is the relationship between these two types of convergence. We have the following

result

Theorem 1.8.1 Strong convergence implies weak convergence.

1.8.4 Mazur�s Theorem

If the sequence (xn) converges weakly to x; then there exists a sequence of convex combination cn

such that:

cn =
X
i�0

�inx
i; where �i � 0 and

X
i�0

�i = 1;

Which converges strongly to x :

kcn � xk ! 0:
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1.8.5 Fubini�s theorem

Let f : Rd1 � Rd2 ! R be a measurable function. If f is integrable over Rd1 � Rd2 ; i.e.,

Z
Rd1�Rd2

jf (x; y)j dxdy <1;

Z
Rd1�Rd2

f (x; y) dxdy =

Z
Rd2

�Z
Rd1

f (x; y) dx

�
dy =

Z
Rd1

�Z
Rd2

f (x; y) dy

�
dx

1.8.6 Burkholder-Davis-Gundy Inequality (BDG)

Proposition 1.8.1 Let p > 0 be a real number. There exist two constants cp and Cp such that,

for every continuonus local martingale X; null at zero, we have

cpE
h
hX;Xi

p
2
1

i
� E

�
sup
t�0

jXp
t j
�
� CpE

h
hX;Xi

p
2
1

i
:

Remark 1.8.3 In particular, if T > 0;

cpE
h
hX;Xi

p
2

T

i
� E

�
sup
0�t�T

jXp
t j
�
� CpE

h
hX;Xi

p
2

T

i
:

1.8.7 Gronwall�s Inequality

Lemma 1.8.1 If g is a continuous function such that,

8t � 0 g (t) � a1 + a2

tZ
0

g (s) ds; with a2 � 0;

Then

g (t) � a1 (1� exp (a2t)) :
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Chapter 2

Existence of Optimal Controls for

Linear Forward-Backward Doubly

SDE of Mean-Field

In this chapter establishes the existence of strong optimal solutions of a control problems in which
the control systems are governed by linear forward backward doubly stochastic di¤erential equations

of mean-�eld type (MF-FBDSDEs), with real coe¢ cients and non linear functional cost. Under

the convexity of the control domain and the cost functions, the existence of strong optimal control,

adapted to the initial ��algebra is proved.

2.1 Formulation of The Problem and Assumptions

Let (
;F ;P) be a complete probability space. Let (Wt)t2[0;T ] and (Bt)t2[0;T ] be two Brownian

motions taking their values in Rd and Rl respectively, de�ned on this space.

Let N denote the class of P�null sets of F : For each t 2 [0; T ] ; we de�ne Ft
M
= FWt _ FBt;T ; where

for any process f�tg ; we set F�s;t = � (�r � �s; s � r � t) _N ; F�t = F�0;t:

Note that the collection fFt; t 2 [0; T ]g is neither increasing nor decreasing, then it does not con-

stitute a classical �ltration.

Given � a square integrable and FT�measurable process, x a square integrable and F0�measurable

process and for any admissible control u; we consider an optimal control problem driven by the
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following controlled linear FBDSDE of mean-�eld type:

8>>>>>>>>><>>>>>>>>>:

dXt =

�
AXt +

^
AE [Xt] + but

�
dt+

�
CXt +

^
CE [Xt] +

^
but

�
dWt;

dYt = �
�
DXt +

^
DE [Xt] + EYt +

^
EE [Yt] + FZt +

^
FE [Zt] +Gut

�
dt

�
�
HXt +

^
HE [Xt] +KYt +

^
KE [Yt] +MZt +

^
ME [Zt] +

^
Gut

�
 �
dBt + ZtdWt;

X0 = x; YT = �;

(2.1)

With

b (t;Xt;E [Xt] ; ut) = AXt +
^
AE [Xt] + but;

� (t;Xt;E [Xt] ; ut) = CXt +
^
CE [Xt] +

^
but;

f (t;Xt;E [Xt] ; Yt;E [Yt] ; Zt;E [Zt] ; ut) = DXt +
^
DE [Xt] + EYt +

^
EE [Yt]

+ FZt +
^
FE [Zt] +Gut;

g (t;Xt;E [Xt] ; Yt;E [Yt] ; Zt;E [Zt] ; ut) = HXt +
^
HE [Xt] +KYt +

^
KE [Yt]

+MZt +
^
ME [Zt] +

^
Gut;

h (XT ;E [XT ]) = �;

And a cost functional:

J (u:) := E

"
� (XT ;E [XT ]) + � (Y0;E [Y0]) +

Z T

0

` (t;Xt;E [Xt] ; Yt;E [Yt] ; Zt;E [Zt] ; ut) dt

#
;

(2.2)

Where A;
^
A; b;

^
b; C;

^
C;D;

^
D;E;

^
E;F;

^
F ;G;

^
G;H;

^
H;K;

^
K;M and

^
M are real-valued matrices of suit-

able sizes. The solution (X;Y; Z) takes values in Rn � Rm � Rm+d and u: is the control variable

values in subset U of Rk: �; �; ` are a given functions de�ne by
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` : [0; T ]� Rn � Rn � Rm � Rm � Rm�d � Rm�d � U ! R;

� : Rn � Rn ! Rn;

� : Rm � Rm ! Rm:

De�nition 2.1.1 An admissible control u: is a square integrable, Ft�measurable process with

values in some subset U � Rk: We denote by UL the set of all admissible controls.

Note that we have an additional constraint that a control must be square integrable just to ensure

the existence of solutions of 2.1 under u::We say that an admissible control (u�: ) 2 UL is an optimal

control if

J (u�: ) = inf
v:2UL

J (v:) : (2.3)

The following notations are needed.

S2F (0; T ;Rm) : The set of process �:; Ft�adapted with values in Rm such that

De�nition 2.1.2

E

"Z T

0

j�tj2 dt
#
<1;

M2
F (0; T ;Rn) : The set of process �:; Ft�adapted and Rn�valued continuous processes such that

E
�
sup
0�t�T

j�tj2
�
<1;

UL
4
=
�
v: 2 S2F (0; T ;Rn) =vt 2 U; a:e:t 2 [0; T ] ;P�a:s:

	
:

We shall consider in this chapter, the following assumptions

(H1): The set U � Rk is convex and compact and the functions `; � and � are continuous, bounded

and convex,

(H2): A;
^
A; b;

^
b; C;

^
C;D;

^
D;E;

^
E;F;

^
F ;G;

^
G;H;

^
H;K and

^
K are positive real numbers and,M;

^
M 2�

0; 12
�
:

Proposition 2.1.1 Under assumptions (H1)�(H2) the system of linear FBDSDE of mean-�eld

type 2.1, has a unique strong solution.
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Proof. The proof of this proposition is established in Zhu and Shi [34], by using a method of

continuation, and the fact that our system 2.1 is a special case of the one given in [34].

Remark 2.1.1 A special case is that in which both �; � are ` are convex quadratic functions.

The control problem (2.1, 2.2, 2.3) is then reduced to a stochastic linear quadratic optimal control

problem.

2.2 Existence of Optimal Control

In this section, we prove the existence of a strong strict optimal control which is adapted to the

initial ��algebra, under the convexity of the cost functions and the action space U:

Theorem 2.2.1 Under either (H1)�(H2), if the control problem (2.1, 2.2, 2.3) is �nite, then it

admits an optimal solution.

Proof. Assume that (H1)�(H2) holds. Let (un: ) be a minimizing sequence, that is

lim
n!1

J (un: ) = inf
v:2UL

J (v:) :

With associated trajectories (Xn
t ; Y

n
t ; Z

n
t ) satis�es the linear FBDSDE of mean-�eld type 2.1 i.e.,

8>>>>>>>>><>>>>>>>>>:

dXn
t =

�
AXn

t +
^
AE [Xn

t ] + bu
n
t

�
dt+

�
CXn

t +
^
CE [Xn

t ] +
^
bunt

�
dWt;

dY nt = �
�
DXn

t +
^
DE [Xn

t ] + EY
n
t +

^
EE [Y nt ] + FZnt +

^
FE [Znt ] +Gunt

�
dt

�
�
HXn

t +
^
HE [Xn

t ] +KY
n
t +

^
KE [Y nt ] +MZnt +

^
ME [Znt ] +

^
Gunt

�
 �
dBt + Z

n
t dWt;

Xn
0 = x; Y nT = �;

From the fact that U is a compact set, the sequence (un: )n�0 is relatively compact.

Thus, there exists a subsequence (which is still labeled by (un: )n�0) such that

un: !
_
u:; weakly in S2

�
[0; T ] ;Rk

�
:

Applying Mazur�s theorem, there is a sequence of convex combinations de�ned by
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s
Un: =

X
J�0

�Jnu
J+n
: (with �Jn � 0; and

X
J�0

�Jn = 1);

Such that

s
Un: !

_
u:strongly in S2

�
[0; T ] ;Rk

�
: (2.4)

Since the set U � Rk is convex and compact, it follows that
_
u: 2 UL:

Let
�

s
Xn
: ;
�
Y n: ;

�
Zn:

�
and

�
�
X :;

�
Y :;

�
Z :

�
be the solutions of the linear MF-FBDSDE 2.1, associated

with
s
Un: and

_
u: respectively i.e.,

8>>>>>>>>>>>><>>>>>>>>>>>>:

d
s
Xn
t = (A

s
Xn
t +

^
AE
�
s
Xn
t

�
+ b

s
Unt )dt+ (C

s
Xn
t +

^
CE

�
s
Xn
t

�
+
^
b
s
Unt )dWt

d
s
Y nt = �

�
D

s
Xn
t +

^
DE

�
s
Xn
t

�
+ E

s
Y nt +

^
EE

�
s
Y nt

�
+ F

s
Znt +

^
FE

�
s
Znt

�
+G

s
Unt

�
dt

�
�
H

s
Xn
t +

^
HE

�
C

s
Xn
t

�
+K

s
Y nt +

^
KE

�
s
Y nt

�
+M

s
Znt +

^
ME

�
s
Znt

�
+
^
G

s
Unt

�
 �
dBt

+
s
Znt dWt;

s
Xn
0 = x;

s
Y nT = �;

(2.5)

And

8>>>>>>>>>>>><>>>>>>>>>>>>:

d
�
Xt = (A

�
Xt +

^
AE
�
�
Xt

�
+ b

_
ut)dt+ (C

�
Xt +

^
CE

�
�
Xt

�
+
^
b
_
ut)dWt

d
�
Y t = �

�
D
�
Xt +

^
DE

�
�
Xt

�
+ E

�
Y t +

^
EE

�
�
Y t

�
+ F

�
Zt +

^
FE

�
�
Zt

�
+G

_
ut

�
dt

�
�
H
�
Xt +

^
HE

�
�
Xt

�
+K

�
Y t +

^
KE

�
�
Y t

�
+M

�
Zt +

^
ME

�
�
Zt

�
+
^
G
_
ut

�
 �
dBt

+
�
Y tdWt;

�
X0 = x;

�
ZT = �:

(2.6)

Then let us prove

 
s
Xn
t ;

s
Y nt ;

Z T

0

s
Zns dWs

!
converges strongly to

 
�
Xt;

�
Y t;

Z T

0

�
ZsdWs

!
; (2.7)

InM2 ([0; T ] ;Rn+m)� S2
�
[0; T ] ;Rm+d

�
:
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Firstly, we have

���� �Xn
t �

�
Xt

����2 � 2

����Z t

0

�
A

�
�
Xn
s �

�
Xs

�
+
^
A

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+ b

�
s
Uns �

_
us

��
ds

����2
+2

����Z t

0

�
C

�
�
Xn
s �

�
Xs

�
+
^
C

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+
^
b

�
s
Uns �

_
us

��
dWs

����2 ;
Which gives

 
sup
0�s�t

���� �Xn
s �

�
Xs

����2
!

�
Z t

0

 
A2

 
sup
0�r�s

���� �Xn
r �

�
Xr

����2
!

^
+A2

 
sup
0�r�s

����E � �Xn
r

�
� E

�
�
Xr

�����2
!

+b2
���� sUns � _

us

����2
!
ds+ sup

0�s�t

�����Z t

0

�
C

�
�
Xn
s �

�
Xs

�
+
^
C

�
E
�
�
Xn
s

�
� E

�
�
Xs

��

+
^
b

�
s
Uns �

_
us

��
dWs

�����2 ;
Passing to the expectation and using fubini�s theorem, we get

E

"
sup

0�s�T

���� �Xn
s �

�
Xs

����2
#

�
Z t

0

 
A2E

"
sup
0�r�s

���� �Xn
r �

�
Xr

����2
#
+
^
A2E

"�
sup
0�r�s

����E � �Xn
r

�
� E

�
�
Xr

������2
#

+b2E

"���� sUns � _
us

����2
#!

ds+ E
�
sup
0�s�t

�����Z t

0

�
C

�
�
Xn
s �

�
Xs

�
+
^
C

�
E
�
�
Xn
s

�
� E

�
�
Xs

��

+
^
b

�
s
Uns �

_
us

��
dWs

�����2
#
;

Using the Burkholder-Davis-Gundy inequality to the martingale part, we get

E

"
sup

0�s�T

���� �Xn
s �

�
Xs

����2
#
� k

Z t

0

E

"
sup
0�r�s

���� �Xn
r �

�
Xr

����2
#
ds+ k0E

"Z t

0

���� sUns � _
us

����2 ds
#
:

Applying Gronwall�s lemma, we get
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E

"
sup

0�s�T

���� �Xn
s �

�
Xs

����2
#
� k0E

"Z t

0

���� sUns � _
us

����2 ds
#
+ k

Z t

0

E

"
sup
0�r�s

���� �Xn
r �

�
Xr

����2
#
ds;

� k0E

"Z t

0

���� sUns � _
us

����2 ds
#
exp

�Z t

0

kds

�
;

� k0ektE

"Z t

0

���� sUns � _
us

����2 ds
#
:

With

g (s) = E

"
sup

0�s�T

���� �Xn
s �

�
Xs

����2
#
; a1 = k0E

"Z t

0

���� sUns � _
us

����2 ds
#
; a2 = k:

And the fast that
�

s
Un:

�
converges strongly to

_
u: in S2

�
[0; T ] ;Rk

�
(from 2.4), we get

lim
n!1

E

"
sup

0�s�T

���� �Xn
s �

�
Xs

����2
#
= 0: (2.8)

Secondly, we have

d

���� �Y nt � �Y t����
= �

�
D

�
�
Xn
t �

�
Xt

�
+
^
D

�
E
�
�
Xn
t

�
� E

�
�
Xt

��
+ E

�
�
Y nt �

�
Y t

�
+
^
E

�
E
�
�
Y nt

�
� E

�
�
Y t

��
+F

�
�
Znt �

�
Zt

�
+
^
F

�
E
�
�
Znt

�
� E

�
�
Zt

��
+G

�
s
Unt �

_
ut

��
dt+

�
�
Znt �

�
Zt

�
dWt

�
�
H

�
�
Xn
t �

�
Xt

�
+
^
H

�
E
�
�
Xn
t

�
� E

�
�
Xt

��
+K

�
�
Y nt �

�
Y t

�
+
^
K

�
E
�
�
Y nt

�
� E

�
�
Y t

��
+M

�
�
Znt �

�
Zt

�
+
^
M

�
E
�
�
Znt

�
� E

�
�
Zt

��
+
^
G

�
s
Unt �

_
ut

�
 �
dBt

�
;

Applying Itô�s formula (integration by part ) to

���� �Y nt � �Y t����2 ; we get
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d

���� �Y nt � �Y t����2
= 2

���� �Y nt � �Y t���� d ���� �Y nt � �Y t����+ d� �Y n � �Y ; �Y n � �Y�
t

= 2

���� �Y nt � �Y t���� �� �D� �Xn
t �

�
Xt

�
+
^
D

�
E
�
�
Xn
t

�
� E

�
�
Xt

��
+E

�
�
Y nt �

�
Y t

�
+
^
E

�
E
�
�
Y nt

�
� E

�
�
Y t

��
+ F

�
�
Znt �

�
Zt

�
+
^
F

�
E
�
�
Znt

�
� E

�
�
Zt

��
+G

�
s
Unt �

_
ut

��
dt+

�
�
Znt �

�
Zt

�
dWt

+

�
H

�
�
Xn
t �

�
Xt

�
+
^
H

�
E
�
�
Xn
t

�
� E

�
�
Xt

��
+K

�
�
Y nt �

�
Y t

�
+
^
K

�
E
�
�
Y nt

�
� E

�
�
Y t

��
+M

�
�
Znt �

�
Zt

�
+
^
M

�
E
�
�
Znt

�
� E

�
�
Zt

��
+
^
G

�
s
Unt �

_
ut

��
 �
dBt

�
+

�������� �Znt � �Zt��������2 dt� ����H � �Xn
t �

�
Xt

�
+
^
H

�
E
�
�
Xn
t

�
� E

�
�
Xt

��
+K

�
�
Y nt �

�
Y t

�
+
^
K

�
E
�
�
Y nt

�
� E

�
�
Y t

��
+M

�
�
Znt �

�
Zt

�
+
^
M

�
E
�
�
Znt

�
� E

�
�
Zt

��
+
^
G

�
s
Unt �

_
ut

�����2 dt;
Thus
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Z T

t

d

���� �Y ns � �Y s����2 ds
= �2

Z T

t

�
�
Y ns �

�
Y s; D

�
�
Xn
s �

�
Xs

�
+
^
D

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+E

�
�
Y ns �

�
Y s

�
+
^
E

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+ F

�
�
Zns �

�
Zs

�
+
^
F

�
E
�
�
Zns

�
� E

�
�
Zs

��
+G

�
s
Uns �

_
us

��
ds

+ 2

Z T

t

�
�
Y ns �

�
Y s;

�
Zns �

�
Zs

�
dWs � 2

Z T

t

�
�
Y ns �

�
Y s;H

�
�
Xn
s �

�
Xs

�
+
^
H

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+K

�
�
Y ns �

�
Y s

�
+
^
K

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+M

�
�
Zns �

�
Zs

�
+
^
M

�
E
�
�
Zns

�
� E

�
�
Zs

��
+
^
G

�
s
Uns �

_
us

��
 �
dBs

+

Z T

t

�������� �Zns � �Zs��������2 ds� Z T

t

����H � �Xn
s �

�
Xs

�
+
^
H

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+K

�
�
Y ns �

�
Y s

�
+
^
K

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+M

�
�
Zns �

�
Zs

�
+
^
M

�
E
�
�
Zns

�
� E

�
�
Zs

��
+
^
G

�
s
Uns �

_
us

�����2 ds;
Which implies that

���� �Y nt � �Y t����2 + Z T

t

�������� �Zns � �Zs��������2 ds
= 2

Z T

t

�
�
Y ns �

�
Y s; D

�
�
Xn
s �

�
Xs

�
+
^
D

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+E

�
�
Y ns �

�
Y s

�
+
^
E

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+ F

�
�
Zns �

�
Zs

�
+
^
F

�
E
�
�
Zns

�
� E

�
�
Zs

��
+G

�
s
Uns �

_
us

��
ds

� 2
Z T

t

�
�
Y ns �

�
Y s;

�
Zns �

�
Zs

�
dWs + 2

Z T

t

�
�
Y ns �

�
Y s;H

�
�
Xn
s �

�
Xs

�
+
^
H

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+K

�
�
Y ns �

�
Y s

�
+
^
K

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+M

�
�
Zns �

�
Zs

�
+
^
M

�
E
�
�
Zns

�
� E

�
�
Zs

��
+
^
G

�
s
Uns �

_
us

��
 �
dBs

+

Z T

t

����H � �Xn
s �

�
Xs

�
+
^
H

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+K

�
�
Y ns �

�
Y s

�
+
^
K

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+M

�
�
Zns �

�
Zs

�
+
^
M

�
E
�
�
Zns

�
� E

�
�
Zs

��
+
^
G

�
s
Uns �

_
us

�����2 ds:
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By taking expectation, we get

E

"
sup
0�t�T

���� �Y nt � �Y t����2
#
+ E

"Z T

0

�������� �Zns � �Zs��������2 ds
#

� 2E
"Z T

0

�
�
Y nt �

�
Y t; D

�
�
Xn
s �

�
Xs

�
+
^
D

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+E

�
�
Y ns �

�
Y s

�
+
^
E

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+ F

�
�
Zns �

�
Zs

�
+
^
F

�
E
�
�
Zns

�
� E

�
�
Zs

��
+G

�
s
Uns �

_
us

��
ds

�
+ E

"Z T

0

����H � �Xn
s �

�
Xs

�
+
^
H

�
E
�
�
Xn
s

�
� E

�
�
Xs

������
+K

�
�
Y ns �

�
Y s

�
+
^
K

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+M

�
�
Zns �

�
Zs

�
+
^
M

�
E
�
�
Zns

�
� E

�
�
Zs

��
+
^
G

�
s
Uns �

_
us

�����2 ds:
According to the assumption (H2) and by using the Young�s formula, we obtain

E

"
sup
0�t�T

���� �Y nt � �Y t����2
#
+ E

"Z T

0

�������� �Zns � �Zs��������2 ds
#
� 1

�1
E

"Z T

0

���� �Y ns � �Y s����2 ds
#

+ 7�1�
2E

"Z T

0

 ���� �Xn
s �

�
Xs

����2 + ����E � �Xn
s

�
� E

�
�
Xs

�����2
+

���� �Y ns � �Y s����2 + ����E � �Y ns �� E ��Y s�����2 + �������� �Zns � �Zs��������2
+

��������E � �Zns �� E ��Zs���������2 + ���� sUns � _
us

����2
!
ds

#

+ 5�2E

"Z T

0

 ���� �Xn
s �

�
Xs

����2 + ����E � �Xn
s

�
� E

�
�
Xs

�����2
+

���� �Y ns � �Y s����2 + ����E � �Y ns �� E ��Y s�����2 + ���� sUns � _
us

����2
!
ds

#

+ 2
2E

"Z T

0

 �������� �Zns � �Zs��������2 +

��������E � �Zns �� E ��Zs���������2
!
ds

#

+ 2�
E

"Z T

0

��
�
Xn
s �

�
Xs

�
+

�
E
�
�
Xn
s

�
� E

�
�
Xs

��
+

�
�
Y ns �

�
Y s

�
+

�
E
�
�
Y ns

�
� E

�
�
Y s

��
+

�
s
Uns �

_
us

�
;

�
�
Zns �

�
Zs

�
+

�
E
�
�
Zns

�
� E

�
�
Zs

���
ds

�
:
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Where

� = max

�
A;
^
A; b;

^
b; C;

^
C;D;

^
D;E;

^
E;F;

^
F ;G;

^
G;H;

^
H;K;

^
K

�
;


 = max

�
M;

^
M

�
:

Hence

E

"
sup
0�t�T

���� �Y nt � �Y t����2
#
+ E

"Z T

0

�������� �Zns � �Zs��������2 ds
#
�

1

�1
E

"Z T

0

���� �Y ns � �Y s����2 ds
#
+ 14�1�

2E

"Z T

0

 ���� �Xn
s �

�
Xs

����2 + ���� �Y ns � �Y s����2
+

�������� �Zns � �Zs��������2 + 12
���� sUns � _

us

����2
!
ds

#
+ 10�2E

"Z T

0

 ���� �Xn
s �

�
Xs

����2
+

���� �Y ns � �Y s����2 + 12
���� sUns � _

us

����2
!
ds

#
+ 4
2E

"Z T

0

�������� �Zns � �Zs��������2 ds
#

+
5�


�2
E

"Z T

0

 ���� �Xn
s �

�
Xs

����2 + ����E � �Xn
s

�
� E

�
�
Xs

�����2 + ���� �Y ns � �Y s����2
+

����E � �Y ns �� E ��Y s�����2 + ���� sUns � _
us

����2
!
ds

#

+ 2�2�
E

"Z T

0

 �������� �Zns � �Zs��������2 + ��������E � �Zns �� E ��Zs���������2
!
ds

#
;

And therefore

E

"
sup
0�t�T

���� �Y nt � �Y t����2
#
+ E

"Z T

0

�������� �Zns � �Zs��������2 ds
#
�

�
1

�1
+ 14�1�

2 + 10�2 +
10�


�2

�
E

"Z T

0

���� �Y nt � �Y t����2 ds
#

+
�
14�1�

2 + 4
2 + 4�2�

�
E

"Z T

0

�������� �Zns � �Zs��������2 ds
#

+

�
14�1�

2 + 10�2 +
10�


�2

�
E

"Z T

0

���� �Xn
t �

�
Xt

����2 ds
#

+

�
7�1�

2 + 5�2 +
5�


�2

�
E

"Z T

0

���� sUns � _
us

����2 ds
#
;

Choosing
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�1 =
1� 4
2
28�2

> 0 and �2 =
1� 4
2
12�


> 0 because 0 < 
 <
1

2
;

The previous inequality becomes

E

"
sup
0�t�T

���� �Y nt � �Y t����2
#
+ �1E

"Z T

0

�������� �Zns � �Zs��������2 ds
#

(2.9)

� �2E

"Z T

0

���� �Y nt � �Y t����2 ds
#
+ �3E

"Z T

0

���� �Xn
s �

�
Xs

����2 ds
#

+ �4E

"Z T

0

���� �Uns � �us����2 ds
#
;

Where

�1 =
1� 4
2
6

> 0;

�2 =
28�2

1� 4
2 +
1� 4
2
2

+ 10�2 +
120 (�
)

2

1� 4
2 > 0;

�3 =
1� 4
2
2

+ 10�2 +
120 (�
)

2

1� 4
2 > 0;

�4 =
1� 4
2
4

+ 5�2 +
60 (�
)

2

1� 4
2 > 0:

We derive two inequalities from 2.9

E

"
sup
0�t�T

���� �Y nt � �Y t����2
#
� �2E

"Z T

0

���� �Y nt � �Y t����2 ds
#

(2.10)

+ �3E

"Z T

0

���� �Xn
s �

�
Xs

����2 ds
#
+ �4E

"Z T

0

���� �Uns � �us����2 ds
#
;

And
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�1E

"Z T

0

�������� �Zns � �Zs��������2 ds
#
� �2E

"Z T

0

���� �Y nt � �Y t����2 ds
#

(2.11)

+ �3E

"Z T

0

���� �Xn
s �

�
Xs

����2 ds
#
+ �4E

"Z T

0

���� �Uns � �us����2 ds
#
;

Applying Gronwall�s lemma to 2.10 and passing to the limit as n!1; and using the convergence

2.4 and 2.8, we obtain

E

"
sup
0�t�T

���� �Y nt � �Y t����2
#
= 0: (2.12)

Then, one can shows directly from 2.4,2.8 and 2.12 that

E

"Z T

0

�������� �Zns � �Zs��������2 ds
#
! 0; as n!1;

Which gives the result by applying the isometry of Itô.

Finally, let us prove that
�
u: is an optimal control.

From the minimizing sequence, let (Xn
: ; Y

n
: ; Z

n
: ; u

n
: ) be such that

lim
n!1

J (un: ) = lim
n!1

E [� (Xn
T ;E [Xn

T ]) + � (Y
n
0 ;E [Y n0 ])

+

Z T

0

` (t;Xn
t ;E [Xn

t ] ; Y
n
t ;E [Y nt ] ; Znt ;E [Znt ] ; unt ) dt

#

= inf
v:2UL

J (v:) :

Using the continuity of function �; � and `; we get

J
��
u:

�
= E

�
�

�
�
XT ;E

�
�
XT

��
+ �

�
�
Y 0;E

�
�
Y 0

��
+

Z T

0

`

�
t;
�
Xt;E

�
�
Xt

�
;
�
Y t;E

�
�
Y t

�
;
�
Zt;E

�
�
Zt

�
;
�
ut

�
dt

#

= lim
n!1

E
�
�

�
�
Xn
T ;E

�
�
Xn
T

��
+ �

�
�
Y n0 ;E

�
�
Y n0

��
+

Z T

0

`

�
t;
�
Xn
t ;E

�
�
Xn
t

�
;
�
Y nt ;E

�
�
Y nt

�
;
�
Y nt ;E

�
�
Znt

�
;
�
Unt

�
dt

#
:
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Thus

J
��
u:

�
= lim

n!1
E

24�
0@X
J�0

�JnX
J+n
T ;E

24X
J�0

�JnX
J+n
T

351A+ �
0@X
J�0

�JnY
J+n
0 ;E

24X
J�0

�JnY
J+n
0

351A
+

Z T

0

`

0@t;X
J�0

�JnX
J+n
t ;E

24X
J�0

�JnX
J+n
t

35 ;X
J�0

�JnY
J+n
t ;E

24X
J�0

�JnY
J+n
t

35 ;
X
J�0

�JnZ
J+n
t ;E

24X
J�0

�JnZ
J+n
t

35 ;X
J�0

�Jnu
J+n
t

1A dt

35 ;
By the convexity of �; � and `; it follows that

J
��
u:

�
� lim

n!1

X
J�0

�JnE
�
�
�
XJ+nT ;E

�
XJ+nT

��
+ �

�
Y J+n0 ;E

�
Y J+n0

��
+

Z T

0

`
�
t;XJ+nt ;E

�
XJ+nt

�
; Y J+nt ;E

�
Y J+nt

�
; ZJ+nt ;E

�
ZJ+nt

�
; uJ+nt

�
dt

#

= lim
n!1

X
J�0

�JnJ
�
uJ+n:

�
;

� lim
n!1

X
J�0

�Jn Max
1�J�in

J
�
uJ+n:

�
� lim

n!1
Max

1�J�in
J
�
uJ+n:

�X
J�0

�Jn = lim
n!1

Max
1�J�in

J
�
uJ+n:

�
= inf

v:2UL
J (v:) :
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Conclusion

In this memoir, we have proven the existence of an optimal control for linear forward-backward
doubly stochastic di¤erential equations of mean-�eld type, where the cost function is given in a

general form.

The proof method is based on the fact that the set of admissible controls is convex and compact,

and that the cost function is convex, along with the use of Mazur�s theorem.

It would be interesting to explore how this existence result can be extended to more complex cases

of mean-�eld forward-backward doubly stochastic di¤erential equations (for example of McKean-

Vlasov type).
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Annexe : Abreviations and

Notations

The following is an explanation of the various abbreviations and notations which are in use through-

out this report:

(
;F ;P) : Probability space.

(
;F ; fFngn ;P) : Filtered probability space.

(
;F) : Measurable space.

BR : Borel ��algebra on R:

Bt : Brownian motion.

P� p:s: : Almost surely.

hXis : Stochastic bracket.

J (u:) : Cost functional.

un: : Minimizing sequence.
_
u: : Optimal control.

FBDSED �MF : Forward-Backwar Doubly Stochastic Di¤erential Equations of Mean-Field.

i:e:; : That is.

U : Compact set.
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Résumé 
 

 
 

 

 

Abstract 
 

 على البرهان يعتمد الحقل، متوسط نوع من تراجعية-تقدمية مزدوجة تصادفية تفاضلية لمعادلات مثلى تحكمات وجود دراسة إلى المذكرة هذه تهدف

 .مبرهنة مازور وكذلك على نوع متوسط الحقلمن  تراجعية-تقدمية مزدوجة تصادفية تفاضلية ال المعادلات على المطبقة القوي التقارب تقنيات

Ce mémoire étudie l’existence des contrôles optimaux pour des équations différentie l les 

stochastiques doublement progressive-rétrograde linéaire de type champ moyen. La démonstratio n 
repose sur des techniques de convergence forte appliquées aux FBDSDEs linéaires associées de 

type champ moyen, ainsi que sur le théorème de Mazur. 

This study investigates the existence of optimal controls for a linear forward-backward doubly 

stochastic differential equation of mean-field type. The proof is based on strong convergence 

techniques for the associated linear FBDSDEs of mean-field type and Mazur’s theorem. 
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