
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

Mohamed Khider University of Biskra
FACULTY OF EXACT SCIENCES

DEPARTMENT OF MATHEMATICS

Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of

“Master in Mathematics”
Option: Partial Differential Equations and Numerical Analysis

Submitted and Defended By

ZERIGUI Oussama

Title:

Regularity of the Solution of Volterra Integral Equation.

Examination Committee Members:
Pr. MENACER Tidjani MKUB President
Dr. KABOUL Hanane MKUB Supervisor
Dr. BNE BRAIKA Souad MKUB Examiner

03/06/2025



Dedication and Acknowledgements

I would like to express my sincere gratitude and deep appreciation to docteur Hanane Kaboul
for the invaluable support, encouragement, and guidance she has provided throughout my
research journey. Her academic and moral support has been truly irreplaceable.

Special thanks are also due to Professor Mansour Tijani, docteur Ben Brika Souad,
Professor Lakhdhari Imad, and Professor Yahia Djebbar for their insightful advice, guid-
ance, and the knowledge they generously shared, which significantly contributed to shaping
this work.

I also extend my heartfelt thanks and appreciation to all my esteemed professors, who
have been a guiding light throughout my academic path, and who played a vital role in shaping
my intellectual and personal development through their knowledge and integrity.

To all of you, I offer my most sincere thanks and deepest respect.

i



Thanks

All praise is due to Allah, who granted me the gift of thought and expression, the strength to
believe, and the patience to pursue my dream until it came true. In this moment, I raise my
hands to the sky and say: Alhamdulillah.

To my dear parents, Aziz and Massouda,
Your love, dedication, and sacrifices were the foundation of my academic journey. Your en-
couragement gave me the strength to overcome challenges. I thank you from the bottom of my
heart.

To my brothers and sisters,
Thank you for your constant support and presence.

To my uncles and aunts,
Thank you for your advice and support.

To my colleague Mohamed,
Thank you for your efforts and help.

To my colleagues Sana,Ghofrane Noura, Loubna, and Salma,
I truly appreciate your support and encouragement throughout this journey

ii



Contents

Dedication and Acknowledgements i

Thanks ii

Contents iii

List of Figures v

Notation vi

Introduction 1

1 Integral Equations 3
1.1 Types of integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Relationship Between Differential Equations And Integral Equations . . . . 7
1.3 Notions about operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Regularity of The Solution of Volterra Integral Equation 11
2.1 Existence And Uniqueness of The Solution of A Volterra Integral Equation of

The Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Volterra Integral Equations with Smooth Kernels . . . . . . . . . . . . . . . . . 16
2.3 Definition of Weakly Singular Kernels . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Definition of Bounded but Non-Smooth Kernels . . . . . . . . . . . . . . . . . . 20
2.5 Kernels with Boundary Singularities . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Integral Equations with Weakly Singular Kernels of the Form (t2 − s2)−1/2 . . . 23

3 Applications of Volterra Integral Equations 27
3.1 Application Example: The Renewal Equation as a Linear Volterra Integral Equa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Equation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Regularity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Migration and Mortality Model: Volterra Equation with a Non-smooth Kernel . 31

iii



CONTENTS

3.2.1 Equation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Regularity Analysis of the Solution . . . . . . . . . . . . . . . . . . . . . 31

Conclusion 34

Bibliography 35

iv



List of Figures

3.1 Graphical representation of the renewal equation and its components. . . . . . . 28

v



Notation

The following symbols are used frequently throughout this thesis:

• u(t) Unknown solution function.

• f(t) Given data function (right-hand side).

• K(t, s) Kernel of the integral equation.

• Vα,β Weakly singular Volterra integral operator.

• Cα[0, T ] Hölder space of order α.

• ∥u∥Cα Hölder norm.

• ϕ(t) Initial function (used in applications).

• T Final time or upper bound of integration.

• α Hölder continuity exponent (0 < α < 1).

• γ Singularity parameter in weakly singular kernels.
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Introduction

Integral equations are considered one of the fundamental pillars of modern mathematical anal-
ysis, as they provide an effective tool for modeling many physical and engineering phenomena
involving non-local effects or memory. These equations often arise when transforming dif-
ferential problems into integral formulations in order to simplify the analysis or obtain more
stable numerical solutions. In general, integral equations are written as a relation between an
unknown function and an integral that involves this function. They are classified into various
types depending on the kernel and the domain of integration (e.g., Fredholm or Volterra types).

The systematic emergence of integral equations dates back to the late 19th century, where
both the Swedish mathematician Erik Fredholm and the Italian mathematician Vito Volterra
laid the theoretical foundations of this field. In 1896, Volterra introduced what are now known
as Volterra equations of the first and second kinds, with the aim of studying time-dependent
systems that rely on previous values of variables. Fredholm later developed the theory of integral
equations with kernels defined over fixed domains, focusing on the existence and uniqueness of
solutions in functional spaces. These contributions led to the formulation of functional analysis,
which became the cornerstone of many applications in applied mathematics and theoretical
physics.

During the 20th century, the theory of integral equations experienced significant develop-
ment, especially with the introduction of concepts from functional analysis such as Banach and
Hilbert spaces. These advancements allowed for a deeper understanding of the mathematical
structure of integral equations and the development of powerful tools to analyze them, including
compact operators and the spectral theory of linear operators. As a result, integral equations
found widespread application in fields like quantum mechanics, heat transfer, control theory,
and biological systems.

With the evolution of research, interest extended beyond the existence and uniqueness of
solutions to include what is known as the regularity of solutions, that is, the study of continuity,
differentiability, and boundary behavior of the solutions. Regularity is a critical factor in
understanding the nature of the modeled system and has a direct impact on the accuracy and
efficiency of the numerical methods used for approximation.

The regularity of a solution is strongly influenced by the nature of the kernel:

• Smooth kernels typically lead to smooth solutions of the same or higher order.
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Introducton

• Weakly singular kernels (such as (t− s)−α with 0 < α < 1) often result in solutions with
limited regularity.

• Kernels with boundary singularities may degrade the regularity of the solution or lead to
singular-like behavior at boundary points.

This variability in solution behavior necessitates the classification of kernels according to
their properties (smooth, weakly singular, non-smooth, or with boundary singularities) and the
study of solution regularity in each case separately. Such analysis is fundamental in evaluating
the numerical accuracy of integral equation solvers, since many numerical methods rely on
the existence of certain solution derivatives, such as spectral methods or quadrature-based
techniques. Several academic references have addressed this topic in depth.

This thesis is organized as follows: In the first chapter we discus about the deferent type of
integral equations and we present same operator notions. In the second one we present the proof
of existence and uniqueness of the solution of Volterra integral equation, and same theorems
about the regularity of the solution which depends on the regularity of the known parts of the
equations. In the third chapter we present same example of Volterra integral equation of the
second kind.

2



Chapter 1
Integral Equations

Integral equations are equations in which the unknown function appears under an integral sign.
They are typically classified into two main categories: linear and nonlinear. In general, an
integral equation has the form where the solution function is integrated over a given interval,
and the resulting expression is set equal to a known function:

f(x) = ϕ(x)u(x) +

∫ b(x)

a(x)

k(x, t)F (u(t)) dt (1.1)

where:

• f , F and K are known functions.

• F takes u as a variable.

• a and b are the bounds of the integral, which can either be constants or functions of x.

• K is a function of two variables, known as the kernel of the integral equation.

We say that an integral equation is linear if F is a linear function, and it is written in the
form:

f(x) = ϕ(x)u(x) + λ

∫ b(x)

a(x)

K(x, t)u(t)dt (1.2)

The parameter λ is a constant.
On the other hand, and a nonlinear integral equation when F is nonlinear.
If f = 0, it is called a homogeneous equation, whereas if f ̸= 0, it is called a non-homogeneous
equation

3



CHAPTER 1. INTEGRAL EQUATION

1.1 Types of integral equations

Fredholm Equations

A Fredholm equation is an integral equation where the limits of integration are fixed.

Φ(x)u(x) = f(x) + λ

∫ b

a

k(x, t)F (u(t))dt, (1.3)

If the function Φ(x) = 0, then the equation (1.3) becomes:

f(x) +

∫ b

a

k(x, t)F (u(t))dt = 0,

This simpler equation is called the linear Fredholm integral equation of the first kind. If the
function Φ(x) ̸= 0, then equation (1.3) becomes simply:

u(x) = f(x) +

∫ b

a

k(x, t)F (u(t))dt,

this is called the linear Fredholm integral equation of the second kind.

Examples of Fredholm Integral Equations of the Second Kind

Consider the equation:

u(x) = 1 +

∫ 1

0

xt u(t) dt

u(x) = sin(x) +

∫ 1

0

ext u(t) dt

Volterra Equations

A Volterra equation is an integral equation where the upper or lower limit of integration depends
on the independent variable. It can be of the first or second kind. [7]

Volterra equation of the first kind:

f(x) =

∫ x

a

k(x, t)F (u(t))dt (1.4)

Volterra equation of the second kind:

u(x) = f(x) + λ

∫ x

a

k(x, t)F (u(t))dt (1.5)

It is observed that the limits of integration in the Fredholm integral equation are constant,
whereas in the Volterra equation one limit is constant and the other is variable.
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CHAPTER 1. INTEGRAL EQUATION

Remark 1.1.1 Consider the equations of the second kind:

u(x) = f(x) +

∫
G

k(x, t)F (u(t)) dt (1.6)

Let G be a closed bounded interval (i.e., G = [a, b] in the case of Fredholm equations, and
G = [a, x] in the case of Volterra equations).
It is clarified here that Volterra equations are special cases of Fredholm equations if we assume
that the kernel k(x, t) equals zero when t > x. This means that the effects from values after x
do not enter into the equation, and thus the integration is limited to the interval from a to x

only.

Some examples of non linear integral equations:

u(x) = f(x) +

∫ x

a

k(x, t)[u(t)]2dt

u(x) = f(x) +

∫ x

a

k(x, t)[u(t)f(t)]dt

If f(x)=0 in both cases we say that the resulted equation is a homogeneous equation
or it will be called a non-homogeneous equation.
Example:

u(x) = 1 +

∫ x

0

(x− t)[u(t)]3dt

Here, the unknown function u(t) appears raised to the power of 3 (i.e., u(t)3).
The equation represents a nonlinear case because the unknown function appears in a nonlinear
form inside the integral.

Deviant Integral Equations

Deviant integral equations: We say that integral equations are deviant if one of the integration
limits is infinity, or if the kernel k(x,t) tends to infinity at one or more points within the
integration domain. Its general form is

u(x) = f(x) + λ

∫ ∞

−∞
u(t)dt. (1.7)

Example of deviant integral equations

u(t)−
∫ ∞

0

estu(s)ds = g(t),

u(t)−
∫ ∞

−∞
estu(s)ds = g(t),

u(t)−
∫ b

a

ln |s− t|u(s)ds = g(t).
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CHAPTER 1. INTEGRAL EQUATION

Abel’s Equation

Let the following integral equation be:

f(x) =

∫ x

0

u(t)

(x− t)α
dt, (1.8)

where α ∈ (0, 1).
This equation is of Abel’s type, and such equations can be solved using the Laplace transform.

Applying the Laplace transform to the equation
We apply the Laplace transform to both sides of equation (1.8):

L[f(x)](s) = L
[∫ x

0

u(t)

(x− t)α
dt

]
(s).

Using the convolution property of the Laplace transform, where the integral is the convolution
of u(x) and k(x) = x−α:

L[f(x)](s) = L[u(x)](s) · L[x−α](s).

We know that:
L[x−α](s) =

Γ(1− α)

s1−α
.

So we can solve for L[u(x)](s):

L[u(x)](s) = L[f(x)](s)
Γ(1−α)
s1−α

= L[f(x)](s) · s1−α

Γ(1− α)
.

Using the inverse Laplace transform
Applying the inverse Laplace transform:

u(x) = L−1

[
L[f(x)](s) · s1−α

Γ(1− α)

]
(x).

This can be rewritten as:

u(x) =
1

Γ(1− α)
L−1

[
s · (s−αL[f(x)](s))

]
(x).

Using the property L−1[sF (s)](x) =
d

dx
L−1[F (s)](x) (assuming conditions for initial values are
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CHAPTER 1. INTEGRAL EQUATION

met) and the convolution theorem for the inner part:

u(x) =
1

Γ(1− α)

d

dx
L−1

[
s−αL[f(x)](s)

]
(x)

=
1

Γ(1− α)

d

dx

(
L−1[s−α](x) ∗ f(x)

)
=

1

Γ(1− α)

d

dx

(
xα−1

Γ(α)
∗ f(x)

)
=

1

Γ(α)Γ(1− α)

d

dx

∫ x

0

(x− t)α−1f(t)dt.

Using the reflection formula Γ(α)Γ(1− α) =
π

sin(απ)
, the solution is:

u(x) =
sin(απ)

π

d

dx

∫ x

0

f(t)

(x− t)1−α
dt.

This is the standard solution to Abel’s integral equation.
Theorem: Leibniz Rule For Differentiation Under The Integral Sign

Let f(x, t) be a function defined over a region where all necessary derivatives exist and are
continuous differentiable. Suppose the limits of integration are functions of x, denoted as a(x)
and b(x). Then, the derivative of the integral with respect to x is given by [8]

d

dx

∫ b(x)

a(x)

f(x, t) dt =

∫ b(x)

a(x)

∂f(x, t)

∂x
dt+ f(x, b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx
.

This formula accounts for both the variation of the integrand and the movement of the inte-
gration limits. It is widely used in applied mathematics, physics, and engineering.

1.2 The Relationship Between Differential Equations And

Integral Equations

The relationship between integral equations and differential equations is very strong, and some
differential equations can be transformed into integral equations, and the inverse is true in some
cases. In fact, these differential equations can be used, especially when analytical solutions to
differential equations are complex or difficult to obtain.

Conversion of a First-Order Differential Equation to an In-

tegral Equation

Let us consider the following first-order differential equation:

F (x) = a(x)y(x) +
dy

dx
, (1.9)
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CHAPTER 1. INTEGRAL EQUATION

with the initial condition:

y(0) = C0, where C0 ∈ R or C0 ∈ C

Rearranging the equation, we get:

dy

dx
= −a(x)y(x) + F (x). (1.10)

We define:

φ(x) = −a(x)y(x) + F (x). (1.11)

Now we integrate both sides from 0 to x:

y(x) =

∫ x

0

φ(t) dt+ C0. (1.12)

Substituting back the expression of φ(t), we obtain:

y(x) =

∫ x

0

[−a(t)y(t) + F (t)] dt+ C0. (1.13)

Thus, the final integral equation is:

y(x) = C0 +

∫ x

0

[−a(t)y(t) + F (t)] dt. (1.14)

Once the differential equation is converted into an integral equation, we can use methods to
solve integral equations, such as numerical or symbolic analysis techniques to solve the equation,
and this may be easier in some cases.

1.3 Notions about operators

A bounded linear operator

Definition (linear operator) 2.1.1: Let X and Y be two vector spaces. A map T : X → Y

is called a linear operator if: For all x, y ∈ X and α ∈ R or C,

T (x+ y) = T (x) + T (y), and T (αx) = αT (x).

Recall the two fundamental spaces associated with a linear operator:
The kernel of T is the subspace of X:

N(T ) = {x ∈ X : T (x) = 0}.

8



CHAPTER 1. INTEGRAL EQUATION

The image of T is the subspace of Y :

R(T ) = {y ∈ Y : ∃x ∈ X,T (x) = y}.

Definition(Bounded Operators) 2.1.2 Let X and Y be two normed spaces. A linear
operator T : X → Y is continuous if there exists a constant C > 0 such that:

∥Tx∥Y ≤ C∥x∥X

for all x ∈ X.
Using the linearity of the operator T , it is easy to see that T is bounded if and only if

∥T∥ = sup
∥x∥X≤1

∥Tx∥Y <∞.

The number ∥T∥ is called the norm of T .
We denote by L(X;Y ) the space of bounded linear operators from X to Y .
A linear operator T : X → Y is said to be of finite rank if and only if its image R(T ) is a

subspace of Y of finite dimension.
Definition 2.1.3: A linear operator T : X → Y from a normed space X to a normed space

Y is said to be compact if it transforms every bounded subset of X into a relatively compact
subset of Y .
Theorem 2.1.1: A linear operator T : X → Y is compact if and only if, for every bounded
sequence (ϕn) in X, one can extract a convergent subsequence from (Tϕn) in Y , i.e., if every
sequence in the set {Tϕ : ϕ ∈ X, ∥ϕ∥ ≤ 1} contains a convergent subsequence.

Theorem 2.1.2 : Riesz Theory for Compact Linear Operators of the Second
Kind

We consider in this context the study of linear equations of the form:

φ− Tφ = f,

where T : X → X is a compact linear operator defined on a normed vector space X. We denote
L = I − T , where I is the identity operator. This equation is sometimes referred to as a Riesz
equation of the second kind and plays a central role in the analysis of integral equations with
continuous or weakly singular kernels.

The Riesz theory in this context states the following:

• If the associated homogeneous equation:

φ− Tφ = 0

admits only the trivial solution φ = 0, then the operator L is invertible, i.e., L−1 exists

9



CHAPTER 1. INTEGRAL EQUATION

and is defined on the whole space X. Consequently, the inhomogeneous equation:

φ− Tφ = f

admits a unique solution for every f ∈ X, and this solution is given explicitly by:

φ = L−1f.

• On the other hand, if the homogeneous equation admits non-trivial solutions, then the
inhomogeneous equation:

φ− Tφ = f

is solvable if and only if a compatibility condition is satisfied, namely, that f is orthogonal
to all solutions ψ ∈ X∗ of the adjoint equation:

ψ − T ∗ψ = 0,

where T ∗ is the adjoint operator of T in the dual space X∗.

where T is a compact linear operator T : X → X in a normed space X. We denote
L = I − T , where I represents the identity operator.
Theorem 2.1.3: Let T : X → X be a compact linear operator. Then I − T is injective if
and only if it is surjective. Moreover, if I − T is injective (hence bijective), then the inverse
operator (I − T )−1 : X → X is bounded.
Theorem 2.1.4: Every linear operator T : X → Y from a normed space X of finite dimension
to a space Y is bounded.
Theorem :(Neumann Series)
Let E be a Banach space, and let T ∈ L(E) with ∥T∥ < 1. Let IdE be the identity operator
on E. Then:

(IdE − T )−1 =
∞∑
n=0

T n (1.15)

Furthermore,

∥∥(IdE − T )−1
∥∥ ≤ 1

1− ∥T∥
(1.16)

Proof. See [6].

10



Chapter 2
Regularity of The Solution of Volterra Integral
Equation

2.1 Existence And Uniqueness of The Solution of A Volterra

Integral Equation of The Second Kind

In this chapter, we focus on studying the existence and uniqueness of the solution for the
Volterra integral equations of the second kind. If the Volterra integral equations admit a solu-
tion, what are the methods used to find the explicit form of this solution? There are analytical
methods such as the Adomian method, the series method, and others, and numerical methods
such as the trapezoidal method and the Simpson method.

Solution of Volterra Integral Equation

Given the integral equation with a separable kernel:

φ(x) = f(x) + λ

∫ x

0

k(x, t)φ(t) dt

We seek a solution in the form of an infinite series expansion in terms of λ:

φ(x) = φ0(x) + λφ1(x) + λ2φ2(x) + λ3φ3(x) + . . .

11



CHAPTER 2. REGULARITY OF THE SOLUTION INTEGRAL

Substituting this into the equation:

φ0(x) + λφ1(x) + λ2φ2(x) + . . . = f(x) + λ

∫ x

0

k(x, t)
(
φ0(t) + λφ1(t) + λ2φ2(t) + . . .

)
dt

= f(x) + λ

∫ x

0

k(x, t)φ0(t) dt

+ λ2
∫ x

0

k(x, t)φ1(t) dt

+ λ3
∫ x

0

k(x, t)φ2(t) dt+ . . .

By substituting into the given equation and matching coefficients of λ, we get:

φ0(x) = f(x)

φ1(x) =

∫ x

0

k(x, t)φ0(t) dt =

∫ x

0

k(x, t)f(t) dt (2.1)

φ2(x) =

∫ x

0

k(x, t)φ1(t) dt =

∫ x

0

k(x, t)

(∫ t

0

k(t, s)f(s) ds

)
dt (2.2)

φ3(x) =

∫ x

0

k(x, t)φ2(t) dt

The series converges uniformly.
To establish the uniform convergence of the series solution

φ(x) =
∞∑
n=0

λnφn(x),

we utilize the Neumann series theorem and Weierstrass’ M-test.
We consider the Volterra integral equation of the second kind:

φ(x) = f(x) + λ

∫ x

0

k(x, t)φ(t) dt. (2.3)

This can be rewritten as:

(I − λK)φ = f, (2.4)

where K is the Volterra integral operator defined by:

(Kφ)(x) =

∫ x

0

k(x, t)φ(t) dt. (2.5)

The solution can be expressed using the Neumann series:

φ = (I − λK)−1f =
∞∑
n=0

λnKnf. (2.6)

12



CHAPTER 2. REGULARITY OF THE SOLUTION INTEGRAL

We define the terms φn as follows:

φ0 = f,

φ1 = Kf,

φ2 = K(Kf) = K2f, and so on.

Therefore, the solution can be written as:

φ(x) =
∞∑
n=0

λn(Knf)(x). (2.7)

We now relate this to the iterated kernels. The n-th iteration of K applied to f can be
written as:

(Knf)(x) =

∫ x

0

kn(x, t) f(t) dt, for n ≥ 1, (2.8)

where the iterated kernel kn(x, t) is defined recursively by:

k1(x, t) = k(x, t),

and

kn+1(x, t) =

∫ x

t

k(x, s) kn(s, t) ds.

Thus, the series solution becomes:

φ(x) = f(x) +
∞∑
n=1

λn
∫ x

0

kn(x, t) f(t) dt. (2.9)

We aim to prove the **uniform convergence** of this series on the interval [0, T ], assuming
that f is continuous and the kernel k(x, t) is continuous (and hence bounded) on the domain:

D = {(x, t) | 0 ≤ t ≤ x ≤ T}.

Let M = sup
(x,t)∈D

|k(x, t)| and ∥f∥∞ = sup
t∈[0,T ]

|f(t)|. Assume M and ∥f∥∞ are finite.

Using an inductive argument, we estimate |kn(x, t)|:
Base case n = 1:

|k1(x, t)| = |k(x, t)| ≤M =
(x− t)0

0!
M1. (2.10)

Inductive step: Assume that

|kn(s, t)| ≤Mn (s− t)n−1

(n− 1)!
. (2.11)

13



CHAPTER 2. REGULARITY OF THE SOLUTION INTEGRAL

Then:

|kn+1(x, t)| =
∣∣∣∣∫ x

t

k(x, s)kn(s, t) ds

∣∣∣∣
≤
∫ x

t

|k(x, s)| · |kn(s, t)| ds

≤
∫ x

t

M ·Mn (s− t)n−1

(n− 1)!
ds

≤ Mn+1

(n− 1)!

∫ x

t

(s− t)n−1 ds

≤ Mn+1

(n− 1)!

[
(s− t)n

n

]x
t

≤ Mn+1

(n− 1)!
· (x− t)n

n

≤Mn+1 (x− t)n

n!
.

So the bound holds:
|kn(x, t)| ≤Mn (x− t)n−1

(n− 1)!
for n ≥ 1.

Now consider the terms in the series solution: |λn(Knf)(x)| = |λn
∫ x

0

kn(x, t)f(t)dt|

|λn(Knf)(x)| ≤ |λ|n
∫ x

0

|kn(x, t)||f(t)|dt

≤ |λ|n∥f∥∞
∫ x

0

|kn(x, t)|dt

≤ |λ|n∥f∥∞
∫ x

0

Mn (x− t)n−1

(n− 1)!
dt

≤ |λ|n∥f∥∞
Mn

(n− 1)!

∫ x

0

(x− t)n−1dt

Let u = x− t, du = −dt. When t = 0, u = x. When t = x, u = 0.∫ x

0

(x− t)n−1dt =

∫ 0

x

un−1(−du) =
∫ x

0

un−1du =
xn

n
.

So,

|λn(Knf)(x)| ≤ |λ|n∥f∥∞
Mn

(n− 1)!

xn

n
= ∥f∥∞

(|λ|Mx)n

n!
.

Since x ∈ [0, T ], we have x ≤ T , so:

|λn(Knf)(x)| ≤ ∥f∥∞
(|λ|MT )n

n!
.
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We examine the series for φ(x) = f(x) +
∞∑
n=1

λn(Knf)(x). We use the Weierstrass M-test

for the series
∞∑
n=1

λn(Knf)(x) on the interval [0, T ]. Let

Mn = ∥f∥∞
(|λ|MT )n

n!
.

The series
∞∑
n=1

Mn is ∥f∥∞
∞∑
n=1

(|λ|MT )n

n!
. This is related to the Taylor series for the exponential

function: ey =
∞∑
n=0

yn

n!
. The series

∞∑
n=1

Mn converges if ∥f∥∞ and |λ|MT are finite. The series

converges to ∥f∥∞(e|λ|MT − 1). Since the series
∑

Mn converges, by the Weierstrass M-test,
the series

∞∑
n=1

λn(Knf)(x)

converges uniformly on [0, T ].

Since the series converges uniformly, the sum φ(x) = f(x) +
∞∑
n=1

λn(Knf)(x) is continuous

on [0, T ] (as f is continuous and uniform limit of continuous functions is continuous). This
establishes the existence of a unique continuous solution for any finite λ,M, T and continuous
f . The condition |λ|∥K∥ < 1 required for Neumann series in general Banach spaces is not
needed here because the Volterra operator K is quasinilpotent on C[0, T ]. Its spectral radius
is 0.

The solution can be expressed using the iterated kernels kn(x, t). Define k1(x, t) = k(x, t)

and
kn+1(x, t) =

∫ x

t

k(x, z)kn(z, t) dz for n ≥ 1.

Then φn(x) =

∫ x

0

kn(x, t)f(t)dt for n ≥ 1, and φ0(x) = f(x). The solution is:

φ(x) =
∞∑
n=0

λnφn(x) = f(x) +
∞∑
n=1

λn
∫ x

0

kn(x, t)f(t) dt

This can be written using the resolvent kernel R(x, t;λ) =
∞∑
n=1

λn−1kn(x, t):

φ(x) = f(x) + λ

∫ x

0

(
∞∑
n=1

λn−1kn(x, t)

)
f(t) dt

φ(x) = f(x) + λ

∫ x

0

R(x, t;λ)f(t) dt

15
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The series used in the text
∞∑
i=1

λiki(x, t) seems to be λR(x, t;λ).

φ(x) = f(x) +

∫ x

0

(
∞∑
i=1

λiki(x, t)

)
f(t) dt

2.2 Volterra Integral Equations with Smooth Kernels

Let the Volterra integral equation of the second kind be of the form:

u(t) = f(t) +

∫ t

0

K(t, s)u(s) ds, t ∈ I = [0, T ], (2.12)

The solution can be expressed using the resolvent kernel R(t, s) of the given kernel K(t, s)

(assuming λ = 1 here for simplicity, or absorbing λ into K), as follows:

u(t) = f(t) +

∫ t

0

R(t, s)f(s) ds, t ∈ I. (2.13)

Here, the resolvent kernel R(t, s) is defined by the Neumann series (with λ = 1):

R(t, s) =
∞∑
n=1

Kn(t, s), (2.14)

where the iterated kernels are given by the recurrence relation:

Kn+1(t, s) =

∫ t

s

K(t, v)Kn(v, s) dv, (t, s) ∈ D = {(t, s)|0 ≤ s ≤ t ≤ T}, (n ≥ 1), (2.15)

with the initial condition K1(t, s) = K(t, s).
If the kernel K(t, s) is smooth, meaning that K ∈ Cm(D) for some m ≥ 1, then the

corresponding iterated kernels inherit this regularity. The uniform convergence of the Neumann
series ensures that the resolvent kernel R(t, s) maintains the same smoothness, i.e., R ∈ Cm(D).

Theorem 2.2.1

Assume that K ∈ Cm(D) for some m ≥ 1. Then its resolvent kernel R has the same degree of
regularity, namely R ∈ Cm(D). Hence, for any f ∈ Cm(I), the solution of the Volterra integral
equation (2.12) belongs to Cm(I).

Proof[5]

Proof (Regularity of the Solution to the Volterra Equation with Smooth Kernel):
Assume that the kernel K(t, s) ∈ Cm(D), where D = {(t, s) ∈ [0, T ]2 | 0 ≤ s ≤ t}, i.e., K

is a smooth function of class Cm on the triangular domain D.

16
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We define the iterated kernels recursively as:

K1(t, s) = K(t, s), Kn+1(t, s) =

∫ t

s

K(t, v)Kn(v, s) dv

These kernels are constructed iteratively using the original kernel K. By the principle of
mathematical induction and the smoothness of K, we can prove that each Kn(t, s) ∈ Cm(D),
since the integral of two functions in Cm yields a function of the same smoothness class.

The resolvent kernel is defined by the series:

R(t, s) =
∞∑
n=1

Kn(t, s)

This series converges uniformly on D, and its derivatives also converge uniformly. Hence,
the resulting function satisfies R(t, s) ∈ Cm(D).

Now let f ∈ Cm([0, T ]), and consider the solution given by:

u(t) = f(t) +

∫ t

0

R(t, s)f(s) ds

Since both f and R are of class Cm, the integral
∫ t

0

R(t, s)f(s) ds also belongs to Cm([0, T ]).

Therefore, we conclude that:
u(t) ∈ Cm([0, T ])

This proves that the solution u inherits the same regularity as the given function f , provided
the kernel K is sufficiently smooth.

Example: Computing the Resolvent Kernel for a Smooth Kernel

We consider the second-kind Volterra integral equation:

u(t) = f(t) +

∫ t

0

K(t, s)u(s) ds, t ∈ [0, T ]. (2.16)

We choose a simple smooth kernel:
K(t, s) = et−s. (2.17)

Here, we assume λ = 1.
The solution can be written using the resolvent kernel R(t, s):

R(t, s) =
∞∑
n=1

Kn(t, s), (2.18)

where the iterated kernels are defined recursively as:

Kn+1(t, s) =

∫ t

s

K(t, v)Kn(v, s)dv. (2.19)

17
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with the initial condition:
K1(t, s) = K(t, s) = et−s. (2.20)

Let’s compute K2(t, s):

K2(t, s) =

∫ t

s

K(t, v)K1(v, s)dv =

∫ t

s

et−vev−sdv. (2.21)

Simplifying the integral:

K2(t, s) =

∫ t

s

et−sdv = et−s

∫ t

s

1dv = et−s(t− s). (2.22)

Let’s compute K3(t, s):

K3(t, s) =

∫ t

s

K(t, v)K2(v, s)dv =

∫ t

s

et−v[ev−s(v − s)]dv. (2.23)

K3(t, s) = et−s

∫ t

s

(v − s)dv = et−s

[
(v − s)2

2

]t
s

= et−s (t− s)2

2
. (2.24)

Using mathematical induction, we can show the general form is:

Kn(t, s) = et−s (t− s)n−1

(n− 1)!
. (2.25)

Now, we sum the series:

R(t, s) =
∞∑
n=1

Kn(t, s) =
∞∑
n=1

et−s (t− s)n−1

(n− 1)!
. (2.26)

Factoring out et−s:

R(t, s) = et−s

∞∑
n=1

(t− s)n−1

(n− 1)!
. (2.27)

Let k = n− 1. As n goes from 1 to ∞, k goes from 0 to ∞.

∞∑
n=1

(t− s)n−1

(n− 1)!
=

∞∑
k=0

(t− s)k

k!
= et−s. (2.28)

Therefore:
R(t, s) = et−set−s = e2(t−s). (2.29)

Thus, the resolvent kernel for this example is:

R(t, s) = e2(t−s). (2.30)

Since e2(t−s) is a smooth function of class C∞(D), the solution u(t) = f(t) +

∫ t

0

e2(t−s)f(s)ds

belongs to C∞(I) as long as f(t) belongs to C∞(I).

18
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Hölder Space Definition
The Hölder space Cα(Ω) consists of continuous functions that satisfy the Hölder condition

of order α on an open set Ω ⊆ Rn. A function f : Ω → R belongs to Cα(Ω) if there exists a
constant C > 0 such that:

|f(x)− f(y)| ≤ C|x− y|α, ∀x, y ∈ Ω.

where α is the Hölder exponent, taking values in (0, 1]. When α = 1, the space C1(Ω)

consists of functions whose first derivatives are continuous (if bounded domain, implies Lipschitz
continuity)
. Theorem 2.2.2 : Assume that f ∈ Cm(I) and K ∈ Cm(D) with K(t, t) = 0 on I. Then:

For α ∈ (0, 1) and any m ≥ 1, the unique (continuous) solution of the weakly singular
Volterra integral equation

u(t) = f(t) +

∫ t

0

(t− s)α−1K(t, s)u(s)ds, t ∈ I,

lies in the Hölder space Cα(I) but not in C1(I) (unless f(0) = 0 and K(t, t) vanishes
sufficiently fast). More precisely, its regularity is given by

u ∈ Cm((0, T ]) ∩ C(I), with u′(t) ∼ Cαt
α−1 as t→ 0+,

where Cα is a nonzero constant (typically proportional to f(0)Γ(α)).

2.3 Definition of Weakly Singular Kernels

Weakly singular kernels are those that exhibit a mild singularity at t = s, making them inte-
grable while directly affecting the smoothness of solutions. These kernels are typically written
in the form:

Kα(t, s) = (t− s)α−1K(t, s), 0 < α < 1

where (t− s)α−1 represents the singular component, while K(t, s) is a smooth function over the
studied domain D = {(t, s)|0 ≤ s ≤ t ≤ T}.

This type of kernel appears in various physical and engineering applications, such as models
of materials with "long memory," where the present state depends on past values weighted by
a decaying kernel.

Effect of Weakly Singular Kernels on Solutions

Continuity of Solutions

From the previous discussion, we have seen that smooth kernels typically ensure that the
solution u(t) has the same smoothness as the input function f(t). However, when dealing with
weakly singular kernels of the form (t− s)α−1K(t, s), the solution u(t) is generally less regular
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than f(t), especially near t = 0. Specifically, even if f ∈ C∞(I) and K ∈ C∞(D), the solution
u(t) may not be differentiable at t = 0. It typically belongs to C(I) but its derivative might
behave like tα−1 near t = 0, which blows up as t→ 0+ since α− 1 < 0.

Behavior of the Solution as t→ 0+

One of the key aspects of weakly singular kernels is their impact on solution regularity near the
starting point t = 0. The solution may fail to be differentiable at t = 0 even if the initial function

f(t) is smooth. This behavior arises because the integral term
∫ t

0

(t − s)α−1K(t, s)u(s)ds

contributes a term behaving like tα to u(t), whose derivative behaves like tα−1.
Example:
Consider the integral equation:

u(t) = 1 +

∫ t

0

u(s)√
t− s

ds

Here, the kernel is of the form:

K(t, s) =
1√
t− s

= (t− s)−1/2

This corresponds to α =
1

2
, so α− 1 = −1

2
< 0.

This integral leads to a solution of the form:

u(t) ∼ t1/2

and thus:
u′(t) ∼ t−1/2

This means that the derivative blows up as t → 0, clearly illustrating the effect of weakly
singular kernels.

2.4 Definition of Bounded but Non-Smooth Kernels

In Volterra integral equations, a kernel is called bounded but non-smooth if it is bounded over
its domain but lacks sufficient smoothness (e.g., not continuously differentiable). This means
it may have discontinuities or sharp variations in its values or derivatives. A general form
involving such kernels might be combined with weak singularities, as studied in [2]:

u(t) = f(t) +

∫ t

0

(t− s)α−1K(t, s)u(s) ds, t ∈ I. (2.31)

where:
K(t, s) is a bounded function, but not necessarily in Cm(D) for m ≥ 1. The factor (t−s)α−1

introduces a weak singularity. The regularity of the solution u(t) will depend on the regularity
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of both f(t) and K(t, s), often inheriting the lowest regularity present.
Theorem 2.4.1 : Assume that f ∈ Cm(I) and K ∈ Cm(D), with K(t, t) ̸= 0 for t ∈ I.

Consider the equation:

u(t) = f(t) +

∫ t

0

(t− s)ν−1K(t, s)u(s) ds, t ∈ I. (2.32)

Then, for any integerm ≥ 1 and integer ν ≥ 1: If f ∈ Cm+ν−1(I) andK ∈ Cm+ν−1(D), then the
solution u of (2.32) lies in the space Cν−1,α(I) for some α ∈ (0, 1] (related to Holder continuity
of (ν − 1)-th derivative), and If f,K are sufficiently smooth (e.g., Cν), then u ∈ Cν(I) if
K(t, t) ̸= 0. The ν-th derivative might have a specific behavior near t = 0 depending on f (ν)(0)

and K(0, 0).
Theorem 2.4.2 (as originally stated): Assume that f ∈ Cm(I) and K ∈ Cm(D), with

K(t, t) ̸= 0 for t ∈ I. Then, for any m ≥ 1, the solution of (2.31) with ν ≥ 1 lies in the space
Cν−1,1−α(I), and

u(ν)(t) ∼ Cν,αt
α−1 as t→ 0+,

where Cν,α denotes some non-zero constant. (This statement likely applies to a more specific
form than (2.31) as written above, possibly involving fractional integrals or derivatives).

2.5 Kernels with Boundary Singularities

A representative example of a second-kind Volterra integral equation whose kernel contains
both diagonal (t = s) and boundary (s = 0) singularities is

u(t) = f(t) + (Vα,βu)(t), t ∈ I, (2.33)

where the operator Vα,β is defined as

(Vα,βu)(t) :=

∫ t

0

(t− s)α−1s−βK(t, s)u(s)ds, (0 < α < 1, 0 ≤ β < α). (2.34)

To ensure the integral converges and study regularity, we typically assume K ∈ C(D) and
often that K is smoother. We might assume K(t, t) ̸= 0 (non-vanishing on diagonal) and
K(t, 0) ̸= 0 (non-vanishing at boundary singularity source).

Theorem 2.5.1 : Assume that the kernel in (2.34) satisfies K ∈ C(D), K(t, t) ̸= 0,
K(t, 0) ̸= 0 for t ∈ I, and 0 < α < 1, 0 ≤ β < α. Then the VIE (2.33) possesses a unique
solution u in C(I) whenever f ∈ C(I). Moreover, if f ∈ Cm(I) and K ∈ Cm(D), the solution
u lies in Cm,α−β(I) (this is a more standard type of result, indicating Holder continuity), and
there exists a non-zero constant Cα,β so that

u′(t) ∼ Cα,βt
α−β−1 as t→ 0+.
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(Note: The exact Holder space and derivative behavior can be quite complex and depend
significantly on the interplay between α, β, and the behavior of K near s = 0 and s = t. The
original statements Cα+β and tα+β−1 should be verified with the source.)

Consequence of the Theorem (Based on Original Statement)

According to the theorem (as originally stated), if the function f is continuous on the interval
I, i.e., f ∈ C(I), then the solution u(t) is unique and belongs to the Hölder space Cα+β(I),
which means that the solution has a certain degree of smoothness but is not necessarily fully
differentiable, especially if α + β ≤ 1.

Regularity of the Solution (Based on Original Statement)

If f is more regular, i.e., f ∈ Cm(I), and if the kernel K is also more regular, i.e., K ∈ Cm(D),
then the solution u has higher regularity and belongs to the space Cm,α+β(I). In other words,
the solution becomes smoother; however, it is still not necessarily differentiable m+ 1 times at
t = 0 if α + β is not an integer.

Behavior of the Solution Near t = 0 (Based on Original Statement)

The theorem also states the existence of a non-zero constant Cα,β such that

u′(t) ∼ Cα,βt
α+β−1 as t→ 0+.

This provides insight into how the solution behaves as it approaches zero. Since the exponent
α + β − 1 may be negative (if α + β < 1), this implies that the first derivative of the solution
may blow up at t = 0, indicating that the solution does not belong to C1(I).

Example: Effect of Boundary Singularities

Consider the following Volterra integral equation of the second kind:

u(t) = 1 +

∫ t

0

(t− s)α−1s−βu(s)ds, (2.35)

where we choose α = 0.6 and β = 0.4. These values satisfy the conditions of Theorem 2.5.1,
namely 0 < α < 1 (i.e., 0 < 0.6 < 1) and 0 ≤ β < α (i.e., 0 ≤ 0.4 < 0.6).

Here, the forcing term is f(t) = 1, which is continuous (in fact, f ∈ C∞(I)). The integral
term corresponds to (Vα,βu)(t) with the smooth part of the kernel K(t, s) = 1. Since f(t) =
1 and K(t, s) = 1 are smooth functions (e.g., m = 0 for continuity, or m ≥ 1 for higher
smoothness), and K(t, t) = 1 ̸= 0, K(t, 0) = 1 ̸= 0, all conditions of Theorem 2.5.1 are met.

According to Theorem 2.5.1, the solution u(t) exists uniquely in C([0, T ]). The behavior of
its derivative near t = 0 is given by u′(t) ∼ Cα,βt

α−β−1.
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In this example, with α = 0.6 and β = 0.4: The exponent for the derivative’s behavior is:

α− β − 1 = 0.6− 0.4− 1 = 0.2− 1 = −0.8.

So, the derivative is expected to behave like:

u′(t) ∼ Cα,βt
−0.8 as t→ 0+.

This indicates that the derivative u′(t) blows up as t→ 0+, and thus the solution u(t) is not in
C1([0, T ]) at t = 0, even though it is continuous on [0, T ].

2.6 Integral Equations with Weakly Singular Kernels of

the Form (t2 − s2)−1/2

This study examines second-kind Volterra integral equations with weakly singular kernels, fo-
cusing on the equation:

u(t) = f(t) +

∫ t

0

(t2 − s2)−1/2K(t, s)u(s)ds, t ∈ I. (2.36)

The effect of choosing the kernel K(t, s) on the properties of the associated integral operator
is analyzed. If the kernel has the form K(t, s) = κs, where κ ̸= 0, then K(0, 0) = 0. In this
case, the corresponding integral operator is compact on C(I) with a spectrum consisting only
of zero. This ensures the existence of a unique continuous solution u ∈ C(I) for every f ∈ C(I).

However, when the kernel is constant, i.e., K(t, s) = κ ̸= 0, then K(0, 0) ̸= 0. The
operator becomes non-compact on C(I) and has an uncountable spectrum ([−λ0, λ0] for some
λ0), potentially leading to a loss of uniqueness if 1 is in the spectrum. Uniqueness depends on
whether 1 is an eigenvalue of the operator.

It is shown that if the equation possesses a unique solution, it inherits the regularity of f
and K. A special case where K(t, s) = λs is also examined using the Picard iteration method
(successive approximations), leading to the determination of the resolvent kernel R(t, s;λ) in
terms of the Mittag-Leffler function.

Theorem 2.6.1 : Assume that f ∈ Cm(I) and K ∈ Cm(D) for some m ≥ 0. Consider the
VIE (2.36). Then:

(a) If K(0, 0) = 0, the integral equation (2.36) has a unique continuous solution u ∈ C(I).
Furthermore, u ∈ Cm(I).

(b) If K(0, 0) ̸= 0, the continuous solution is unique if and only if 1 is not an eigenvalue of
the Volterra integral operator associated with equation (2.36):

(V u)(t) :=

∫ t

0

(t2 − s2)−1/2K(t, s)u(s)ds. (2.37)
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If equation (2.36) has a unique solution, then it belongs to Cm(I).

Proof using Successive Approximation (Case K(t,s) = λ s)

Consider the Volterra integral equation:

u(t) = f(t) + λ

∫ t

0

(t2 − s2)−1/2su(s)ds, t ∈ I. (2.38)

Here K(t, s) = λs, so K(0, 0) = 0. Case (a) of the theorem applies, guaranteeing a unique
solution. We can construct it using successive approximations.

We define the sequence of approximations un(t) as follows:

• Initial step: Start with the initial approximation:

u0(t) = f(t). (2.39)

• Iteration step: Compute un+1(t) using:

un+1(t) = f(t) + λ

∫ t

0

(t2 − s2)−1/2sun(s)ds. (2.40)

Step 1: Proving the sequence {un(t)} converges

Let V be the integral operator: (V u)(t) = λ

∫ t

0

(t2 − s2)−1/2su(s)ds. Then u1 = f + V u0,

u2 = f + V u1 = f + V (f + V u0) = f + V f + V 2f , and generally un =
n∑

k=0

V kf . The solution

is u =
∞∑
k=0

V kf . We need to show this series converges. Since K(0, 0) = 0, the operator V

is compact on C(I). We can show convergence using bounds on iterated kernels or operator
norms in weighted spaces. For Volterra operators on C[0, T ], the spectral radius is typically 0,
ensuring convergence of the Neumann series

∑
V kf for all λ.

Convergence can be shown by bounding the operator norm. Let M = sup |K(t, s)| =

sup |λs| = |λ|T . Let L be the bound for the singular part
∫ t

0

(t2 − s2)−1/2ds =

∫ 1

0

(1 −

z2)−1/2tdz = t arcsin(1) =
π

2
t. The norm ∥V n∥ can be shown to decay faster than any geometric

progression, ensuring convergence. Specifically, ∥(V kf)(t)∥ ≤ Ck tkϵ

Γ(1 + kϵ)
∥f∥ for some C, ϵ >

0, leading to uniform convergence on [0, T ].

Step 2: Proving the regularity of the solution

If f ∈ Cm(I), we need to show u ∈ Cm(I). Since u = f + V u, if u ∈ Ck(I), then V u involves
integrating su(s) against a kernel. If K ∈ Cm, the regularity of V u is related to the regularity
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of u. For K(t, s) = λs, which is C∞, and the kernel (t2 − s2)−1/2, the operator maps Ck(I) to

Ck(I). u0 = f ∈ Cm(I). u1 = f + V u0. Since u0 ∈ Cm, V u0 involves
∫ t

0

(t2 − s2)−1/2sf(s)ds.

Differentiating this requires care due to the singularity. It can be shown that V u0 ∈ Cm(I).
By induction, if un ∈ Cm(I), then un+1 = f + V un ∈ Cm(I). Since the convergence un → u

is uniform, and if the derivatives also converge uniformly, the limit u will be in Cm(I). This
holds for this type of equation.

Conclusion

Thus, we have established the existence and uniqueness of u(t) in C(I) and shown that if
f ∈ Cm(I) (and K ∈ Cm(D), which holds for K = λs), then the solution u(t) belongs to
Cm(I), completing the proof outline for case (a) applied to K(t, s) = λs.
Note: In a metric space (X, d), we say that the space is complete if every Cauchy sequence
in X converges to a limit that is also in X.

1. Metric Properties: A function d : X ×X → [0,∞) is a metric if for all x, y, z ∈ X:

• Non-negativity & Identity of Indiscernibles: d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒
x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z).

2. Completeness: The metric space (X, d) is said to be complete if every Cauchy sequence
converges in X.

• A sequence {xn} in X is Cauchy if for every ϵ > 0, there exists an integer N such
that d(xn, xm) < ϵ for all n,m > N .

• Completeness means that for any such Cauchy sequence {xn}, there exists a limit
x ∈ X such that lim

n→∞
d(xn, x) = 0.

The space C(I) with the sup-norm ∥u∥∞ = sup
t∈I

|u(t)| is a complete metric space (it’s a

Banach space).

Remark : The regularity of solutions of the related VIEs

u(t) = f(t) +

∫ t

0

p(t, s)K(t, s)u(s)ds, t ∈ I, (2.41)

and

u(t) = f(t) +

∫ t

0

q(t, s)K(t, s)u(s)ds, t ∈ I, (2.42)

where
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CHAPTER 2. REGULARITY OF THE SOLUTION INTEGRAL

p(t, s) := π−1/2(log(t/s))−1/2stµs−1 = π−1/2(log(t/s))−1/2tµ, (2.43)

and

q(t, s) := stµs−1 = tµ, (2.44)

with µ > 0, was analysed in Han (1994). As shown in Diogo, McKee & Tang (1991),
the above VIEs are closely related: (2.42) can be obtained from (2.41) by a simple change of
variables. A typical result states that the VIE (2.41) with p(t, s) as in (2.43) and µ > 1, and
with f ∈ Cm(I), K ∈ Cm(D) (m ≥ 1) has a unique solution u ∈ Cm(I). In other words,
for such a weakly singular VIE, the solution inherits the regularity of the data on the closed
interval I.
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Chapter 3
Applications of Volterra Integral Equations

3.1 Application Example: The Renewal Equation as a Lin-

ear Volterra Integral Equation

The Renewal equation, which is a classical model in population dynamics and reliability
theory, is given by:

u(t) = f(t) +

∫ t

0

k(t− s)u(s) ds = f(t) +

∫ t

0

k(s)u(t− s) ds, t ≥ 0, (3.1)

where:

• u(t) denotes the exit rate (e.g., death rate or service completion rate) at time t,

• f(t) is the exit rate from the initial population,

• k(s) is the probability density function of the lifetime s, i.e., the probability that an

individual exits the system at age s , so that k(s) ≥ 0 and
∫ ∞

0

k(s) ds = 1, as k represents

a probability distribution. .
This equation serves as a fundamental case upon which more complex models, such as
nonlinear or delayed models, are built. Regularity analysis in this case is clear and
tractable, offering a solid benchmark for exploring how changes in the kernel k(t) affect
the solution in more general cases. A dedicated section may be included to investigate
different kernel types(smooth, weakly singular, or irregular)and their effect on the solution
using this model.

3.1.1 Equation Properties

This equation is characterized by the following properties:

• It is linear, since u(t) appears only linearly.

• It is a Volterra integral equation of the second kind, as u(t) appears both inside
and outside the integral.
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CHAPTER 3. APPLICATIONS OF VOLTERRA INTEGRAL EQUATIONS

• It has a convolution kernel, since k(t− s) depends only on the difference (t− s).

3.1.2 Regularity Analysis

To analyze the regularity of the solution:

• If k ∈ C∞([0, T ]) and f ∈ C∞([0, T ]), then the solution u(t) ∈ C∞([0, T ]).

• If k is continuous or piecewise smooth, then the regularity of u depends on that of k and
f via successive approximations.

• A Neumann series (successive approximations) can be used to construct the solution:

u(t) = f(t) +

∫ t

0

k(t− s)f(s) ds+

∫ t

0

k(t− s)

(∫ s

0

k(s− τ)f(τ) dτ

)
ds+ · · · (3.2)

This representation facilitates numerical and theoretical analysis of the solution.

In this figure:
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Figure 3.1: Graphical representation of the renewal equation and its components.

• The dashed curve represents f(t) = e−t, which is the exit rate of individuals who were
originally present in the system at time t = 0.

• The dotted curve corresponds to k(t) = 2e−2t, a probability density function representing
the likelihood that an individual leaves the system exactly t units of time after entering.

• The solid curve shows u(t), the total exit rate at time t. This function combines the
immediate exits from the initial population (f(t)) and the delayed exits from individuals
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CHAPTER 3. APPLICATIONS OF VOLTERRA INTEGRAL EQUATIONS

who entered the system at earlier times and are now leaving according to the distribution
k.

Example: Linear Volterra Equation in Heat Transfer Modeling

Equation:

u(t) = f(t) +

∫ t

0

K(t− s)u(s) ds, t ∈ [0, T ]

This equation represents a simplified mathematical model for heat transfer in a rod, where
the temperature at a given moment depends on both an external heat source and the cumulative
effect of previous temperatures.

• u(t): the temperature at a specific point in the rod at time t.

• f(t): the external heat input (directly applied heat at time t).

• K(t − s): the memory kernel, which describes the material’s response to heat over the
interval from time s to t, such as heat retention or diffusion rate.

• The term
∫ t

0

K(t−s)u(s) ds: represents the cumulative effect of past temperature states

weighted by the material response.

Specific Kernel Choice (optional extension): If we choose the kernelK(t−s) = e−(t−s),
the equation becomes:

u(t) = f(t) +

∫ t

0

e−(t−s) u(s) ds

This form is consistent with the theory discussed in the chapter on smooth kernels, and its
solution can be analyzed using the resolvent kernel method.

We consider the linear Volterra equation of the second kind, commonly known as the renewal
equation:

u(t) = f(t) +

∫ t

0

k(t− s)u(s) ds

with the given functions:
f(t) = e−t, k(t) = 2e−2t

Our goal is to determine the solution u(t) using the Laplace Transform method.
Taking the Laplace transform of both sides of the equation:

L[u](p) = L[f ](p) + L[k ∗ u](p)
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Using the convolution property:

L[k ∗ u](p) = L[k](p) · L[u](p)

So the equation becomes:

L[u](p) = L[f ](p) + L[k](p) · L[u](p)

Solving for L[u](p):

L[u](p)(1− L[k](p)) = L[f ](p) ⇒ L[u](p) = L[f ](p)
1− L[k](p)

L[f ](p) = L[e−t] =
1

p+ 1
, L[k](p) = L[2e−2t] =

2

p+ 2

Substituting into the formula:

L[u](p) = 1

p+ 1
· 1

1− 2
p+2

=
1

p+ 1
· p+ 2

p
=

p+ 2

p(p+ 1)

We decompose:
p+ 2

p(p+ 1)
=
A

p
+

B

p+ 1

Solving for A and B gives:
p+ 2 = A(p+ 1) +Bp

Substitute specific values:

p = 0 ⇒ A = 2 , p = −1 ⇒ B = −1

Hence:
L[u](p) = 2

p
− 1

p+ 1

Taking the inverse Laplace transform yields:

u(t) = 2− e−t

Final Result

u(t) = 2− e−t

This result represents the exact solution to the renewal equation, and may be compared
with approximations obtained via the Neumann series.
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3.2 Migration and Mortality Model: Volterra Equation

with a Non-smooth Kernel

We consider a population model where the size varies due to migration and mortality. It is
described by the following Volterra integral equation:

u(t) = f(t) +

∫ t

0

k(t, s)u(s) ds, t ∈ [0, T ], (3.3)

where:

• u(t) represents the number of individuals in the population at time t,

• f(t) is the number of initial individuals who have survived up to time t,

• k(t, s) is a kernel function representing the demographic changes (due to migration or
mortality) occurring between times s and t.

The significance of this model lies in its presentation of a linear case with a non-smooth kernel,
enriching the theoretical study on how the kernel’s regularity affects the solution. It illustrates
the contrast between smooth and weakly singular kernels in both analytical and numerical
analysis. This model provides a realistic and mathematically tractable example that can be
extended to more complex nonlinear models in later sections.
A typical example of the kernel is:

k(t, s) =
α

t− s
, with α > 0,

which is a weakly singular kernel due to the singularity as s→ t.

3.2.1 Equation Properties

• The equation is linear, as u(t) appears linearly inside and outside the integral.

• It is of the second kind.

• The kernel k(t, s) is not smooth at s = t, and may exhibit a weak singularity.

3.2.2 Regularity Analysis of the Solution

• If f ∈ Cr([0, T ]), the regularity of u(t) depends on the smoothness of the kernel:

– If k(t, s) is smooth in the triangle 0 ≤ s ≤ t ≤ T , then u(t) ∈ Cr([0, T ]).

– If k(t, s) has a weak singularity (e.g., k(t, s) ∼ 1

t− s
), then u(t) may lose regularity

near t = 0.

• Existence and uniqueness of the solution are guaranteed in function spaces such as
L2([0, T ]) or C([0, T ]), even in the presence of weak singularities in the kernel.
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Example

Consider the Volterra integral equation:

u(t) = f(t) +

∫ t

0

1

t− s
u(s) ds,

where the forcing function is given by f(t) = 1. The kernel

k(t, s) =
1

t− s

has a weak singularity at s = t, while f(t) is constant and continuous. This equation can be
interpreted as describing the number of individuals at time t, where the value evolves due to
the initial constant population f(t) and a cumulative demographic effect represented by the
integral term.

Example

Find an approximate solution to the Volterra integral equation:

u(t) = 1 +

∫ t

0

1

t− s
u(s) ds

using the iterative approximation method (Neumann series). Compute u0(t) and u1(t).

Solution

We begin with the initial approximation:

u0(t) = f(t) = 1.

Next, we compute u1(t) by substituting u0(t) into the integral:

u1(t) = 1 +

∫ t

0

1

t− s
u0(s)ds

= 1 +

∫ t

0

1

t− s
· 1ds

= 1 +

∫ t

0

1

t− s
ds.

We perform a change of variable for the integral I =

∫ t

0

1

t− s
ds: Let v = t− s, then dv = −ds.

When s = 0, v = t. When s = t, v = 0. Rewriting the integral:

I =

∫ s=t

s=0

1

t− s
ds =

∫ v=0

v=t

1

v
(−dv) =

∫ t

0

1

v
dv.
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Evaluating this definite integral:∫ t

0

1

v
dv = [ln |v|]t0 = ln |t| − lim

v→0+
ln |v|.

Since lim
v→0+

ln |v| = −∞, the integral I diverges to +∞ for any t > 0. The integral
∫ t

0

1

t− s
ds

does not evaluate to ln(t); instead, it is a divergent integral.
Therefore: The calculation for u1(t) involves a divergent integral.

Result

u0(t) = 1. The first-order term u1(t) cannot be represented as 1 + ln(t) because the integral∫ t

0

1

t− s
ds diverges. This means that the first-order approximation, as calculated by this direct

iterative step, is not a finite function. The nature of the singularity in the kernel 1/(t − s)

prevents a straightforward evaluation of u1(t) using this method.

Aspect Renewal Model Migration and Mortality
Model

Volterra Equation u(t) = f(t)+

∫ t

0

k(t−s)u(s) ds u(t) = f(t) +

∫ t

0

k(t, s)u(s) ds

Kernel Type Smooth kernel depending only
on t− s

Non-smooth (weakly singular)
kernel depending on t and s

Example of Kernel k(t) = 2e−2t k(t, s) =
α

t− s
, α > 0

Regularity The solution u(t) is smooth if
f and k are smooth

The solution may lose regular-
ity near t = 0

Solution Methods Analytical methods such as
Neumann series and Laplace
transform

Requires advanced analytical
or numerical techniques

Application Mean-
ing

Models the time until exit or
death after entering a system

Models population change over
time due to cumulative migra-
tion and mortality

Table 3.1: Comparison between the Renewal Model and the Migration-Mortality Model in terms
of their Volterra integral equation structure, kernel properties, and analytical implications.
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Conclusion

In this thesis, we explored the field of integral equations, focusing specifically on linear Volterra
equations of the second kind due to their significant role in the mathematical modeling of
dynamic systems. We began by analyzing the ideal case where the kernel is smooth, a setting
that typically allows for regular solution behavior and facilitates theoretical analysis.

We then examined more challenging cases where the behavior of the solution becomes more
sensitive to the nature of the kernel, such as weakly singular kernels and kernels with boundary
singularities. We highlighted how these features influence the regularity of the solution and
discussed theoretical results that help to better understand these scenarios.

Our work extended beyond theoretical aspects, as we also linked these concepts to practi-
cal applications, most notably the renewal equation, which appears in several areas including
statistics and biology. In some examples, we made use of the Laplace transform as a tool to
simplify the solving process and analyze the structure of the equation.

The thesis concludes with a collection of theoretical exercises aimed at reinforcing the
reader’s understanding and encouraging deeper engagement with the material. We hope this
work contributes to clarifying fundamental aspects of this important topic and serves as a
helpful introduction for anyone interested in further studying this rich and complex field.
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اिऻڪٌۘ
਍ಾ؇وܳٷ؇ اৎ৊ڍாணة، ۱ڍه ሒᇭ وا୒ୖٷڎݿ٭۰. ۰ਃಮ؇ل ଩ଃاܳڰ اܳޙިا۱ݠ ݆݁ اܳأڎࢴࣖ ۰༥ڍஓ஁ ሒᇭ ۰݄ዛᔻ أداة اܳٺႤၽܹ݁٭۰ اৎ৊أ؇د৖৑ت ّأڎ
ܳޚٴ٭أ۰ ਊಾأً؇ اࠍ੆ߺࠊل اਐ಻ޙ؇݁٭۰ ودرݿٷ؇ ،ሒᇃ؇اܳټ اܳٷިع ݆݁ اࠍ੅ޚ٭۰ ڣިܳٺଫଃا ݁أ؇د৖৑ت আॻ༟ ଩ଃ܋ଫଐܳا ؕ݁ ا৙৑ݿ؇ݿ٭۰ اৎ৊ڰ؇۱ࡗࡲ
واݿٺ༱ڎ݁ٷ؇ اܳٺ༶ڎࢴࣖ، ᄭᄟ݁أ؇د ݁ټܭ ᆇᅦܹ٭۰ ّޚٴ٭گ؇ت ؜ਵݪٷ؇ პაႰ اܳٺڰݠد. ذات اܳٷިى ሌᇿإ اৎ৊ܹފ؇ء اܳٷިى ݆݁ اܳٷިاة،

واܳٺޚٴ٭ࠔࠫ. اܳٷޙݠي اܳڰ۳ܾ ّأݞز દઊر؇റണ೴ اৎ৊ڍாணة واۊٺٺ݄ٷ؇ اܳٺ༲؇ܳ٭ܭ، ًأݥ ܳٺྟފ٭ޔ ఈఃً৖৑س لܭ ިොູ
اܳٺႤၽܹ݁٭۰. اৎ৊أ؇د৖৑ت ڣިܳٺଫଃا, ݁أ؇د৖৑ت اܳٷިاة, اৎ৊ڰٺ؇ۋ٭۰: اగၵၽܳ؇ت

Abstract

Integral equations are an important tool for modeling many physical and engineering
phenomena. In this thesis, we addressed the fundamental concepts with a focus on linear
Volterra equations of the second kind, and we studied the regularity of solutions depend-
ing on the nature of the kernel, from smooth kernels to singular ones. We also presented
practical applications such as the renewal equation, used the Laplace transform to simplify
some analyses, and concluded the thesis with exercises that reinforce both theoretical and
practical understanding.
Keywords: Kernel, Volterra equations, Integral equations.

Résumé

Les équations intégrales sont un outil important pourmodéliser de nombreux phénomènes
physiques et techniques. Dans ce mémoire, nous avons abordé les concepts fondamen-
taux en mettant l'accent sur les équations de Volterra linéaires du second type, et nous
avons étudié la régularité des solutions en fonction de la nature du noyau, des noyaux
réguliers aux noyaux singuliers. Nous avons également présenté des applications pra-
tiques telles que l'équation de renouvellement, utilisé la transformée de Laplace pour
simplifier certaines analyses, et conclu le mémoire par des exercices renforçant la com-
préhension théorique et pratique.
Mots clés: Noyau, Volterra linéaires, Equations intégrales.


	Dedication and Acknowledgements
	Thanks
	Contents
	List of Figures
	Notation
	Introduction
	Integral Equations
	Types of integral equations
	The Relationship Between Differential Equations And Integral Equations
	Notions about operators

	Regularity of The Solution of Volterra Integral Equation
	Existence And Uniqueness of The Solution of A Volterra Integral Equation of The Second Kind
	Volterra Integral Equations with Smooth Kernels
	Definition of Weakly Singular Kernels
	Definition of Bounded but Non-Smooth Kernels
	Kernels with Boundary Singularities
	Integral Equations with Weakly Singular Kernels of the Form (t2 - s2)-1/2

	Applications of Volterra Integral Equations
	Application Example: The Renewal Equation as a Linear Volterra Integral Equation
	Equation Properties
	Regularity Analysis

	Migration and Mortality Model: Volterra Equation with a Non-smooth Kernel
	Equation Properties
	Regularity Analysis of the Solution


	Conclusion
	Bibliography

