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Notation

• Γ(.): Gamma Euler function.

• β(x, y): Beta function.

• Eα,β(t): The Mittag-Leffler function.

• ∆αf(x): Grunwald–Letnikov difference of order p of the function f(x).

•

(
α

j

)
: Binomial term.

• F (s) = L{f(x); s}: Laplace Transform.

• f(x) ∗ g(x): Convolution of the functions g(x) and f(x).

• G(s): Transfer function in Laplace domain.

• C(I,Rn): Space of continuous functions over the specified domain I.

• BIBO : Bounded-Input Bounded-Output.

• ICs: Initial conditions.

• DDE: Delay Differential Equation.

• FDDE: Fractional Delay Differential Equation.

• LTI: Linear Time-Invariant.

• LTD: Linear Time-Delay.

• FOS: Fractional-Order System.

• PID: Proportional-Integral-Derivative.

• PIλDµ: Fractional order PID.
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Introduction

The study of chaos in dynamical systems emerged in the 20th century, and its beginnings

are linked to the work of meteorologist Edward Lorenz in 1963 [11], when he observed that a

small change in the initial conditions of a weather model leads to large changes in the results, in

what later became known as the ”butterfly effect.” Since then, the concept of chaos has become

central to understanding nonlinear systems with complex and sensitive behavior, opening vast

new horizons for research across various scientific disciplines.

On the other hand, the roots of fractional calculus can be traced back several centuries, with

the concept of non-integer derivatives first introduced in 1695 through a renowned correspon-

dence between Leibniz and l’Hôpital [9]. Nonetheless, the practical applications of fractional

derivatives have only gained momentum in recent decades, particularly with the advancement

of numerical computation. This mathematical framework has proven to be highly effective in

modeling various physical and biological phenomena that are challenging to accurately char-

acterize using classical calculus, as it inherently captures memory effects and the historical

behavior of systems.

Regarding time delays in dynamical systems, interest in their effects increased in parallel

with advancements in communication and control technologies, particularly during the latter

half of the 20th century [18]. Researchers observed that even small delays could induce sudden

instability in industrial and communication systems. This insight led to the emergence of De-

lay Differential Equations (DDEs) as a vibrant field of research, owing to their critical role in

modeling systems whose current states depend on their past behavior.

When these three concepts—chaos, fractional calculus, and time delay—are integrated into

a single system, the result is a highly complex dynamical model that demands advanced math-

ematical and control tools [17]. This has led to a recent scientific trend focused on developing

adaptive control techniques tailored to the unique characteristics of such systems.
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Introduction

This research aims to contribute to the field by designing a fractional-order time-delayed

controller and analyzing the system’s stability using the Lyapunov-Razumikhin method, one of

the most effective tools for studying time-delayed systems [18]. The main objective of the pro-

posed controller is to suppress and control chaos by guiding the chaotic system towards stable

and regular behavior [25], despite the complexities introduced by fractional-order dynamics and

time delays. Although chaos is an inherent characteristic of certain system dynamics, control-

ling it is important for ensuring safe and efficient operational performance. This is particularly

evident in applications such as drone systems, which are increasingly used in both military and

civilian sectors. However, these systems face significant challenges in unstable environments.

This thesis is divided into four main chapters:

Chapter one builds the theoretical foundation of the research. It begins by introducing

the concept of fractional calculus and its historical development, followed by a presentation

of key definitions such as those of Riemann–Liouville, Caputo, and Grünwald–Letnikov, along

with their properties and corresponding Laplace transforms. The chapter then transitions to

the study of stability in fractional-order systems, introduces the fundamental characteristics of

chaos, and presents well-known models such as the Rössler and Lotka–Volterra systems. These

examples illustrate how fractional derivatives influence the behavior of chaotic systems.

Chapter two addresses fractional delay differential equations (FDDEs). It first defines gen-

eral delay differential equations (DDEs), then explains how incorporating fractional derivatives

leads to more complex formulations. The chapter classifies the types of delays and explores sta-

bility analysis using techniques such as the Lyapunov–Razumikhin function. It also investigates

bifurcation phenomena and the behaviors arising from variations in delay time.

Chapter three focuses on chaos control in fractional-order systems with time delay. It

presents the design of a PIλDµ controller with a delay component. The chapter discusses

the components of the controller, control and observation strategies, and provides well-known

numerical examples demonstrating how this controller helps mitigate chaotic behavior through

simulations—without a formal mathematical stability analysis.

Chapter four applies the previous results to a real-world system represented by a drone

system. The dynamics of the drone system are first modeled in terms of linear and rotational

motion, as well as the influence of wind disturbances. Three simulation scenarios are considered:

the first without wind, the second with wind and no controller, and the third with the proposed

controller activated. These simulations aim to evaluate the controller’s performance in reducing

chaos and achieving relative stabilization of the drone system.
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Chapter 1
Fractional-Order Chaotic Systems

1.1 Fractional-Order

1.1.1 Introduction to Fractional-Order Calculus

Fractional calculus is a natural development of classical calculus, allowing the use of derivatives

and integrals of non-integer orders. The importance of this generalization lies in its ability

to describe systems that exhibit memory- or state-history-dependent behavior, which is dif-

ficult to accurately represent using conventional integer-order models. Common applications

include biological processes, and some electrical systems, where fractional calculus provides

more accurate tools for representing their complex behavior. [22].

There are several definitions of the fractional derivative, the most prominent of which are

the Riemann-Liouville, Caputo, and Grünwald-Letnikov definitions, each of which is

suitable for a specific type of application. In this chapter, we review these definitions and their

basic properties, then move on to their use in the analysis of chaotic systems of fractional order.

1.1.2 Fractional-Order Integrals and Derivatives

1.1.2.1 Riemann–Liouville Fractional Integral

Definition 1.1.2.1.1. The left Riemann-Liouville fractional integral aI
α
x f(x) of order α ∈ R+

of a function f(x) on the interval [a, x] [22], is defined by

aI
α
x f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a. (1.1)

1.1.2.2 Riemann–Liouville Fractional Derivative

Definition 1.1.2.2.1. The left Riemann-Liouville fractional derivative aD
α
xf(x) of order α ∈

R+ relies on applying a numerical derivative after performing a fractional integration[22], it is

given by

aD
α
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

(x− t)n−α−1f(t)dt, n = ⌈α⌉. (1.2)

3



CHAPTER 1. FRACTIONAL-ORDER CHAOTIC SYSTEMS

1.1.2.3 Caputo Fractional Derivative

Definition 1.1.2.3.1. The left Caputo fractional derivative C
aD

α
xf(x) of order α ∈ R+ is one

of the most common definitions in physical and engineering models because it allows the use of

initial conditions of the classical form:

C
aD

α
xf(x) = aD

α
x

(
f(x)−

n−1∑
k=0

f (k)(a)

k!
(x− a)k

)
. (1.3)

Where n = ⌈α⌉ [22], this definition is suitable for numerical analysis and control.

Remark 1.1.2.1. There is also the right Riemann-Liouville fractional derivatives and integral

and the right Caputo derivatives.

1.1.2.4 Grünwald-Letnikov Fractional Derivative

Definition 1.1.2.4.1. Let a function f : D → R and f (k)(x) its derivative order k ∈ N defined

by [5]

f (k)(x) = lim
h→0

h−k∆k
hf(x), with h−k∆k

hf(x) =
k∑
j=0

(−1)j

(
k

j

)
f(x− jh).

Specifically, one may define the fractional backward difference formula of order α ∈ R,
denoted by ∆α

h,kf(x), by

∆α
h,kf(x) =

k∑
j=0

(−1)j

(
α

j

)
f(x− jh).

Definition 1.1.2.4.2. This derivative is based on a generalization of the concept of back-

difference, and is widely used in numerical modeling, especially in computer programs, and is

given as
GL
a Dαf(x) = limh−α∆α

h,kf(x). (1.4)

Remark 1.1.2.2. The limit is achieved as k → ∞ and h → 0 with h =
x− a

k
, while keeping

kh = x−a constant value. This shows the Grünwald-Letnikov and Riemann-Liouville fractional

derivatives coincide for α < 0.

1.1.3 Laplace Transform Method

The Laplace transform is a powerful mathematical tool used to analyze linear systems. It is also

useful when dealing with fractional equations, especially when converting fractional derivatives

or integrals to Laplace domain [21].

4



CHAPTER 1. FRACTIONAL-ORDER CHAOTIC SYSTEMS

1.1.3.1 Basic Facts about the Laplace Transform

Another useful property we need is the formula for the Laplace transform of the derivative of

an integer order n of the function f(x):

L{f (n); s} = snF (s)−
n−1∑
k=0

sn−k−1f (k)(0) = snF (s)−
n−1∑
k=0

skf (n−k−1)(0). (1.5)

1.1.3.2 Laplace Transform of Fractional Integrals

We begin with the Laplace transform of the Riemann-Liouville fractional integral of order α > 0

defined by (1.1), which we can write as a convolution of the functions g(x) =
xα−1

Γ(α)
and f(x)

0I
α
x f(x) = 0D

−α
x f(x) =

1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt = g(x) ∗ f(x). (1.6)

Therefore, by applying the Laplace transform of convolution, we obtain the Laplace transform

of the Riemann-Liouville and the Grünwald-Letnikov fractional integrals:

L{0D−α
x f(x); s} = s−αF (s). (1.7)

1.1.3.3 Laplace Transform of Fractional Derivatives

The Laplace transform of the Riemann-Liouville fractional derivative, which, for our purpose,

we express in the form:

0D
α
xf(x) = g(n)(x). (1.8)

Thus

g(x) = 0D
−(n−α)
x f(x) =

1

Γ(α− n)

∫ x

0

(x− t)α−n−1f(t)dt, n− 1 ≤ α < n. (1.9)

The use of the formula for the Laplace transform of an integer-order derivative(1.5) leads to

L{g(n)(x); s} = L{0Dα
xf(x); s} = snG(s)−

n−1∑
k=0

skg(n−k−1)(0). (1.10)

The Laplace transform of the function g(x) is evaluated by (1.7):

G(s) = s−(n−α)F (s). (1.11)

From the definition of the Riemann-Liouville fractional derivative (1.2) it follows that

g(n−k−1)(x) =
dn−k−1

dtn−k−1 0D
−(n−α)
x f(x) = 0D

α−k−1xf(x). (1.12)

5



CHAPTER 1. FRACTIONAL-ORDER CHAOTIC SYSTEMS

Substituting (1.11) and (1.12) into (1.10) we obtain

L{0Dα
xf(x); s} =sns−(n−α)F (s)−

n−1∑
k=0

sk
[
0D

α−k−1
x f(x)

]
x=0

,

=sαF (s)−
n−1∑
k=0

sk
[
0D

α−k−1
x f(x)

]
x=0

.

(1.13)

The formula for the Laplace transform of the Caputo fractional derivative

L{C0Dα
xf(x); s} = sαF (s)−

n−1∑
k=0

sα−k−1f (m)(0). (1.14)

For zero initial conditions, the Laplace transform of fractional derivatives of order r (Grünwald-

Letnikov, Riemann-Liouville, and Caputo’s) reduces to:

L{0Dr
xf(x); s} = srF (s), n− 1 ≤ r < n. (1.15)

1.1.4 Fractional Differential Equation

The most popular fractional order derivative has been given by Riemann-Liouville and Ca-

puto, [4] fractional order differential equations involving Riemann-Liouville’s fractional order

derivative has some practical issues, related to initial value problems, is expressed as{
Dαy(t) = f(t, y(t)),

Dα−ky(0) = bk (k = 1, ..., n− 1), lim
z→0+

In−αy(z) = bn,
(1.16)

where n− 1 < α < n.

1.1.4.1 Existence and Uniqueness of Solution

The study of the existence and uniqueness of solutions for fractional-order differential equations

is fundamental in mathematical analysis.

Theorem 1.1.4.1. Let α > 0, α /∈ N and n = [α], let K > 0, h∗ > 0, and b1, ..., bn ∈ R, define

G :=

{
(t, y) ∈ R2 : 0 ≤ t ≤ h∗, y ∈ R for t = 0 and

∣∣∣∣∣tn−α −
n∑
k=1

bkt
n−k

Γ(α− k + 1)

∣∣∣∣∣ < K

}
,

let a function f : G → R be a continuous, bounded function satisfying a Lipschitz condition

with respect to the second variable [16]. That is, there exists a constant L > 0 such that for all

(t, y1) and (t, y2) ∈ G, we have

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|.

Then the differential equation of Riemann-Liouville (1.16) has a uniquely defined continuous

6



CHAPTER 1. FRACTIONAL-ORDER CHAOTIC SYSTEMS

solution y ∈ C(0, h] where

h := min

{
h∗, h̃,

(
Γ(α + 1)K

M

) 1
n

}
,

with M = sup
(t,z)∈G

|f(t, z)| and h̃ being an arbitrary positive number satisfying the constraint

h̃ <

(
Γ(2α− n+ 1)

Γ(α− n+ 1)L

) 1
α

.

The proof of existence and uniqueness follows classical methods similar to those used for first-

order equations. It reformulates the initial value problem as a Volterra integral equation and

applies an iterative process based on Banach’s fixed-point theorem.

1. Transform the Differential Equation into an Integral Equation

Lemma 1.1.4.1. Assume the hypotheses of Theorem 1.1.4.1 and let h > 0. The function

y ∈ (0, h] is a solution of the differential equation (1.16), if and only if it is a solution of

the Volterra integral equation

y(t) =
n∑
k=1

bkt
α−k

Γ(α− k + 1)
+

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ))dτ. (1.17)

Proof 1.1.4.1.1. (See [16], page 79.)

2. Prove That the Operator A Maps the Function Space into Itself

Lemma 1.1.4.2. Under the assumptions of Theorem 1.1.4.1, the Volterra equation (1.17)

possesses a uniquely determined solution y ∈ C(0, h].

Proof 1.1.4.1.2. We define the set

B :=

{
y ∈ C(0, h] : sup

0<t≤h

∣∣∣∣∣tn−αy(t)−
n∑
k=1

bkt
n−k

Γ(α− k + 1)

∣∣∣∣∣ ≤ K

}
,

and on this set we define the operator A by

Ay(t) =
n∑
k=1

bkt
α−k

Γ(α− k + 1)
+

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ))dτ.

Then we note that, for y ∈ B, Ay is also a continuous function on (0, h].Moreover∣∣∣∣∣tn−αAy(t)−
n∑
k=1

bkt
n−k

Γ(α− k + 1)

∣∣∣∣∣ ≤ tnM

Γ(α + 1)
≤ K.

For t ∈ (0, h], where the last inequality follows from the definition of h. This shows that

Ay ∈ B if y ∈ B , i.e. the operator A maps the set B into itself.

7
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3. Prove That A is a Contraction (Lipschitz Condition)

We introduce a new set

B̂ =

{
y ∈ C(0, h) : sup

0<t≤h
|tn−αy(t)| <∞

}
,

on which we define a norm ∥ · ∥B̂ by

∥y∥B̂ = sup
0<t≤h

|tn−αy(t)|.

Using the definition of A, the Volterra equation can be expressed in a more compact form

y = Ay.

To prove the desired relation, it is sufficient to show that the operator A has a unique

fixed point. For this, we will use the Weissinger fixed-point theorem (Appendix A). We

will prove that for any y, ỹ ∈ B,

∥Ajy − Aj ỹ∥B̂ ≤
(
LhαΓ(α− n+ 1)

Γ(2α− n+ 1)

)j
∥ỹ − y∥B̂. (1.18)

Proof 1.1.4.1.3. (See [16], page 81.)

4. Apply the Fixed-Point Theorem

Theorem 1.1.4.2. (Banach’s Fixed-Point)

Let (U, d) be a non-empty complete metric space, and suppose that 0 ≤ α < 1. Let

A : U → U be a mapping that satisfies the inequality

d(Au,Av) ≤ αd(u, v)

for all u, v ∈ U . Then, A has a unique fixed point u∗. Moreover, for any u0 ∈ U , the

sequence (Aju0)
∞
j=1 converges to this fixed point u∗.

Using induction, we derive relation (1.18). By applying Theorem 1.1.4.2 with αj = γj,

where γ =

(
LhαΓ(α− n+ 1)

Γ(2α− n+ 1)

)
, the series

∞∑
j=0

αj converges since h ≤ h̃ implies γ < 1.

The fixed-point theorem ensures a unique solution to the integral equation.

1.1.4.2 Solution of the Fractional Differential Equation

The resolution of fractional differential equations relies on a set of complementary approaches,

including the numerical methods, the analytical methods, as well as Laplace’s method.

• Solution of the Fractional Differential Equation Using Laplace Transform

Consider the following fractional differential equation (1.16), Laplace transform of the

8
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Caputo fractional derivative is given as,

L{0Dα
t y(t); s} = sαY (s)−

n−1∑
k=0

sα−k−1
0D

k
t y(0). (1.19)

However, the initial conditions are given in terms of Dα−ky(0), for the Caputo derivative,

the Laplace transform can be written as:

L{0Dα
t y(t); s} = sαY (s)−

n∑
k=1

sk−1
0D

α−k
t y(0). (1.20)

where Dα−ky(0) = bk for (k = 1, ..., n− 1).

Taking Laplace transform of (1.16), one can write

sαY (s)−
n∑
k=1

sk−1bk = F (s) =⇒ Y (s) =
F (s)

sα
+

n∑
k=1

bk
sα−k+1

. (1.21)

Using the inverse Laplace transformation, with :

L−1

{
1

sβ

}
=
tβ−1

Γ(β)
. (1.22)

Using (1.22) in the inverse Laplace transformation of (1.21) can be found as,

y(t) =
n∑
k=1

bk
tα−k

Γ(α− k + 1)
+

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ)) dτ. (1.23)

1.2 Chaos in Fractional-Order Systems

1.2.1 Fractional-Order System

A general fractional-order system can be described by a fractional differential equation of

the form [9]

anD
αny(t)+an−1D

αn−1y(t) + · · ·+ a0D
α0y(t)

= bmD
βmu(t) + bm−1D

βm−1u(t) + · · ·+ b0D
β0u(t).

(1.24)

This system illustrates the relationship between input u(t) and output y(t) in a system with

fractional dynamics

1.2.1.1 Types of Fractional-Order System

Fractional systems can be classified into two main types according to the nature of the derivation

orders:

9
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1 Incommensurate Systems: in which different orders are not necessarily related to

each other (αk, and βk). This classification affects stability analysis and the complexity

of solutions.

2 Commensurate Systems: The fractional orders are multilples of a common base α,

(i.e αk = αk and βk = αk,∀k ∈ Z ).

1.2.1.2 Fractional Linear Time-Invariant (LTI) Systems

A fractional LTI system is a dynamical system described by fractional-order differential equa-

tions that are linear and time-invariant. The system (1.24) can also be represented in the

Laplace domain by a transfer function.

Incommensurate Order: The transfer function is

G(s) =
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
=
Q(sβk)

P (sαk)
=
Y (s)

U(s)
. (1.25)

Commensurate Order: For αk = αk and βk = αk, (0 < α < 1), the transfer function is:

G(s) =

∑m
K=0 bk(s

α)k∑n
k=0 ak(s

α)k
= K0

Q(sα)

P (sα)
, ∀k ∈ Z, (1.26)

the function G(s) becomes a proper rational function in the complex variable sα which can be

expanded in partial fractions of the following form

G(s) = K0

[
n∑
i=1

Ai
sα + λi

]
, (1.27)

where λi(i = 1, n) are the roots of the P (sα) = 0.

The analytical solution of the system (1.24)

y(t) = L−1

{
K0

[
n∑
i=1

Ai
sα + λi

]}
= K0

n∑
i=1

Ait
αEα,α(−λitα). (1.28)

Remark 1.2.1.2.1. The transfer function is used to transform an ordinary or fractional

differential equation into an algebraic equation, typically in the Laplace domain.

Example 1.2.1.1. Let’s assume we have the following system{
D0.5y1(t) + 2y1(t)− y2(t) = u1(t),

D0.5y2(t) + 3y2(t) + y1(t) = u2(t).

Apply the Laplace transform to the fractional differential equations{
(s0.5 + 2)Y1(s)− Y2(s) = U1(s),

Y1(s) + (s0.5 + 3)Y2(s) = U2(s),

with Yi(s) = L{yi(t); s} and Ui(s) = L{ui(t); s}, i = 1, 2.

10
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Write the system in its matrix form[
s0.5 + 2 −1

1 s0.5 + 3

][
Y1(s)

Y2(s)

]
=

[
U1(s)

U2(s)

]
.

Use Cramer’s rule to solve for Y1(s) and Y2(s) in the system

Y1(s) =
U1(s)(s

0.5 + 3) + U2(s)

s+ 5s0.5 + 7
and Y2(s) =

U2(s)(s
0.5 + 2)− U1(s)

s+ 5s0.5 + 7
.

Decompose the transfer function into partial fractions

s+ 5s0.5 + 7 = (s0.5 + λ1)(s
0.5 + λ2) =

(
s0.5 +

5− i
√
3

2

)(
s0.5 +

5 + i
√
3

2

)
.

Using the inverse Laplace transform (1.22), we obtain
y1(t) = t−0.5

[
A1E0.5,0.5

(
5 + i

√
3

2
t0.5

)
+ A2E0.5,0.5

(
5− i

√
3

2
t0.5

)]
,

y2(t) = t−0.5

[
B1E0.5,0.5

(
5 + i

√
3

2
t0.5

)
+B2E0.5,0.5

(
5− i

√
3

2
t0.5

)]
.

1.2.1.3 Nonlinear Fractional-Order Systems

In general, an incommensurate fractional-order nonlinear system can be expressed as:{
Dαi
t yi(t) = fi(yi(t), t),

yi(0) = ci, i = 1, n.
(1.29)

where f is nonlinear function α = [α1, α2, ..., αn]
t for 0 < αi < 2, i = 1, n and y ∈ Rn.

1.2.1.4 Equilibrium Point

Consider the following fractional-order system

Dαi
t yi = fi(yi), i = 1, n.

The equilibrium points of this system are determined by solving the equation f(y) = 0, thus,

the point y∗ = (y∗1, y
∗
2, ..., y

∗
n) is considered an equilibrium point of the system.

1.2.1.5 Stability Analysis of Fractional LTI Systems

In the fractional case, the stability of the system (1.24) is different from the integer case. Let

elements of G(s) are transfer functions (1.26) with a common polynomial denominator given

11
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by

P (sα) = 0.

Definition 1.2.1.5.1. (Poles of the System ) [20]

In a fractional-order system, the poles of the transfer function determine stability. This is

analyzed by examining the denominator P (sα) and its roots λi(the eigenvalues)

P (sα) =
n∏
i=1

(sα + λi),

where poles is s = pi = (λi)
1/α, i = 1, n.

Theorem 1.2.1.1. (Stability Condition) [20]

For a system to be bounded-input bounded-output (BIBO) stable, all its poles must lie in

the left half of the s-complex plane. This means:

|arg(pi)| >
π

2
, 1 ≤ i ≤ n.

Using the relation pi = (λi)
1/α the condition can be rewritten in terms of the eigenvalues as

follows:

|arg(λi)| > α
π

2
, 1 ≤ i ≤ n.

If α =
1

q
, q ∈ Q, the stability conditions simplifies to :

|arg(λi)| >
π

2q
, 1 ≤ i ≤ n.

1.2.1.6 Stability Analysis of Nonlinear Systems

• Stability by Linearization [13]

Consider the following fractional-order system

Dαi
t yi = fi(yi), i = 1, n. (1.30)

Where y∗i = (y∗1, y
∗
2, ..., y

∗
n) are equilibrium points of the system (1.30), to analyze stability,

let small perturbations ϵi are introduced around equilibrium points:

ϵi = yi − y∗i i = 1, n.

Using Taylor series expansion, the function is approximated around the equilibrium, lead-

ing to the Jacobian matrix J =

[
∂fi
∂yi

]
y∗
. This means

f(ϵi + y∗i ) = f(y∗i ) +

[
∂fi
∂yi

]
y∗
ϵi + h(ϵi), i = 1, n,

12
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where h is continuous function such that h(ϵi) = 0(∥ϵi∥2) and f(y∗i ) = 0, so we get

f(ϵi + y∗i ) ⋍

[
∂fi
∂yi

]
y∗
ϵi, i = 1, n.

Thus, we obtain

Dα
t ϵ = Jϵ.

Now, we can apply the stability condition Theorem 1.2.1.1 to analyze the local stability

of equilibrium solutions of the system (1.30).

Remark 1.2.1.6.1. (Topological Equivalence)

In the study of dynamical systems, a system is said to be topologically stable if there exists

a homeomorphism (a continuous, bijective function with a continuous inverse) that

maps the nonlinear system to its linearized version.

1.2.2 Chaos

Chaos theory studies deterministic systems that can exhibit unpredictable behavior due to

their extreme sensitivity to initial conditions. This behavior becomes even more complex when

modeled using fractal mathematical tools that add memory effects, making it difficult to ac-

curately predict the system’s path. The modern aspects of the theory emerged in the 1960s

thanks to Edward Lorenz, who in 1963 discovered a chaotic attractor while simulating weather

models, revealing what is now known as the butterfly effect—in which small changes lead to

large consequences. The theory has become widely applied in various fields such as engineering,

artificial intelligence, neuroscience, and finance[10] [11].

1.2.2.1 Characteristics of Chaos

Several key properties define a chaotic system [10]:

• Sensitivity to Initial Conditions: A tiny change in the initial conditions of the system

can lead to drastically different outcomes over time, like differences in the behavior of the

system.

• The unpredictable: In chaos theory, unpredictability refers to the inherent difficulty

or impossibility of predicting the long-term behavior of a system.

• Non-linearity: Chaotic systems are nonlinear, meaning that their evolution cannot be

simply predicted by summing up smaller effects, Not all nonlinear systems are chaotic.

• Parameter Sensitivity: A small change in system parameters can lead to a drastic

change in system behavior.

• Fractal Structure: In chaos theory, a fractal structure refers to a complex, self-similar

geometric pattern that repeats at different scales. It is characterized by their intricate,

repeating shapes.

13
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• Strange Attractors: These are complex, fractal-like pattern in chaotic systems, and

showing structured yet unpredictable motion within a bounded space.

1.2.3 Examples of Fractional-Order Chaotic Systems

1.2.3.1 Fractional-Order Rössler’s System

The fractional Rössler system is one of the most famous examples that enables the study of chaos

in systems with memory. This system exhibits rich nonlinear behavior and is distinguished by

its ability to produce chaotic attractors with derivative orders less than 1, the effect of the

fractional dimension on the complexity of the dynamics. The system is defined as [21]:
Dα1
t x(t) = −(y(t) + z(t)),

Dα2
t y(t) = x(t) + ay(t),

Dα3
t z(t) = b+ z(t)(x(t)− c),

(1.31)

where α1, α2, α3 are derivative orders.

The Rössler system has two equilibrium points :

e1 =

(
c−

√
c2 − 4ab

2
,
−c+

√
c2 − 4ab

2a
,
c−

√
c2 − 4ab

2a

)
,

e2 =

(
c+

√
c2 − 4ab

2
,
−c−

√
c2 − 4ab

2a
,
c+

√
c2 − 4ab

2a

)
.

Typical values are α1 = α2 = α3 = 0.9 and for (a, b, c)T = (0.4, 0.2, 7.5)t with ICs

(x0, y0, z0)
T = (0.5, 1.5, 0.1)T , the system can display a chaotic attractor, and numerical simu-

lations of the Rössler system is depicted in Figure 1.1.

Figure 1.1: 3D Trajectory Plot of Fractional-Order Rössler’s System.
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1.2.3.2 Fractional-Order Lotka-Volterra System

The Fractional-Order Chaotic Lotka-Volterra System extends the predator-prey model with

fractional derivatives, adding memory effects and chaotic dynamics. It models complex inter-

actions in ecosystems, chemical reactions, and economics, describing behaviors like population

fluctuations and oscillatory patterns. This makes it a key tool in biology, ecology, and nonlinear

dynamics research. The system is defined as: [21]
Dα1
t x(t) = ax(t)− bx(t)y(t) + ex2(t)− sz(t)x2(t),

Dα2
t y(t) = −cy(t) + dx(t)y(t),

Dα3
t z(t) = −pz(t) + sz(t)x2(t),

(1.32)

where α1, α2, α3 are derivative orders, with a, b, c, d, e, p, s are model parameters

The Lotka-Volterra system has five equilibrium points:

e1 = (0, 0, 0)T , e2 =
(
−a
e
, 0, 0

)T
, e3 =

(√
sp

s
, 0,

a+
e
√
sp

s√
sp

)T

,

e4 =

(
−
√
sp

s
, 0,−

a− e
√
sp

s√
sp

)T

, e5 =

(
c

d
,
da+ ec

db
, 0

)T
.

Typical values are α1 = α2 = α3 = 0.9 and for (a, b, c, d, e, p, s)T = (1, 1, 1, 1, 2, 3, 2.7)T ,

with ICs (x0, y0, z0)
T = (1, 1.4, 1)T , the system can display a chaotic attractor, and numerical

simulations of the Lotka-Volterra system is depicted in Figure 1.2.

Figure 1.2: 3D Trajectory Plot of Fractional-Order Lotka-Volterra System.
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Chapter 2
Fractional Delay Differential Equations

2.1 Delay Differential Equations (DDEs)

2.1.1 Introduction to DDEs

Delay differential equations (DDEs) are essential mathematical models for describing systems

whose current state depends not only on current conditions but also on their past evolution.

Unlike ordinary differential equations (ODEs), DDEs take into account the effect of time de-

lays, reflecting more realistic behavior in many applications such as biological, economic, and

engineering systems[18]. For example, this type of effect can be observed in processes such as

reforestation, which takes many years, or in physiological processes such as digestion, which

require time before their effects are apparent.

2.1.2 Definitions of DDEs

Definition 2.1.2.1. In delay differential equations, the time derivative of a function does not

depend solely on its value at the present moment, but includes effects from its past behavior,

which makes them suitable for describing phenomena that respond slowly or gradually.

Definition 2.1.2.2. Let t0 ∈ R and A > 0, if Ω is a subset of [t0, t0 + A] × C([−τ, 0],Rn),

f : Ω → Rnis a given function that describes the relationship between the current state at time

t and its past states yt[24], the general form given is{
ẏ(t) = f(t, yt), t ≥ t0,

y(t) = ϕ(t), t ∈ [t0 − τ, t0],
(2.1)

where τ > 0 is the delay term, and y(t) ∈ Rn, the history function is given by yt(s) = y(t+ s)

for s ∈ [−τ, 0] with ϕ(t) is the initial function defined on [t0 − τ, t0].

16



CHAPTER 2. FRACTIONAL DELAY DIFFERENTIAL EQUATIONS

2.1.3 Types of DDE

Delay equations can be classified into several types, depending on their dependence on time

history

1. Ordinary DDE : These depend on the current state of the function as well as its value

at a single point in time in the past. [14].

2. Multiple DDE: These consider the values of the function at multiple points in time,

adding greater complexity to the system’s behavior [14].

3. Neutral DDE : These affect not only the function itself but also its derivatives at past

times [14].

4. Variable DDE : These equations, the delay is not constant but depends on time [24].

5. Distributed DDE : These equations, the derivative depends on an integral of the past

states over a time interval [19].

6. Fractional DDE : Combine time delays and fractional derivatives, allowing a more

realistic representation of systems with long-term memory behavior.s [19].

2.1.4 Existence and Uniqueness of Solution

Theorem 2.1.4.1. (Existence [12])

Let t0 ∈ R and A > 0, if Ω is a subset of [t0, t0 + A] × C([−τ, 0],Rn),and assume that the

function f is continuous on Ω. If (t0, ϕ) ∈ Ω, then there exists a solution y(t) of the DDE

(2.1) that passes through the initial condition (t0, ϕ).

Additionally, if the function f(t, ϕ) is Lipschitz in ϕ inside a compact set X ⊂ [t0, t0 + A] ×
C([−τ, 0],Rn), meaning there exists a constant k such that for any (t, ϕi) ∈ K ⊂ X, i = 1, 2

|f(t, ϕ1)− f(t, ϕ2)| ≤ k |ϕ1 − ϕ2| .

Theorem 2.1.4.2. (Uniqueness [12])

Let t0 ∈ R and A > 0, if Ω is a subset of [t0, t0 +A]×C([−τ, 0],Rn), f : Ω → Rnis continuous,

and f(t, ϕ) is Lipschitz in ϕ in each compact set in Ω. If (t0, ϕ) ∈ Ω, then there is a unique

solution of (2.1) through (t0, ϕ).

2.1.5 Linear Time-Delay (LTD) Systems

An LTD system is a dynamical system where the evolution of the system’s state depends on

its current state and its past states, and this dependence is linear. Mathematically, an LTD

system can be described by a linear DDEs of the form

y′(t) = Ay(t) +By(t− τ) + Cu(t), (2.2)
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where

• y(t) ∈ Rn is the state vector at time t, and y(t − τ) ∈ Rn is the delayed state vector at

time t− τ , with u(t) ∈ Rm is the input vector, where τ > 0 represents the time delay.

• A ∈ Rn×n is the system matrix, B ∈ Rn×n is the delay matrix, and C ∈ Rn×m is the input

matrix.

The system (2.2) can also be represented in the Laplace domain by a transfer function.

We obtain

sY (s)− y(0) = AY (s) +Be−sτY (s) + CU(s), (2.3)

where

• L{y′(t); s} = sY (s)− y(0) and L{y(t); s} = Y (s).

• L{u(t); s} = U(s).

• L{y(t− τ); s} = L{y(v); s} = e−sτY (s) + e−sτ
∫ 0

−τ
y(v)e−svdv = e−sτY (s).

Remark 2.1.5.1. Most physical systems and signals are causal, as they respond only

after t = 0 since causality states that y(t) = 0 for t < 0, we conclude that∫ 0

−τ
y(v)e−svdv = 0.

If we assume y(0) = 0, the transfer function is:

G(s) =
Y (s)

U(s)
= C

(
sI − A−Be−sτ

)−1
, (2.4)

where I ∈ Rn×n is the identity matrix.

Remark 2.1.5.2. The transfer function G(s) describes the input-output relationship of the

system, independent of initial conditions. This is useful for analyzing system behavior (e.g.,

stability) without needing to consider specific initial states.

2.1.6 Stability Analysis of LTD Systems

In an LTD System (2.2), stability refers to whether small perturbations in the system remain

bounded or grow unbounded over time. One common approach to analyze stability in linear

time-delay differential equations (DDEs) is through the transfer function (2.4), which helps

assess the system’s behavior in the Laplace domain.

To analyze the stability of the system (2.2), we examine the poles of the transfer function G(s)
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(2.4). Stability is determined by the poles of G(s). The poles are the roots of the denominator

of G(s), which correspond to the values of s that satisfy the characteristic equation:

det
(
sI − A−Be−sτ

)
= 0.

Theorem 2.1.6.1. The linear time-delay system (2.2) is stable if and only if all poles s satisfy

Re(s) < 0.

The difficulty lies in the fact that the variable appears s within the exponential power

e−sτ , making the characteristic equation non-algebraic, and unable to be solved directly using

conventional methods. In this case, we have many methods, some of them are theoretical

and some of them are numerical, if A and B are non-commutative (AB ̸= BA), we can do

numerical methods like (Rekasius Substitution method or Kronecker Multiplication

method [3]), and if A and B commute (AB = BA), we can do theoretical method like the

Lambert W function is used as a tool to analyze the roots of these equations and extract

possible values s.

2.1.6.1 Stability by Lambert W Function

Definition 2.1.6.1. (Lambert W Function)

The Lambert function, denoted as W (s), is a special function that solves equations of the form:

W (s)eW (s) = s.

Let an LTD system (2.2), and let its characteristic equation det(sI − A − Be−sτ ) = 0, if

A and B commute (AB = BA) they share the same eigenvectors. This allows simultaneous

diagonalization of the matrices, reducing the matrix equation to a set of decoupled scalar

equations.

det(sI − A−Be−sτ ) =
n∏
i=1

(
s− λi − βie

−sτ) = 0,

where A has an eigenvalue λi, and B has an eigenvalue βi. Each term (s− λi− βie
−sτ ) = 0

can then be solved using the Lambert W function, with multiply by τ , such that

(s− λi)τ = βiτe
−sτ .

Let z = (s− λi)τ , we obtain

z = βiτe
−(z+τλi).

Then, the equation simplifies to

zez = βiτe
−τλi .

The solution is given by the Lambert W function

z = W (βiτe
−τλi).
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Thus, the specific poles si are

si = λi +
W (βiτe

−τλi)

τ
.

The Lambert W function is multi-valued, meaning it has infinitely many branchesWk for k ∈ Z,
such that

si,k = λi +
Wk(βiτe

−τλi)

τ
.

Theorem 2.1.6.1. The stability of the system depends on the real parts of the poles si,k

• If Re(si,k) < 0 for all i and k, the system is stable.

• If Re(si,k) > 0 for all i and k, the system is unstable.

2.1.7 Stability Analysis of Nonlinear Systems

Consider system (2.1), assuming that the function f is nonlinear. The stability analysis of

delay differential equations (DDEs) is more challenging than for ordinary differential equations

(ODEs), in that the state of the system (2.1) is not just a vector y(t) in Rn but rather a

function yt that depends on past values y(t + s) for s ∈ [−τ, 0]. Since traditional Lyapunov

functionals require conditions on the entire function history yt, this makes the analysis more

complex, as we do not directly control the relationship between |y(t)| and |y(t+ s)|. However,
Lyapunov-Razumikhin theorems simplify this process by focusing on how a function V (y)

changes along solutions without requiring conditions on the entire function history.

2.1.7.1 Stability by Lyapunov-Razumikhin Approach

Definition 2.1.7.1. (Lyapunov Function V (y))

Let V (y) : Rn → R, be a continuously differentiable, positive definite function. The derivative

of V (y) along the solutions of DDE is given by:

V̇ (y(t)) =
∂V (y)

∂y
f(y(t)).

This measures how V (y) evolves as the system moves along its trajectory.

Theorem 2.1.7.1. Suppose f : R × C → Rn, that the function f maps into a bounded subset

of Rn, let u, v, w are continuous, non-decreasing functions satisfying u(0) = v(0) = w(0) = 0,

and u(x), v(x), w(x) are positives for x > 0 [18]. Assume that there is a continuous function

V (y) : R× Rn → R such that

u(|y|) ≤ V (t, y) ≤ v(|y|), t ∈ R, y ∈ Rn. (2.5)

The stability condition are :

1. The solution y = 0 is uniformly stable if

V̇ (t, y(t)) ≤ −w(|y(t)|), whenever V (t+ s, y(t+ s)) ≤ V (t, y(t)), s ∈ [−τ, 0].
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2. The solution y = 0 is uniformly asymptotically stable if there exists a continuous

non-decreasing function p(x) > 0 for x > 0 such that

V̇ (t, y(t)) ≤ −w(|y(t)|),

whenever

V (t+ s, y(t+ s)) < p(V (t, y(t))), s ∈ [−τ, 0].

3. The solution y = 0 is globally asymptotically stable if the second condition is satisfied,

and u(x) → ∞ as x→ ∞.

2.2 Fractional Delay Differential Equations (FDDEs)

2.2.1 Introduction to FDDEs

Fractional delay differential equation (FDDEs) are a natural extension of conventional time-

delay equation, using non-integer (fractional) derivatives to describe the dynamics. This com-

bination of the long memory provided by fractional derivatives and the delayed effect

represented by time delays provides a rich and realistic model for many physical and biological

systems [17]. Prominent applications that benefit from these models include disease propaga-

tion, control network analysis, and delayed-response financial systems.

2.2.2 Fractional Linear Time-Delay (LTD) System

A fractional LTD system is a dynamical system where the evolution of the system’s state

depends on its current state and its past states, and this dependence is linear. Additionally,

the system incorporates fractional-order dynamics, which introduce memory effects into the

system’s behavior. Mathematically, a fractional LTD system can be described by a (FDDE) of

the form:

Dαy(t) = Ay(t) +By(t− τ) + Cu(t), (2.6)

where

• Dα is the fractional derivative operator of order α (where n− 1 < α < n, n ∈ N),

• y(t) ∈ Rn is the state vector at time t, and y(t − τ) ∈ Rn is the delayed state vector at

time t− τ , with u(t) ∈ Rm is the input vector, where τ > 0 represents the time delay,

• A ∈ Rn×n is the system matrix, B ∈ Rn×n is the delay matrix, and C ∈ Rn×m is the input

matrix.

The system (2.6) can also be represented in the Laplace domain by a transfer function, so

sαY (s)−
n−1∑
k=0

sα−k−1y(m)(0) = AY (s) +Be−sτY (s) + CU(s), (2.7)
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where

• L{Dαy(t); s} = sαY (s)−
n−1∑
k=0

sα−k−1y(m)(0),

• L{y(t); s} = Y (s), L{u(t); s} = U(s),

• L{y(t− τ); s} = e−sτY (s).

The transfer function is:

G(s) =
Y (s)

U(s)
= C

(
sαI − A−Be−sτ

)−1
. (2.8)

2.2.2.1 Stability Analysis with Matrix Coefficients

To analyze the stability of the system (2.6), we examine the poles of the transfer function G(s)

(2.8). Stability is determined by the poles of G(s). The poles are the roots of the denominator

of G(s), which correspond to the values of s that satisfy the characteristic equation:

det
(
sαI − A−Be−sτ

)
= 0.

If A and B commute, we use a combination between Theorem 1.2.1.1 and Theorem 2.1.6.1 to

establish the following stability criterion.

Theorem 2.2.2.1. (Combination Theorem) [17]

The system (2.2) is asymptotically stable if and only if all characteristic roots s satisfy:

|arg(si,k)| >
απ

2
, i = 1, n, k ∈ Z.

If any root violates this condition, the system exhibits oscillatory or unstable behavior.

2.2.3 Nonlinear Fractional Delay Differential Equation

In general, nonlinear fractional delay differential equation can be expressed as:{
Dαy(t) = Af

(
y(t− τ)

)
−By(t),

y(t) = y0(t), −τ ≤ t ≤ 0,
(2.9)

where

• f is nonlinear function with class C1, with 0 < α ≤ 1,

• A,B ∈ Rn×n and y ∈ Rn,

• τ > 0 represents the time delay.
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2.2.4 Stability Analysis of Nonlinear FDDE

2.2.4.1 Stability by Linearization

Consider the following nonlinear fractional delay differential equation (2.9), where y∗ its equi-

librium point, satisfies [7]

Af(y∗)−By∗ = 0. (2.10)

To analyze stability, let small perturbations ξ = y − y∗ with ξ ∈ Rn is introduced around

equilibrium point and yτ = y(t− τ), ξτ = ξ(t− τ). Using Taylor series expansion, the function

is approximated around the equilibrium, this means

Dαξ =Af(yτ )−By,

=Af(y∗) + Aξτf
′
(y∗) + h(ξ)−Bξ −By∗,

where h is continuous function such that h(ξ) = 0 and the function f satisfied (2.10) , so

Dαξ = Aξτf
′
(y∗)−Bξ. (2.11)

The equation (2.11) can also be represented in the Laplace domain by a transfer function G(s),

where the poles are the roots of the denominator of G(s), its satisfied

Q(s) = sαI − Af
′
(y∗)e−sτ +B = 0. (2.12)

When matrices A and B commute, Theorem 2.2.2.1 provides an exact analytical stability cri-

terion. In non-commutative cases, the analysis typically requires numerical approaches.

The problem when if there are one or more roots on the imaginary axis (i.e. Re(s) = 0).

This indicates a transition state and the system may be in marginal stability or about to lose

stability. Here the value of τ directly affects the stability analysis. It can determine whether

the system will remain stable or become unstable and oscillatory, and that with comparison to

the values of τc (the critical delay).

Remark 2.2.4.1.1. (Critical Delay τc)

It is the smallest delay at which Re(s) = 0 and stability changes, often leading to oscillations.

To find the critical delay, let s = iv (purely imaginary) and the characteristic equation

(2.12) becomes [7]

(iv)α I +B = Af
′
(y∗) e−ivτc . (2.13)

Using MATLAB code to find τc (Annex A).

Finding τc opens the door to studying bifurcations that may appear due to stability

changes, especially when τc = τ , where the system undergoes a transition in its behavior.
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2.3 Bifurcation Analysis

2.3.1 Introduction to Bifurcation

In FDDEs, the interaction between memory and delay can trigger dynamic transitions. One

key phenomenon is Hopf bifurcation, where increasing the delay beyond a critical value shifts

the system from steady state to sustained oscillations. This study examines the onset of such

behavior and the nature of the resulting periodic solutions.

2.3.2 Limit Cycle in FDDEs

Definition 2.3.2.1. A limit cycle in an FDDE is defined as a closed trajectory in the phase

space, representing a periodic solution of the system. This cycle corresponds to sustained oscil-

lations, emerging due to the combined effects of fractional dynamics and time delay [8].

2.3.2.1 Classification of Limit Cycles

• Stable Limit Cycle: All trajectories in the vicinity of the cycle converge to it as t→ ∞.

• Unstable Limit Cycle: All trajectories in the vicinity of the cycle diverge from it as

t→ ∞.

• Half-stable Limit Cycle: Some trajectories converge toward the cycle, while others

diverge from it as t→ ∞.

Figure 2.1: Classification of Limit Cycles.

2.3.2.2 Existence of Limit Cycles

In classical delay differential equations (DDEs), the Poincaré-Bendixson theorem is often used

to prove the existence of limit cycles [8]. However, in fractional-order systems, due to memory

effects, this theorem does not apply directly. Some extensions of the theorem to fractional-order

systems exist under specific conditions. But there are some numerical methods arewidely used,

of which (Bifurcation diagrams to study how solutions change with system parameters).
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2.3.3 Bifurcation Diagram

A bifurcation diagram in fractional delay differential equations (FDDEs) is a graphical repre-

sentation that shows how equilibrium points or periodic solutions of the system change as a

parameter (such as the delay τ or the fractional order α) changes. In FDDEs, bifurcations can

be more complex due to memory effects and non-locality, leading to non-traditional transitions

between stability and oscillations when crossing a critical parameter value.

• Horizontal Axis: Represents the control parameter (e.g., time delay τ , fractional order

α, or another bifurcation parameter.

• Vertical Axis: Represents the system’s behavior, such as oscillation amplitudes or

steady-state solutions.

• Stable and Unstable Branches: Solid lines usually represent stable solutions, while

dashed lines indicate unstable solutions.

• Bifurcation Point: The critical value τc where a qualitative change in system behavior

occurs (e.g., transition from stability to oscillations).

Figure 2.2: Bifurcation Diagram of FDDEs (Hopf Bifurcation).

2.3.4 Hopf Bifurcation in Fractional Delay Differential Equations

A common method to prove the existence of limit cycles in FDDEs is Hopf bifurcation, which

occurs when complex conjugate eigenvalues cross the imaginary axis. This happens when the

characteristic equation has a root of the form (2.12) a purely imaginary root ±iv exists and

moves to the right half-plane as a parameter (such as τ) changes, this indicates the emergence

of a limit cycle. This is when comparing the critical delay τc with the delay τ , according to the

following rules [7]:
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• if τ < τc: All the solutions converge to the equilibrium point, indicating that the system

is stable.

• if τ = τc: The solution starts showing periodic oscillations, marking the onset of Hopf

bifurcation.

• if τ > τc: The limit cycle can become unstable, leading to complex behaviors, such as

chaos or random oscillations can follow.

26



Chapter 3
Chaos Control for Fractional-Order Systems

3.1 Introduction to Chaos Control for FOSs

Nonlinear fractional systems may exhibit chaotic behavior due to their extreme sensitivity to

initial conditions, making control a necessity in practical applications. Controlling chaos in

such systems is essential in engineering, medicine, and economics fields, as it helps stabilize

dynamics and prevent undesired deviations [11]. Among the most widely used techniques are

time-based controllers like PID and its fractional derivatives, which are effective in suppressing

oscillations and achieving system stability [25].

3.2 Controllability and Observability of Nonlinear

Fractional-Order Chaotic Systems

3.2.1 Controllability Analysis

Controllability refers to the ability to drive the system from any initial state y(0) to a desired

final state y(T ) within a finite time using appropriate inputs u(t). This is typically assessed by

linearizing the system around an equilibrium point and analyzing the rank of the controllabil-

ity matrix. In the local sense, Kalman-based methods are used to determine controllability in

fractional systems.

Consider a general nonlinear fractional-order system represented by the following equation{
Dαy(t) = f(y) + g(y)u(t), t > 0,

y(0) = y0,
(3.1)

where

• Dα is the fractional Caputo derivative with order 0 < α < 1,

• y(t) ∈ Rn is the state vector, and u(t) ∈ Rm is the control input,
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• f(y) defines the chaotic system dynamics,

• g(y) represents the control influence on the system.

Remark 3.2.1. The controllability of a system cannot be studied without a control

signal, as there would be no means to influence the system’s behavior.

For nonlinear fractional-order chaotic systems, controllability is analyzed using [15]:

3.2.1.1 Local Controllability via Linearization

We linearize the system (3.1) around an equilibrium point y∗, leading to the form

Dαδy(t) = Aδy(t) +Bδu(t),

where

• δy(t) := y(t)− y∗: represents a small perturbation,

• A =

[
∂f

∂y

]
y∗

: Jacobian of f(y) evaluated at y∗,

• B = g(y∗) : input matrix evaluated at the equilibrium point.

We then apply the classical Kalman rank condition, which states that the linearized system is

locally controllable if the controllability matrix C has full rank

rank
[
B AB A2B . . . An−1B

]
= rank(C) = n,

where n is the system dimension.

3.2.2 Observability Analysis

Observability determines whether the internal state of the system can be reconstructed from

output measurements. This is evaluated by analyzing the observability matrix of the linearized

system. If the matrix has full rank, the system is locally observable.

3.2.2.1 Local Observability via Linearization

Consider the system (3.1), with single output measurement y1(t), we linearize the system it

around an equilibrium point y∗, leading to the form{
Dαδy(t) = Aδy(t) +Bδu(t),

z(t) = y1(t),

where

• A =

[
∂f

∂y

]
y∗
,
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• C = [1 0 0 . . . 0] : assume y1 is measured.

We then apply the rank condition, which states that the linearized system is locally observable

if the observability matrix O has full rank [9]

rank


C

CA

CA2

:

CAn−1

 = rank(O) = n,

where n is the system dimension.

3.3 Time-Delay Controllers in FOSs

In FOS, we have two distinct control approaches: the delayed feedback controller (u(t) =

K(y(t − τ) − y(t))) and the fractional-order PID (PIλDµ). The delayed feedback controller

primarily addresses time-delay compensation through a simple difference term, while PIλDµ

incorporates fractional calculus operators (Iλ and Dµ) to directly manage the system’s inherent

fractional-order dynamics. When dealing with FOS, PIλDµ proves superior as it’s specifically

designed to handle the complex memory-dependent and non-local characteristics of such sys-

tems through its fractional-order terms [25].

3.3.1 Classical PID Controller

The PID controller is one of the most widely used control tools. It operates using three com-

ponents: proportional (P), integral (I), and derivative (D), which together correct the error

between the reference and the actual output to reduce it over time [26]. Its transfer function

in Laplace domain can be expressed as

Gc(s) =
U(s)

E(s)
= Kp +

Ki

s
+Kds.

Output u(t) = L−1 {U(s); t}, in the time domain as

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
,

where

• Gc(s) is the transfer function of the PID controller in Laplace domain,

• U(s) is the controller output, e(s) is the error signal,

• Kd Derivative gain, which anticipates future error by evaluating the rate of change and

thus improves stability,

29



CHAPTER 3. CHAOS CONTROL FOR FRACTIONAL-ORDER SYSTEMS

• Kp Proportional gain, which reacy to the current error,

• Ki Integral gain, which eliminates steady-state error.

3.3.2 PIλDµ Controller with Time Delay

The fractional-order PID controller with time delay, often referred to as the delayed PIλDµ

controller, is an advanced extension of the classical PID controller. In this controller, both the

integration and differentiation are of fractional (non-integer) order, offering increased flexibility

in tuning and dynamic response. The controller also incorporates a time delay element, which

reflects realistic system behavior in processes where control action is not instantaneous.

The transfer function of the fractional-order PID controller with time delay, in the Laplace

domain [9] [22].

Gc(s) =
U(s)

E(s)
=

(
Kp +

Ki

sλ
+Kds

µ

)
e−sτ .

Output u(t) = L−1 {U(s); t}, in the time domain as

u(t) = Kpe(t− τ) +KiD
−λe(t− τ) +KdD

µe(t− τ).

Figure 3.1: PIλDµ Block Diagram.

Remark 3.3.2.1. In control theory, r(t) is called the reference signal or setpoint. It’s the

desired value or trajectory you want the system’s output to follow, with e(t) is difference between

setpoint r(t) and process variable y(t)

e(t) = r(t)− y(t).

3.4 Controller Position

Chaotic systems are highly sensitive to initial conditions and exhibit complex, unpredictable

behavior. The position of the controller in such systems is critical for effective stabilization

or chaos suppression. Below is a structured breakdown of the role, placement, and design of

controllers in chaotic systems.
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3.4.1 Key Factors that Determine Controller Position

In many control scenarios, the control input is applied to a single state variable, the one that

• Directly influences system behavior,

• Drives the chaos,

• An output variable that we can measure and control directly, such as the angle of rotation

or voltage.

3.5 Stability Analysis of Control Systems

We consider a fractional-order delay system under the influence of a delayed PIλDµ controller

Dαy(t) =f(y) + g(y)u(t),

=f(y) + g(y)
[
Kpe(t− τ) +KiD

−λe(t− τ) +KdD
µe(t− τ)

]
,

where Dα denotes the Caputo fractional derivative of order α ∈ (0, 1).

3.5.1 Stability Using a Lyapunov Function

Theorem 3.5.1. Let y∗ ∈ Rn be an equilibrium point for the fractional-order system (3.1).

Suppose there exists a Lyapunov function V (t, y(t)) such that

f(y∗) + g(y∗)u∗ = 0. (3.2)

Define x(t) = y(t)− y∗ (x ≈ 0), and rewrite the system as

Dαx(t) = f(x+ y∗) + g(x+ y∗)u∗. (3.3)

Let V : Rn → R be a continuously differentiable [1] satisfying

• V (x) > 0 for all x ̸= 0,

• V (0) = 0.

Then, by estimating the fractional derivative of V the following inequality holds

DαV (x(t)) ≤ ∇V (x)T .Dαx(t) < 0 whenever V (x(s)) ≤ V (x(t)), s ∈ [−τ, 0].

Then the system (3.1) is asymptotically stable in the sense of Lyapunov.

Remark 3.5.1.1. Estimating the fractional derivative of V , helps avoid computing the frac-

tional derivative of a composite function, which can be challenging. The goal of this estimation

is to prove that the Lyapunov function decreases over time.
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3.6 Examples of Control Chaos for FOSs

3.6.1 Fractional-Order Rössler’s System

We define fractional Rössler system (1.31) with control u(t), using Caputo fractional derivatives

of order α ∈ (0, 1] 
Dα1
t x(t) = −(y(t) + z(t)) + u(t),

Dα2
t y(t) = x(t) + ay(t),

Dα3
t z(t) = b+ z(t)(x(t)− c).

(3.4)

We want to control the chaotic behavior of the fractional-order Rössler system by designing a

suitable control law.

Here, we propose a time-delayed fractional-order PID controller to stabilize the sys-

tem around its equilibrium point. The control input is applied to the first state equation of

the system, targeting the variable x(t), which plays a key role in the overall dynamics. The

objective is to force the state x(t) to follow a desired reference r(t), thus eliminating the chaotic

oscillations and ensuring convergence toward a stable behavior.

Defined the controller as:

u(t) = Kpe(t− τ) +KiD
−λe(t− τ) +KdD

µe(t− τ).

Typical values are the same in the system (1.31), with Kp = Ki = Kd = 1 and λ = µ = 0, 9

with τ = 1, r(t) = 5.7 choosing 5.7 because in many chaotic systems (like Rössler or Lorenz),

values in that range (5–10) are common in the chaotic regime.

Then numerical simulations of the Rössler system is depicted in Figure 3.2

Figure 3.2: Plot of Fractional-Order Rössler System with Time Delay PIλDµ Controller.
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3.6.2 Fractional-Order Lotka-Volterra System

We define fractional Lotka-Volterra system (1.32) with control u(t), using Caputo fractional

derivatives of order α ∈ (0, 1]
Dα1
t x(t) = ax(t)− bx(t)y(t) + ex2(t)− sz(t)x2(t) + u(t),

Dα2
t y(t) = −cy(t) + dx(t)y(t),

Dα3
t z(t) = −pz(t) + sz(t)x2(t).

(3.5)

we propose a time-delayed fractional-order PID controller to stabilize the system around

its equilibrium point.

u(t) = Kpe(t− τ) +KiD
−λe(t− τ) +KdD

µe(t− τ).

Typical values are the same in the system (1.32), with Kp = Kd = 1 and = Ki = 0.5,

λ = µ = 0, 8 with τ = 1, r(t) = 1.5 is arbitrary reference.

Then numerical simulations of the Lotka-Volterra system is depicted in Figure 3.3.

Figure 3.3: Plot of Fractional-Order Lotka-Volterra System with Time Delay PIλDµ Controller.
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Chapter 4
Application

4.1 Chaos Control in Fractional-Order Drone Systems

Using Time-Delayed PIλDµ Controller

Drones, often referred to as unmanned aerial vehicles (UAVs), are autonomous or remotely

piloted flight systems that have become essential tools in a variety of fields, including surveil-

lance, agriculture, and scientific research. Due to their complex and nonlinear dynamics, these

systems can exhibit chaotic behavior under certain conditions, such as sudden wind distur-

bances or external environmental changes. This chaotic behavior can lead to loss of control,

necessitating the development of effective mechanisms to control the movement and ensure

stability during flight.

Figure 4.1: Drone

In this work, a fractional PIλDµ controller integrated with a time delay is adopted to stabi-

lize the chaotic behavior that may appear in the drone model. This controller was specifically

designed to address the nonlinear nature of the system, as well as the memory properties char-

acteristic of fractional derivative systems. This design enables a more flexible and accurate

response to sudden disturbances, enhancing the drone’s stability under non-ideal operating

conditions. The study will be conducted through numerical simulations using MATLAB.
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This research bridges the fields of chaos theory, fractional calculus, and control systems,

providing valuable insights into stabilizing chaotic nonlinear systems.

4.2 Full Characteristics of a Drone Flying in the Sky

4.2.1 Degrees of Freedom

A rigid body in 3D space has 6 degrees of freedom:

• 3 Translational: motion along the x, y, z axes,

• 3 Rotational: rotation about those axes (roll ϕ, pitch θ, yaw ψ ).

For a drone it can

• Move: forward/backward, left/right, up/down,

• Rotate: roll (left/right tilt), pitch (front/back tilt), yaw (rotate about vertical axis) [28].

4.2.2 Movements of a Drone

Figure 4.2: Drone in 3D Space.

4.2.2.1 Position Dynamics

The movement of the drone in three-dimensional space [6].

• x(t), y(t), z(t): Represents the position of the drone in 3D space.

• ẋ(t), ẏ(t), ż(t): Represents the linear speed of the drone on the three axes.

Then the Equations are : 
Dα1
t x(t) = ẋ(t),

Dα2
t y(t) = ẏ(t),

Dα3
t z(t) = ż(t).

(4.1)
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4.2.2.2 Linear Accelerations

Represents how the thrust generated by propellers transforms into acceleration in 3D space.

• T : Thrust generated by the four propellers,

• m: Mass of the drone,

• d1, d2, d3: Represent disturbances or external influences (wind, air resistance, etc.),

• g: The gravity.

Acceleration in the x-axis:

• Represents the force acting on the forward horizontal axis of the drone,

• Roll ϕ, pitch θ, yaw ψ are controls the direction of thrust on this axis.

Acceleration in the y-axis:

• This axis represents the lateral movement of the aircraft (right/left),

• It also depends on the three angles.

Acceleration in the z-axis:

• This represents the vertical movement (up and down),

• Thrust fights gravity, with T > m.g.

Then the Equations are :

Dα4
t ẋ(t) =

T

m
(cosϕ sin θ cosψ + sinϕ sinψ) + d1,

Dα5
t ẏ(t) =

T

m
(cosϕ sin θ sinψ − sinϕ cosψ) + d2,

Dα6
t ż(t) =

T

m
(cosϕ cos θ)− g + d3.

(4.2)

4.2.3 Rotation of a Drone

4.2.3.1 Angular Velocity

Represents how the drone’s three-point steering angle changes over time as a result of the

angular velocities generated by the propellers.

• p, q, r: Angular velocities ϕ(t), θ(t) and ψ(t) about the axis x, y and z-axis.

Then the Equations are :

Dα7
t ϕ(t) = p+ tan θ (q sinϕ+ r cosϕ) ,

Dα8
t θ(t) = q cosϕ− r sinϕ,

Dα9
t ψ(t) =

q sinϕ+ r cosϕ

cosϕ
.

(4.3)
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4.2.3.2 Angular Accelerations

These equations represent how the angular velocities of the drone change about the three axes

x, y, and z, due to torques, physical properties such as moment of inertia, and nonlinear effects.

• Ix, Iy, Iz Moments of inertia along the three axes,

• τx, τy, τz Torques applied around the corresponding axes,

• ϵ1, ϵ2, ϵ3 Disturbance or nonlinear damping effects.

Dα10
t p(t) =

1

Ix
[τϕ + (Iy − Iz)qr] + ϵ1 cos(ϕ.θ),

Dα11
t q(t) =

1

Iy
[τθ + (Iz − Ix)pr] + ϵ2 sin(p.t),

Dα12
t r(t) =

1

Iz
[τψ + (Ix − Iy)pq] + ϵ3 sin(qr).

(4.4)

4.2.4 Nonlinear Fractional-Order System of a Drone

DαX(t) = f(X(t)) + d(t). (4.5)

• X(t) = [x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, p, q, r]T ,

• f(.): It is a nonlinear function that represents dynamics.

Thus, the drone system is [6][27]

Dα1
t x(t) = ẋ(t),

Dα2
t y(t) = ẏ(t),

Dα3
t z(t) = ż(t),

Dα4
t ẋ(t) =

T

m
(cosϕ sin θ cosψ + sinϕ sinψ) + d1,

Dα5
t ẏ(t) =

T

m
(cosϕ sin θ sinψ − sinϕ cosψ) + d2,

Dα6
t ż(t) =

T

m
(cosϕ cos θ)− g + d3,

Dα7
t ϕ(t) = p+ tan θ (q sinϕ+ r cosϕ) ,

Dα8
t θ(t) = q cosϕ− r sinϕ,

Dα9
t ψ(t) =

q sinϕ+ r cosϕ

cosϕ
,

Dα10
t p(t) =

1

Ix
[τϕ + (Iy − Iz)qr] + ϵ1 cos(ϕ.θ),

Dα11
t q(t) =

1

Iy
[τθ + (Iz − Ix)pr] + ϵ2 sin(p.t),

Dα12
t r(t) =

1

Iz
[τψ + (Ix − Iy)pq] + ϵ3 sin(qr).

(4.6)
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4.3 Effect of Wind on Drone Movement

In this study, we aim to control the drone’s

trajectory to ensure it reaches X(T ), de-

spite external disturbances such as wind.

The controller is designed to minimize the

error between the actual and desired paths,

maintaining system stability during flight.

The simulation was conducted using MATLAB/Simulink to model the dynamics of a

quadrotor drone. The physical model includes six degrees of freedom: three translational

positions (x, y, z) and three rotational angles (ϕ, θ, ψ). In this setup, rotational torques were

not introduced as separate input variables. Instead, the simulation relied solely on the vertical

thrust forces generated by the four rotors. The resulting torques are computed automatically

based on each rotor’s position relative to the center.

4.3.1 Phase 1: Natural Stability under Normal Wind Conditions

In this initial phase, the drone operates under nominal atmospheric conditions. The objective

is to evaluate the inherent stability of the system in the absence of strong perturbations and

without activating any advanced control model.

Wind Profile (Normal Conditions)

• Wind speed: vwind = 5m/s,

• Wind direction: Constant or slowly varying within 0 to
π

4
radians,

• Turbulence intensity: Low,

• Disturbance is modeled as an additive low-frequency input to the system dynamics

dwind = a sin(ωt+ ϕ), a < 1,

where a is small amplitude it means gentle wind and ω is low frequency it means slow

variation.

4.3.1.1 Stability Observation via Simulation

The stability of the system in equation (4.6) is qualitatively evaluated based on its simulated

response in MATLAB over the time interval t ∈ [0, 10], under mild wind conditions.

1. Equilibrium Point: A representative hovering equilibrium is assumed as:

X∗ =
[
x0, y0, z0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]T
,
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2. Simulated Behavior: No explicit numerical methods (e.g., eigenvalue analysis or Sta-

bility Condition as Theorem 1.2.1.1) are used. Instead, MATLAB simulations provide

insight into the system’s response. Under normal wind, the system remains close to

equilibrium, indicating bounded and stable behavior.

The resulting trajectories are illustrated in Figure 4.3.

Figure 4.3: Plot of Effect of Wind on Drone Movement and Rotation from X(t = 0)
to X(t ≤ 10).

Figure 4.3 shows the effect of normal wind on the drone’s movement and rotational motion

from t = 0 to t = 10 seconds. The trajectories remain bounded and gradually converge toward

the origin, indicating that the system maintains local stability.

4.3.2 Phase 2: Chaos Induced by Strong Wind at t = 10 seconds

At t = 10 seconds, the drone is suddenly

subjected to a strong wind disturbance.

This external perturbation significantly af-

fects the drone’s dynamics, leading to large

nonlinear fluctuations in both its transla-

tional and rotational states.
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The wind intensity is sufficiently high to destabilize the system, driving it from a previously

stable regime into a chaotic state.

Strong Wind Characteristics:

• Wind speed: vwind = 10 to 20m/s,

• Wind direction: It changes irregularly within the range
π

4
to π radians,

• Turbulence intensity: It is a measure of how much wind speed fluctuates over time,

• The wind disturbance is modeled as an additive high-frequency input injected into the

system dynamics

dwind = a sin(ωt) + noise(t), a > 1,

where the added noise introduces random, fast-changing disturbances and turbulence.

The numerical simulation of the system (4.6) under strong wind begins at t = 10, and the

drone’s response is illustrated in Figure 4.4.

Figure 4.4: Plot of Effect of Strong Wind on Drone Movement and Rotation at t = 10s.

Figure 4.4 illustrates the destabilizing impact of strong wind applied at = 10s. The sys-

tem, initially stable, begins to exhibit significant nonlinear oscillations and divergence from

equilibrium, indicating the onset of chaotic dynamic.

40



CHAPTER 4. APPLICATION

To further highlight the presence of chaotic behavior, the 3D trajectory is shown in

Figure 4.5. The intricate, non-repeating path exhibits a fractal structure, which is a hallmark

of deterministic chaos.

Figure 4.5: 3D Plot of Effect of Strong Wind on Drone Movement and Rotation at t = 10s.

4.3.3 Phase 3: Applying Time-Delayed PIλDµ Controller

In this phase, the objective is to stabi-

lize the drone once it enters a chaotic

state caused by strong wind disturbances.

To address this, a time-delayed fractional-

order PIλDµ controller is employed. The

general nonlinear fractional-order drone

dynamics with control input u(t) is de-

scribed by:

DαX(t) = f(X(t)) +Bu(t) + d(t). (4.7)

41



CHAPTER 4. APPLICATION

The control input is given by:

u(t) = Kpe(t− τ) +KiD
−λe(t− τ) +KdD

µe(t− τ). (4.8)

Prior to the controller’s application, verifying system controllability is crucial.

• Controllability Analysis

Linearizing the nonlinear system (4.9) around an equilibrium point X∗, leading to the

form

DαδX(t) = AδX(t) +Bδu(t).

The matrix B is designed to reflect realistic physical actuation, assuming that control

inputs directly influence the drone’s linear accelerations. Accordingly, the matrices A

and B are defined as:

A =
∂f(X)

∂X
=


∂f1
∂x1

...
∂f1
x12

...
. . .

...
∂f12
∂x1

...
∂f12
∂x12

 and B =


05×1

I1×1

03×1

03×1

 ,
where u(t) ∈ R.

For matrix A, we skip the angles as variables and replace them with their value in that

case, these matrices A and B must be numerical matrices, not functions of variables.

Controllability is verified using the Kalman rank condition (rank(C)):

rank
[
B AB A2B . . . A11B

]
= rank(C),

with C ∈ R12×12.

The rank was determined using numerical methods and was found rank(C) = 12

Thus the drone system is controllable.

• Controller Position

According to Newton-Euler dynamics [27], acceleration is directly influenced by applied

forces and torques. Thus, the optimal point of control insertion is directly at the accel-

eration level. Furthermore, the system is subjected to exogenous wind disturbances di,

which can induce chaotic dynamics.
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The complete controlled system is governed by:

DαX(t) = f(X(t)) +Bu(t) + d(t). (4.9)

Dα1
t x(t) = ẋ(t),

Dα2
t y(t) = ẏ(t),

Dα3
t z(t) = ż(t),

Dα4
t ẋ(t) =

T

m
(cosϕ sin θ cosψ + sinϕ sinψ) + d1,

Dα5
t ẏ(t) =

T

m
(cosϕ sin θ sinψ − sinϕ cosψ) + d2,

Dα6
t ż(t) =

T

m
(cosϕ cos θ)− g + d3 + u(t),

Dα7
t ϕ(t) = p+ tan θ (q sinϕ+ r cosϕ) ,

Dα8
t θ(t) = q cosϕ− r sinϕ,

Dα9
t ψ(t) =

q sinϕ+ r cosϕ

cosϕ
,

Dα10
t p(t) =

1

Ix
[τϕ + (Iy − Iz)qr] + ϵ1 cos(ϕ.θ),

Dα11
t q(t) =

1

Iy
[τθ + (Iz − Ix)pr] + ϵ2 sin(p.t),

Dα12
t r(t) =

1

Iz
[τψ + (Ix − Iy)pq] + ϵ3 sin(qr).

(4.10)

• Stability Analysis of Control Systems

Following the integration of the time-delayed fractional-order controller into the system

(4.10), the next objective is to rigorously examine system stability in the presence of rapid

and stochastic wind disturbances. To accomplish this, both the linearization approach

and the stability theorem presented in Theorem 3.5.1 are employed.

To examine the stability of the system under these conditions, we use the following The-

orem3.5.1 , we also use linearization method.

A numerical simulation showcasing the drone’s behavior post-controller activation at is

illustrated in Figure 4.6.
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Figure 4.6: Plot of Applying Time-Delayed PIλDµ Controller on Drone Movement and Rotation
at t = 12s.

Figure 4.6 demonstrates the effectiveness of the time-delay fractional PIλDµ controller in

stabilize the drone’s motion after strong wind turbulence. A noticeable reduction in oscilla-

tions particularly in angular velocity and acceleration is observed shortly after the controller is

activated, indicating its role in suppressing system disturbances. However, minor residual os-

cillations persist, likely due to inherent time-delay effects and the system’s nonlinear dynamics,

highlighting the need for further refinement of the control strategy.

4.4 Corollary

Although the proposed time-delayed fractional PIλDµ controller has demonstrated promising

results in stabilizing chaotic UAV (drone) dynamics, a rigorous analytical proof of stability using

a fractional-order Lyapunov-Razumikhin function remains an open challenge. The inherent

complexity of fractional-order derivatives, especially in the presence of time delay, limits the

direct application of classical Lyapunov-based techniques. This opens an avenue for future

research to develop new stability criteria tailored for such systems. Further exploration may

also involve adaptive or learning-based fractional controllers that can self-tune under dynamic

environmental conditions.
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Conclusion

In this thesis, we have conducted a comprehensive study of time-delayed fractional chaotic

systems, motivated by the increasing demand for precise models that can accurately cap-

ture complex phenomena, particularly those characterized by nonlinear and irregular behavior.

Chaos, fractional derivatives, and time delays constitute three fundamental pillars for under-

standing the intricate dynamics of such systems.

The first chapter presents a historical overview of fractional derivatives, outlining their

most significant definitions and properties, followed by an examination of fractional chaotic

dynamics through well-established examples. The second chapter delves into fractional

delay equations, focusing on a qualitative analysis of their stability. In the third chapter,

we introduce a delayed PIλDµ controller as a robust mechanism for regulating chaotic system

behavior. Finally, the fourth chapter demonstrates a practical application by simulating a

drone model under three distinct scenarios.

The results obtained indicate that the integration of the proposed controller within the sys-

tem significantly mitigates chaotic behavior and enhances system responsiveness. Comparative

analysis across the three scenarios substantiates the controller’s efficacy, particularly in turbu-

lent environments, such as those involving wind disturbances. Nevertheless, these findings are

primarily based on numerical simulations, without a rigorous mathematical stability

analysis.

From this perspective, future research directions may include developing a theoretical

stability framework using Lyapunov-based methods or fractional Laplace transforms, refining

controller designs through intelligent algorithms like PSO or GA, and extending the application

to multi-input, multi-output systems or more sophisticated real-world environments.

This study underscores the potential of integrating fractional calculus, chaos theory, and de-

layed control as a promising approach for analyzing and managing complex dynamical systems

in the fields of engineering, physics, and robotics.

Finally, the thesis concludes with a general conclusion that summarizes the main findings

and discusses future research directions.
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[9] Caponetto, R., Dongola, G., Fortuna, L., & Petras, I. (2010). Fractional order systems:

Modeling and control applications. World Scientific.
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Annex A: Programs in MATLAB to

Calculus τc

1 % Setup

2 alpha;

3 A ; % Matrix A

4 B; % Matrix B

5 n

6 J = eye(n); % Jacobian matrix at equilibrium point

7 I = eye(size(A));

8 v_vals = linspace (0.01 , 10, 1000); % Candidate v values

9 tau_c_list = [];

10 for v = v_vals

11 s_alpha = (1i*v)^alpha;

12 M = s_alpha * I + B;

13 % Check if A*f’ is invertible

14 if det(A*f_prime) == 0

15 continue;

16 end

17 E = -M / (A * f_prime);

18 lambda = eig(E); % Get eigenvalues

19 for k = 1: length(lambda)

20 phi = angle(lambda(k)); % Eigenvalue angle

21 tau_c = -phi / v;

22 if tau_c > 0 && isreal(tau_c)

23 tau_c_list = [tau_c_list , tau_c];

24 end end end

25 % Display the smallest tau_c value

26 if ~isempty(tau_c_list)

27 tau_critical = min(tau_c_list);

28 fprintf(’Critical delay tau_c %.4f\n’, tau_critical);

29 else

30 disp(’No valid tau_c found in the given range.’);

31 end
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Annex B

• Γ(z) =

∫ +∞

0

tz−1e−tdt, with Re(z) > 0.

• β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, with x, y ∈ R+.

• Eα,β(t) =
∞∑
k=0

tk

Γ(αk + β)
, α, β > 0.

•

(
α

j

)
=

Γ(α + 1)

Γ(j + 1)Γ(α− j + 1)
.

• aI
α
x f(x) = aD

−α
x f(x), x > a.

• F (s) = L{f(x); s} =

∫ ∞

0

e−sxf(x)dx.

• f(x) = L−1{F (s);x} =

∫ c+i∞

c−i∞
esxF (s)ds, c = Re(s).

• f(x) ∗ g(x) =
∫ ∞

0

f(x− t)g(t)dt.

• L{f(x) ∗ g(x); s} = F (s)G(s).

• L−1{F (s)G(s);x} = f(x) ∗ g(x).

• G(s) = L{Dαf(t); s} = sαF (s) with f (m)(0) = 0, m = 1, n− 1.
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اिऻڪٌۘ
ਐಱݯ݄݆ PIλDµ َިع ݆݁ ܋๤ཏي ુળ༲݁ٺ أ֡؜ٺ݄ڎ ۋ٭ت ܋๤ཏي، ௧ௌ݁٭؇਍ಱد ܳٷޙ؇م ๮ཚިاܳڰ ሒᇭ ુળ༲اܳٺ ᄭႍၽ݁ލ ਍ಾ؇وܳٷ؇ اܳأ݄ܭ، ۱ڍا ሒᇭ

ّ؊ଫଃ༠اً. ਐಱݯ݄݆ ৖৑ َڰފ۬ اܳٷޙ޺޾ أن ඔ൹༡ ሒᇭ ز݁ٷ٭ً؇، ّ؊ଫଃ༠اً
اݿٺگݠار۱؇ وොູܹ٭ܭ ܋๤ཏل۰ ّڰ؇ݪܹ٭۰ ݁أ؇د৖৑ت ࢻࣖراݿ۰ ᆇᅪٷ؇ ቕ቉ اܳـܝ๤ཏي، واܳٺႤၽ݁ܭ اܳٺڰ؇ݪܭ ࠍ੆ފ؇ب ا৙৑ݿ؇ݿ٭۰ اৎ৊ڰ؇۱ࡗࡲ ًأݠض ࢻࣖأَ؇

.Lyapunov–Razumikhin ل۰ َޙݠ ً؇ݿٺ༱ڎام
.Rössler و Lotka-Volterra ݁ټܭ ଫଃዝཇة ل۰ ڣިݪި أَޙ۰݄ আॻ༟ ً ༟ڎدل؇ ુળ༲ٺৎ৊ا اۊٺٴ؇ر ቕቆ وڢڎ

ޖܭ ሒᇭ اܳٷޙ؇م اݿٺگݠار ඔ൹ފොູ ሒᇭ ڣأ؇ܳ٭ٺ۬ اႤ၍؇௱௯௫ة ༇຀؇ਐ಻ وأޖ۳ݠت ޗ٭؇ر، ࢻࣖون ܳޚ؇߉ߵة ஓ஁ިذج আॻ༟ ુળ༲ٺৎ৊ا ޗُٴݑِّ اଫଃ༠৙৑ة، ᄭᄥ༡ݠৎ৊ا ሒᇭو
ل؇ح. ීෂا ޖݠوف

.ଫଃ༠؊اܳٺ ،๮ཚިاܳڰ ܋๤ཏي، َޙ؇م ،ુળ༲ٺৎ৊ا : ڲء׫ոؼמ١ ոஈ࿦྾ت

Abstract

In this work, we addressed the problem of chaos control in a fractional-order dynamical system by
employing a fractional PIλDµ controller that includes a time delay, even though the system itself
does not incorporate any delay.
We began by introducing the fundamental concepts of fractional calculus, followed by an analysis of
fractional differential equations and their stability using the Lyapunov–Razumikhin theorem.
The controller was then tested numerically on well-known chaotic systems such as Lotka-Volterra
and Rössler.
In the final phase, the controller was applied to a drone model, simulation results showed its effec-
tiveness in enhancing system stability under wind disturbances.
Keywords: Controller, Fractional-order system, Chaos, Time delay.

Résumé

Dans ce travail, on a abordé le problème du contrôle du chaos dans un système dynamique d'ordre
fractionnaire en utilisant un contrôleur fractionnaire de type PIλDµ intégrant un délai temporel, bien
que le système lui-même ne comporte aucun délai.
on a commencé par présenter les concepts fondamentaux du calcul fractionnaire, puis on a étudié
les équations différentielles fractionnaires ainsi que leur stabilité à l’aide du théorème de Lyapunov–
Razumikhin.
Le contrôleur a ensuite été testé numériquement sur des systèmes chaotiques bien connus tels que
Lotka-Volterra et Rössler.
Enfin, le contrôleur a été appliqué à un modèle de drone. Les résultats de simulation ont démontré
son efficacité à améliorer la stabilité du système en présence de perturbations dues au vent.
Mots-clés: Contrôleur, Système d’ordre fractionnaire, Chaos, Délai temporel.
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