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A otrser

This thesis focuses on the study of Hopf bifurcation in delay differential equations (DDEs),
which depend on both the current and past states of the system. The work aims to examine
the existence and uniqueness of solutions, and to analyze linear and nonlinear stability using
tools such as the characteristic equation and Lyapunov functions, in addition to adopting a
geometric approach to the analysis. The study focuses on the conditions under which Hopf
bifurcation occurs and shows how changes in parameters can lead to the emergence of limit
cycles. The theoretical part is supported by numerical applications that illustrate the system’s
behavior before and after the bifurcation.

Keywords: Delay Differential Equations, History Function, Stability Analysis, Hopf Bifurcation.
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Notations

— ODEs Ordinary differential equations.

— DDEs Delay differential equations.

- y(t) The state of the system at time ¢.

— y(t—1) The state of the system at a previous time t — 7.
- T The delay.

—t—7 The time at which the function was in the past.
— () The history function.

- D(\) The transcendental characteristic equation.

- R(N) The real part of a complex number .

-V Lyapunov function.

- Y A past state of the system.

— fhe Parameter at which a Hopf bifurcation occurs.

RFDE Retarded Functional Differential Equation.
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Introduction

Differential equations are fundamental tools in the mathematical modeling of natural phe-
nomena and dynamic systems in various fields such as physics, economics, biology, and engi-
neering. While ordinary differential equations (ODEs) have achieved great success in this field,
their reliance solely on the current state of the system often proves insufficient to accurately
represent many real-world systems that are influenced by past states, such as epidemic models,
neural networks, and control systems.

This deficiency has led to the emergence of delay differential equations, which depend on
both the current and past states of a system. By incorporating delay, these equations offer
a more realistic description. Delay differential equations (DDEs) have been widely used in
modeling physical and biological phenomena that exhibit time delays in their dynamics. For
instance, DDEs are commonly used to model the dynamics of populations with time delays
in their reproduction, the spread of infectious diseases with incubation periods [9]. Delay
differential equations were initially introduced in the 18th century by Laplace and Condorcet.
However, the rapid development of the theory and applications of those equations did not come
until after the Second World War, and continues today|6].

They have development over history, especially in the year 1908, during the international
conference of mathematicians, picard emphasized the significance of accounting for past effects
when constructing models of physical systems, and In 1931, Volterra wrote a fundamental
book on the role of hereditary effects on models for the interaction of species. DDEs gained
momentum post 1940, driven by engineering and control challenges. During the 1950’s, there
was considerable activity in the subject which led to important publications by Myshkis (1951),
Krasovskii (1959), in the 1960’s, Bellman and Cooke (1963), Halanay (1966)[9].

Among the critical dynamical phenomena observed in such systems is Hopf bifurcation,
which marks a qualitative change in the system’s behavior. At a Hopf bifurcation point, a
slight variation in a parameter can cause the system to transition from a stable steady state
to exhibiting periodic oscillations. This phenomenon is particularly important in the study of
stability and the effects of time delays on system dynamics.

The motivation for studying Hopf bifurcation in DDEs stems from the desire to understand
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the emergence of oscillations in real systems with memory, such as glucose-insulin regulation
and population dynamics, where time delays play a crucial role in shaping long-term system
behavior and stability.

This thesis aims to explore the behavior of delay differential equations near Hopf bifurca-
tion points by analyzing stability, deriving the conditions under which the bifurcation occurs,
and providing mathematical interpretation through rigorous analytical tools. We place special
emphasis on the role of delay as a control parameter that may destabilize the system and lead
to the formation of limit cycles.

The work is structured into two main chapters. In the first chapter, we introduce the
fundamental concepts of delay differential equations, including their definition and resolution
methods such as the method of steps and Laplace transform with a focus on existence and
uniqueness theorems. Additionaly we study the nature of solutions by analyzing stability in
both linear and nonlinear cases using the characteristic equation and Lyapunov functions,
respectively. Finally, we highlight the impact of delay on system stability.

In the second chapter, we will focus on Hopf bifurcation. We begin by presenting the
general concept and types of bifurcation, then focus on the Hopf bifurcation theorem, and
present bifurcation diagrams that show how the behaviour of the system changes as the coeffi-
cients change. The chapter concludes with numerical simulations of one- and two-dimensional

systems, providing a deeper understanding of the dynamics of limit cycle emergence.



Chapter

Preliminaries and Basic Properties

In many scientific applications, such as biology, medicine, economics and chemistry, phenomena
are often modeled using ordinary or partial differential equations, where it is assumed that the
future state of a system depends only on its current state, without any influence from the past.
However, this assumption is not always accurate, as many real-world processes are affected by
previous states. For example, in epidemic models, an individual infected with a virus does not
become infectious immediately but goes through an incubation period before showing symptoms
or transmitting the disease. Therefore, it is essential to use more realistic models that account
for the influence of past states on the system’s evolution, leading to the development of the
theorem of delay differential equations [1].

In this chapter, we provide a formal definition of delay differential equations and discuss their
fundamental properties. We also explore solution methods, the existence and uniqueness of

solutions, stability analysis.

1.1 General Results on Delay Differential Equations (DDEs)

1.1.1 Definition of DDEs

Definition 1.1.1 Delay differential equations(DDEs) are equations in which the change
of state depends on time t, the present state y(t), and the past state y(t — 1), where the delay T
is constant [7]. They are also called difference-differential equations and are considered a type

of functional differential equations[6]. They have the form :

y(t) = f(t,yt),y(t —71)) for t>ty, yeR" (1.1)
where T > 0 is the delay term and f : R x R*™ — R"™ is a given function/Y].

Remark 1.1.1 :

e FEquation (1.1) is a first-order delay differential equation.
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o [f7 =0, then the equation (1.1) becomes an ordinary differential equation (ODE).

o [f equation (1.1) does not explicitly contain t, i.e

y(t) = fly@),y(t —71)) for t=to, yeR",
we call it an autonomous constant delay DDE.

The use of delay differential equations (DDE) creates more realistic models that arise in many
fields such as (biology, chemistry, physics, economics and neuroscience..). There are different

types of DDEs where the delay takes various forms :
Definition 1.1.2 (Types of DDEs) [9]

1. If 7 is constant, the equations are called delay differential equations with constant delay,

see equation (1.2).

2. If T depends on time, T = 7(t), we are talking about DDEs with time-dependent delay, see
equation (1.3).

3. If T depends on y(t), T = 7(t,y(t)), we are talking about DDEs with state-dependent delay,
see equation (1.4).

There are other types of DDEs (such DDEs with distributed delays etc, DDFEs of neutral
type, etc...).

Example 1.1.1 :

1. (Mackey-Glass equation)A model of circulating white blood cell numbers

y(t —17)

Ty eR. 1.2
1+y(t—1)" Y (12)

y(t) = —yy(t) +

2. (Pantograph equation) Originates from modelling pantographs
y(t) = ay(t) + by(kt), yeR", (1.3)
where a, b and k are parameters with k €]0,1[, and kt =t — 7(t) = 7(t) = (1 — k)t.
3. (Sawtooth equation) A model problem introduced by Mallet-Paret and Nussbaum
ey(t) = —yy(t) — ky(t —a—cy(t)), yeR", (1.4)

where €,a,c > 0 and v+ k > 0. This model gets its name from stable period solutions

seen in € — 0 limit, and t — a+ cy(t) =t — 7(t,y(t)) = 7(t,y(t)) = a + cy(t).
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1.1.2 Existence and uniqueness of an initial value problem

In ordinary differential equations (ODEs), the initial value is used because it is neces-
sary to determine a unique solution to the equation, thus transforming it into an initial value
problem (or Cauchy problem). From this perspective, we conclude that it is also essential to
provide the initial value in delay differential equations (DDEs) to determine a unique solution,

thus transforming it into an initial value problem. What do we mean by the solution?

Definition 1.1.3 (Solution of DDE) A solution y(t) of system (1.1) is a continuous function
that satisfies the delay differential equation (1.1).

Definition 1.1.2.1 (History function) The history function in the delayed differential equa-
tions (1.1) represents the values of the function at previous points of time ( the past values of

the solution)
y(t) = o(t), telto— Tt

which provides the information required to calculate the derivative at the present time.
The history function determines the initial conditions of the delayed differential equations. In

this example, we will demonstrate why the history function was chosen as an initial condition
for DDE.

Example :[9] We consider the following ordinary differential equation:
dy
— =1ry(t 1.5
Wy, (15

where r > 0 is the growth rate.
This model predicts that the population will either grow or decline exponentially. Since the

past affects the present, we consider the following DDE:

dy _

i ry(t — 1), (1.6)

1. The term ry(t — 7) represents the population growth rate at time ¢, which depends on

the population size y(t — 7) at a previous time t — 7.

2. Here 7 is the delay and it accounts for the time it takes for changes in resource availability

to affect population growth.

By integrating (1.6), we obtain the following integral equation:

o) =ytto) + [ (s - 7)ds,

to
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Change of variable : s —7T=s=ds=ds,s —t=—s=t—7end s — tg = s=1ty— 7.

t—1

o) =vlto) + [ ryls)ds (17)
to—T

From equation (1.7), we conclude that to compute y(t) for ¢t > ty, knowing only the value of

y(to) is not sufficient, we also need to know the values of y(t) for ¢t € [ty — 7, 1]

Therefore, the initial conditions used in DDEs are different from those used in ODEs. In

DDEs, an initial function must be specified over a certain interval of length 7, specifically on

t € [ty — 7,1o], and then we attempt to find the solution of equation (1.1) for all ¢ > t,.

Definition 1.1.4 (The initial value problem) The problem involves finding a solution y(t)
that satisfies:

y(t) - f(tvy(t)ay(t o 7—))’ t> Lo, y e Rna

where 7 > 0 is the fized delay, with an initial condition given on an earlier time interval:

y(t) = (1), t € [to — T, to).
Is called the initial value problem (IVP) for the differential delay equation.

gty = flty@),y(t—7)), t=to 7>0, yeR"

(1.8)
y(t) = o(t), t e Jo[to — T, o).

(IPV) {

The solution of the delay differential equation (1.1) with the initial condition p(t) is denoted by
y(t,e).

Theorem 1.1.2.1 Let 7 > 0 be a constant in J = [to,to + a], where tg > 0 and a > 0. Let’s
consider the initial value problem (1.8). Assume that f(t,y,x) and f,(t,y,z), f.(t,y,z) are
continuous on R x R* and ¢ is a given continuous function on R. Then the initial value

problem (1.8) has exactly one solution.

1.1.3 Analytical resolution of DDEs

The methods for solving delay differential equations vary depending on the type of delay and
the nature of the equation, whether it is linear or nonlinear. Finding the solution can be com-
plex in some cases. Therefore, in this section, we will present two fundamental methods for

solving certain delay differential equations, with illustrative examples for each.

1. Method of Steps : This method is primarily used to solve linear or simple delay differ-
ential equations with a constant delay. Its main idea is to convert delay differential equations
into a series of ordinary differential equations over small time intervals, where the solution in

each state interval depends on the solution in the previous intervals.

6
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1. First step, we solve DDE in the interval [ty,to + 7] using the history function (initial

condition).

2. Second step, we use the solution obtained from the first step as an initial condition to
find the solution in interval [ty + 7, to + 27].

3. We continue repeating the same method to find the solution in interval
[to—F(k—l)T,to—i—k‘T] (k:3,4,...).

By following these steps, a unique solution to the initial value problem(1.8) can be determined.

2. Laplace Transform : The main idea of this method is to transform delay differential
equations into algebraic equations using Laplace transforms. This method is specifically appli-

cable to linear delay differential equations with constant delay.
1. First, we apply the Laplace transform to the delay differential equation (DDE).

2. Second, we solve the resulting algebraic equation using the properties of the Laplace

transform.
3. Finally, we use the inverse Laplace transform to find the solution y(¢) in the time domain.

Properties 1.1.1 The Laplace transform has the following properties:

(a) Lly@)](s) =Y (s).

(b) Lly(t —71)](s) =e " {/ e lo(t)dt + Y (s)|, where 7 > 0.

—T

(e) £[2)(s) = ~y(0) + Y (5).

(d) YA,  L[Ay(t)](s) =AY (s).

Example:

Consider a delayed differential equation given by

% = ) +3y(t—1), t>0. (1.9)
y(t) = ¢, vVt € [-1,0].

We want to solve this example using the method of steps and the Laplace transform.

1. We apply the steps method to equation (1.9).
For all t € [0, 1], we integrate (1.9) on the interval [0, ¢] leading to:

o) =00) =2 [ s +3 [ ols - s,

7
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Change of variable : s=s-1,

Where, t € [0, 1]: 3
ymwzymy—;éy¢@@+s/° y(5)ds.

-1

We repeat the same step to find of y(¢) on the intervals [1, 2],

o) =y =2 [ ols)ds +3 [ o~ 1y,
o) -2 [uoris 43 [ ylsgas,

=y (1) — 2 /j y(s)ds + 3 /OH y1(s)ds,

y(t) =ya(t).
Where, t € [1,2]:

y2(t) =y (1) — 2/1 Ya(s)ds + 3/0 : y1(s)ds.

yr(t) can be calculated in the same way on the intervals [(K — 1), K], for all £ = 3,4, .. ..
Where,t € [(K — 1), K]:

t t—1

yr(s)ds + 3/ Yr—1(s)ds.

K-2

ymwzmew—Q/

K-1

The solutions obtained using the method of steps above are plotted in Figure 1.1, using

the MATLAB solver dde23.
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Figure 1.1: Exact solution of (1.9) using the method of steps.

2. We apply the Laplace transform method to equation (1.9).
Applying the Laplace transform to both sides of equation (1.9), we obtain:

E[%](S) = L[=2y(t) + 3y(t = 1](s), (1.10)

by using the linear properties of the Laplace transform.

E[%](S) = —2L[y(®)I(s) + 3Ly (t = D](s). (1.11)

After substituting (a), (b), and (c) into (1.11), we obtain.

—y(0) + sY (s) = = 2Y(s) + 3L[y(t — 1)](s),

3e™s  3e! .
=—-2Y(s)+ 1—s+s—1 +3e7°Y (s),
3 -1 _ _—s
sY(s) +2Y(s) —3e°Y(s) =1+ <€—1€),
8 J—
3 -1 _ _—s
G - )
Y(s) = 5=
(s) 5+2—3e"®
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Where B .
e’ e”
t—1 = Y (s).
Lyt~ D)(s) = 1= + eV (s)
To find y(t), we apply the inverse Laplace transform.
_1 N 3(e? —165) 1
LY (s)](t) =L 5= t
V()]0 —==1 ),
_1 N 3(e? —16 )]
t) =L 5= t).
y(t) s+2—3es ®)

The inverse Laplace transform is difficult to find Because of the presence exponentials

e ®.

Comparison Between the Method Steps and the Laplace Transform Method :

1. Method of Steps : It’s an easy-to-understand method that calculates the solution step by
step over each time interval. We use past values to find new values, which is why it is very
suitable for numerical and graphical applications. Its advantages include accurate results that
can be easily represented graphically.

2. Laplace Transform : In the Laplace method, we transform the differential equation into a
simpler algebraic form that is easier to manipulate mathematically, using the Laplace trans-
form. This allows us to solve equations in a systematic and clear manner, especially in cases
involving initial conditions. However, while this method is theoretically powerful, returning
to the original solution in real time (i.e., finding the inverse transform) can be complex and
difficult, especially if the resulting function contains unfamiliar exponential or fractional terms.
Therefore, despite its great usefulness in analysis, the Laplace method is not always practical

for numerical calculations or when representing solutions graphically.

1.2 Stability of Delay Differential Equations (DDEs)

In this section, we study the stability analysis of equilibrium points in autonomous delay differ-
ential equations, whether linear or nonlinear, with a particular focus on equations that contain

a single delay, which is given by.

{y@%=ﬂMﬂw@—TD for 20, (1.12)

y(t) = () —-7<t<0,

10
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where 7 > 0, f € C*(E x E,R"), E CR" and ¢ € O([-7,0],R").
The solution of DDE (1.12) with initial data o(t) is denoted by y(¢, p(t)).

Definition 1.2.1 FEquilibrium points y* are the values at which the system does not change

over time. So, the points y* are solutions of the equation
fy"y7) =0.

The equilibrium points are considered solutions to the system (1.12), and are called steady

states.

Definition 1.2.2 (Periodic solution) [1/]
A solution y(t) of (1.12) is called a periodic solution if there exists a real number T > 0, such
that

y(t+T)=vy(t), Vt>D0.

Definition 1.2.3 (limit cycle)
A limit cycle in a delay differential equation is a periodic solution that repeats over time and is

1solated, meaning no other periodic solutions are close to it.

In dynamical systems theory, we know that the stability of the system’s solutions is closely
related to the stability of the equilibrium points.
After determining the equilibrium points, we study their stability using eigenvalues, which are

the solutions of the characteristic equation. So, what is the characteristic equation?

1.2.1 Characteristic equation of DDE

In ordinary differential equations (ODEs), the characteristic equation is an algebraic equation
in the form of a polynomial, which means that the number of its roots is finite and can be
determined using the fundamental theorem of algebra.

On the other hand, in delay differential equations (DDEs), the characteristic equation is tran-
scendental because it contains exponential functions (e”\T), making it non-polynomial. As a
result, the fundamental theorem of algebra does not apply. For this reason, there is no general
Theorem that determines the number of its roots, which may be infinite. This makes the study
of characteristic roots more complex, and the equation is referred to as transcendental due to
the presence of delay [11].

It is true that in ODEs, we need n > 2 to study complex stability, while in DDEs, stability can

be complex even in the case of n = 1 due to the delay.

e Characteristic equation in case of linear scalar DDEs (n =1) [12]

A linear autonomous delay differential equation with a single delay is given as follows:

y(t) =ay(t) + byt —7), ze€R,7>0, (1.13)

11
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where a and b are two real number.

Same logic as what we do with ODEs, we seek exponential solutions of the form:
y(t) = ve™, where v#0 and )€ C.
We plug it into (1.13) and get
ey = eMoa + A b,

then we obtain
(A—a—be v =0. (1.14)

The equation (1.14) has non-zero solution if and only if
A—a—be =0. (1.15)

The equation (1.15) is called the transcendental characteristic equation of equation (1.13),
and there are infinite number of solutions to this equation and the complex solution

A = a+if, lies on the curve

B =4+/b2e207 — (o — a)2.

e Characteristic equation in case of linear DDEs system (n > 2) [14]

A linear autonomous delay differential equation with a single delay is given as follows:
y(t) = Ay(t) + By(t —7), z€R",7>0, (1.16)

where A and B are two matrix.
To find the characteristic equation, we assume a solution of the form y(t) = ce, where
e represents the exponential function and ¢ € C™ is a constant vector (c # 0). When we

apply this solution to the system (1.16), we obtain:
AeeM = AceM + BceMt_T)7
By dividing by e, we obtain
(M —A—e*B)c=0, (1.17)
(1.17) has non-zero solution if and only if

D(\) :=det(\] — A — e B) = 0. (1.18)

12
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We call D()) the transcendental characteristic equation of (1.16), and its roots are said

to be characteristics or eigenvalues of (1.16).

1.2.2 Stability of the linear DDE

Consider a homogeneous linear autonomous system of delay differential equations with a single

delay [14], which can be written as follows:
y(t) = Ay(t) + By(t — 1), (1.19)

A is a constant coefficient matrix that determines the evolution of the system without delay.
B is a constant coefficient matrix representing the effect of delayed states.
To find the equilibrium points of the system (1.19), we set the derivative of the variable to zero

and then look for the values that satisfy this condition.
y(t) =0 = Ay(t) + By(t —7) = 0.
To find equilibrium points, we shall solve the equation :
Ay* + By* = 0.

We note that if the matrix A + B is singular, then every y* € R" is a solution of the previ-
ous equation, but if the matrix A + B is non-singular, then the system (1.19) has a unique
equilibrium point, which is y* = 0. Therefore, all solutions of equation (1.19) are (stable) or
(asymptotically stable) if and only if the equilibrium point y* = 0 is (stable) or (asymptotically
stable)[1].

In what follows, we present some theorems related to the stability of linear delay differential

equations.

Theorem 1.2.1 [1/] Let D(X) be the characteristic equation (1.18), then the equilibrium y* = 0
of (1.19) is asymptotically stable if all the roots of D(X\) have negative real parts. In fact,
there exist constants do > 0,dK > 0 such that

| y(t, ) [< Ke ¢, t>0,0€C,

where

Re(N\) < —o,

and y(t, ) is the solution of (1.19) with initial condition yo = .

On the other hand, if there exists a root with positive real part, it is unstable.

Theorem 1.2.2 [12/The following hold for the system (1.13).

13
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1. Ifa+b>0, then y = 0 is unstable.
2. Ifa+b <0 and b > a, then y =0 1s asymptotically stable.

3. Ifa+b<0 and b < a, then there 37" > 0 such that y = 0 is asymptotically stable for

0 <7< 7" and unstable for T > 7, where:

b2 — g2

1.2.3 Local stability of nonlinear system of delay differential equa-

tions

The local stability of nonlinear delay differential equation (DDE) systems is analyzed using

various techniques, including:
e Linearization Method [15].

e Lyapunov Method [1].

1.2.3.1 Linearization of nonlinear DDE

Consider a nonlinear autonomous system of DDEs with a single delay (1.1). That system is

equivalent to:

yl(t) = fl(yl(t)7 ce 7yn(t)7yl(t - T)? ce 7yn<t - T))7
' (1.20)

Un(t) = fulyn(t), .- yn(t), it —7), ..., yn(t — 7)).
Where 7> 0and f = (f1,....fa) ¥y = (W1,...,yn), f € C*(E x E,R"), E CR"™.
Let y(t) be a solution of DDE (1.20) and y* = (y7,...,y;) is an equilibrium (i.e.f(y*) = 0).
We define :

z(t) =y(t) — v, (1.21)
we obtain
(0) =i(r) - L
=y(t) -0,
= fly(t), y(t — 7)), (1.22)
with (1.21) in (1.22) we find
z(t) = fy" + =), y" +x(t —71)). (1.23)

14
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To study the stability of y*, we need to investigate the behavior of the solution of (1.20) around
y*, i.e. the behavior of solution of (1.23) near z(t) = 0. For this purpose we expand the right

hand side using the first-order Taylor expansion

of of

o(t) = m\wy*x(t) + mbzy*x(t —7) + R(x(t), z(t — 7)),

where R contains terms x(t) and z(t — 7) of orber> 2, and f(y*,y*) =0 .

The linearization of the delay differential equations (DDE) at y* is given as follows:
x(t) = Az(t) + Bx(t — 1), (1.24)

where A and B are n X n matrix given by :

_( 9f
4= (6‘%@)) 1<i<n

)

- (%@))Km

1<5<n 1(y*,y*) 1<5<n 1(y*,y*)
and
 \ Oyt —7) ) 1<i<n  \ Oyt — 1) ) 1<i<n
y]( ) 1<5<n (y*,y*) y( ) 1<5<n Hy*,y*)

The following result show that there is an equivalence between linear and nonlinear systems,

in case the matrix A 4+ B is non-singular.

Theorem 1.2.3 (Local stability of nonlinear autonomous DDEs) [1/]: Let D(X) be the char-
acteristic equation corresponding to (1.24), then y* is locally asymptotically stable if every root

of D(\) has negative real part. In fact, there exist e > 0,k > 0 such that

ot

o=y ll<e=||ule) =y IS k|le—y"|le™, t>0,

where
—o0 := supRe(\) < 0.

On the other hand, y* is unstable if one of the roots of D(X) has positive real part.

Remark 1.2.1 [f the equilibrium point x* = 0 of system (1.24) is locally asymptotically stable,
then the equilibrium point y* of system (1.20) is also locally asymptotically stable. Similarly, if

0 is unstable, then y* is also unstable.

Definition 1.2.4 (Classification of equilibrium points [15])
1. If all roots X of (1.15) satisfy Re(\) < 0 then equilibrium y* is called a sink.

2. If all roots X of (1.15) satisfy Re(\) > 0 then equilibrium y* is called a source.

15
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ImA ImA

ReAd Red

Figure 1.2: Eigenvalue locations for a stable equilibrium point.

3. If there exists a root Ay with Re(A\;) < 0 and a root Ay with Re(Ay) > 0 and no any root

with zero real part then y* is called a saddle.

Theorem 1.2.4 :
1. All sinks are asymptotically stable equilibrium points.

2. All sources and saddles are unstable equilibrium points.

1.2.3.2 Stability by Lyapunov function

This method is based on searching for a Lyapunov function that corresponds to one of the two
theories. Razumikhin and Krasovskii modified and extended Lyapunov’s Theorem to fit delay
differential equations, where this Theorem is used to analyze the stability of the equilibrium
point y* = 0. However, these theories can be generalized to study the stability of any other
equilibrium point y* by changing variables so that the new equilibrium point is at zero. This
is done by redefining z(t) = y(t) — y*, which transforms the equation into a form where the

equilibrium point is at z*.

Theorem 1.2.5 (Razumikhin) Suppose that u,v,w : [0,00) — [0,00) are continuous non-
decreasing functions, and that u(s),v(s) are positive for s > 0 with u(0) = v(0) = 0, where v
is strictly increasing. If there is a continuous function V : R™ — R such that u(|y]) < V(y) <
o(lyl), Vo € R, and V(g(0) < —w(l(O)]), if V(p(8)) < V(p(0)), 6 € [~7,0], then the
equilibrium point 0 is stable.

In addition, if there is a continuous nondecreasing function p(s) > s for s > 0 such that

V((0)) < —w(|e(0)])

, then 0 is asymptotically stable.

16
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Theorem 1.2.6 (Krasovskii)
Suppose that v,u,w : [0,00) — [0,00) are continuous nondecreasing functions, u(s),v(s)
positive for s > 0,u(0) = v(0) = 0.

If there exists a continuous function V : C — R such that

u(|e(0)]) < Vip) <wo(lg]), Ve eC,

V() = Jim sup [Vl ) — V()] < (] 9(0) |

then 0 is stable. If, in addition, w(s) > 0 for s > 0, then 0 is asymptotically stable.

1.2.4 A geometric approach for stability

A geometric approach to study the stability system (1.16)[15].
Supposes that the characteristic equation of the DDE system (1.18) at the equilibrium y* is
given by:

P\ +Q(Ne™™ =0, (1.25)

where () and P are polynomial in .

As previors, we know that the steady state y* is asymptotically stable if all the roots A of (1.25)
satisfy Re(A) < 0, and is unstable if there exists a root A such that Re(A) > 0. Therefore the
change in stability can occur only if a root A of equation (1.25) crosses the imaginary axis. i.e
A =18, [ >0, Substituting into equation (1.25), we get:

S —
o . (1.26)

If the equilibrium point y* is asymptotically stable with 7 = 0 then the change of in stability
can occur only if existe some positive § and 7 > 0 for which the equation (1.26) holds.

As 7 incresed from 0 to 27 the right-hand side of (1.26) traces 0 at a unit circle in the complex
plane. On the other hand, the left-hand side of (1.26) also defines a curve called ratio curve.
If there is a change in stability then the ratio curve must intersect the unit circle.

We find [ such that:

and the critical value 7. is defined by:

)

Then for 0 < 7 < 7, the equilibrium point is asymptotically stable.

To see how this approach applies, you can find it in resolution of applications in Chapter 2.
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Chapter

Hopf Bifurcation Analysis

The concept of bifurcation was first introduced by the French mathematician Henri Poincaré
in 1885. The Hopf bifurcation theorem holds a prominent position in mathematical research,
as it serves as a powerful tool for studying the existence of periodic solutions of differential
equations that depend on parameters, and which arise in various scientific applications such as
physics, chemistry, biology, and other fields.

In this chapter, our study focuses on the phenomenon of bifurcation in delayed differential
equations, with a particular focus on Hopf bifurcation. We discuss the proof of Hopf bifurcation,
as well as its design, and conclude the chapter by examining thee dynamical systems, the first

is one-dimensional system and the last are two-dimensional systems.

2.1 Bifurcation Analysis

Before introducing the concept of bifurcation, we will present a real-life phenomenon to help
better understand this idea.

One real-life example that helps in understanding the phenomenon of bifurcation in delay dif-
ferential equations (DDEs) is the temperature control system in a room using a thermostat. In
this system, the device measures the current temperature and compares it with a desired ref-
erence temperature T, then activates heating or cooling depending on the difference between
the two values. However, the process of measurement and response does not occur instanta-
neously: there is a time delay due to factors such as the slowness of sensors or a lag in the
actual response of the device [3].

This system can be represented by the following equation:

dr

i —k(T(t—71)—Tser), k,7>0,

where:

e T'(t) : Temperature at time ¢.

18
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e k : Sensitivity coefficient (represents the strength of the system’s response).
e 7 : Time delay.
o T, : Reference temperature.

For small values of the coefficient £ and the delay 7, the system is stable, and the temperature
gradually approaches the desired value Ts.;. However, when k or 7 is increased, the system can
reach a critical value at which the nature of the solutions changes, and periodic oscillations
begin to appear instead of stability. This sudden change in the system’s behavior with respect
to the parameter is known as bifurcation, and specifically, it can be a Hopf bifurcation when

periodic solutions emerge.

18 T T T T T T T T T
Stable response (before bifurcation)
16 — — — Oscillatory response (after bifurcation) | |
N EEPRTRIRTrS: Target temperature T_ I
-~ T L)
! i
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12t} ! : ) ' : b
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Figure 2.1: Change in System Behavior Before and After Bifurcation.

2.1.1 Definition of Bifurcation and Its Types

We consider the following nonlinear autonomous delay differential equation that depends on a
real parameter p :

(2.1)

y(t) = fly@),y(t — 1), ) for t=>0,
y(t) = (1) —7<t<0,

where 7 > 0, u € R is a real parameter, f : F x E xR — R" is of class C* with k > 2, E C R",
and ¢ € C([—7,0],R") is a given initial function.

A bifurcation occurs when a continuous change in the parameter p leads to a qualitative
change in the behavior of solutions to equation (2.1), typically at a critical value u = p. [10].

This change can manifest in two primary ways :
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1. A change in the number of equilibrium points of the system.

2. A change in the stability of an equilibrium point, often due to eigenvalues of the charac-

teristic equation crossing the imaginary axis.
There are different types of bifurcation that can occur in differential equations with delay:

e Saddle-node bifurcation: where two equilibrium points (one stable and one unstable)

merge and annihilate each other.

e Pitchfork bifurcation: where symmetry in the system causes a stable equilibrium to

become unstable and give rise to two new equilibria.

e Hopf bifurcation: where a pair of complex conjugate eigenvalues cross the imaginary

axis, leading to the emergence of periodic (oscillatory) solutions.

The type of bifurcation and instability depends on how the parameter p changes. In this work,

we will focus particularly on the Hopf bifurcation.

Remark 2.1.1 In ordinary differential equations (ODEs), both Saddle-node and Pitchfork bi-
furcations occur in one dimension, while Hopf bifurcation requires a two-dimensional system to
occur, since the appearance of complex eigenvalues is not possible in one dimension. However,
in delay differential equations (DDEs), the situation is different. Although the system may be
of only one dimension, the characteristic equation is non-algebraic and includes exponential
terms, which allows complex eigenvalues to appear even in one dimension. For this reason, all
types of bifurcations, including Hopf bifurcation, can occur in one-dimensional delay differential

equations.

2.1.2 Hopf Bifurcation Theorem

In book [12], the Hopf bifurcation Theorem in retarded functional differential equations (RFDEs)
is discussed. Meanwhile, in reference [3], the possibility of generalizing bifurcation Theorem
in ordinary differential equations (ODEs) to include delay differential equations (DDEs) is ex-
plored by studying retarded functional differential equations (RFDEs). Through these two

references, we can formulate the Hopf bifurcation Theorem for delay differential equations.

Theorem 2.1.1 Consider the system (2.1) where we assume that y* = 0 is an equilibrium for

all value of p, i.e, £(0,0,u) = 0. The linearization process leads to:

y(t) = A(p)y(t) + B(p)y(t —7), (2.2)

o o
dy(t) Oy(t —7) "
Let D(\, i) be the characteristic function associated with equation (2.2), which has an infinite

where A and B matriz, A(u)

() and B(p) =
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number of roots X. Let A\ 2(1) = a(p) £iB(pn) be a pair of roots.

We assume that the following two conditions are satisfied :

1. There exists a stmple pure imaginary root at the critical value u. such that :

)\1,2(/%) = F13, By > 0.

There are no other eigenvalues of the form +ikfy for k =2,3,....

2. Transversality condition

dRe(A(p))

Thus, the system (2.1) undergoes a Hopf bifurcation, where the stability of the equilibrium point
changes, leading to the emergence of isolated periodic solutions (limit cycles). The stability of
the bifurcating periodic orbit is referred to as a supercritical hopf bifurcation, and the instability

of the bifurcating periodic orbit is referred to as a subcritical hopf bifurcation.

Remark 2.1.2 The delay can serve as a bifurcation parameter.

2.1.3 Explanation of Hopf Bifurcation Theorem in Delay Differential

Equations

The goal of Hopf bifurcation Theorem is to determine the critical value of a parameter, denoted
by pe, which is the point at which Hopf bifurcation occurs in the system. To reach this value,
we analyze the roots of the system’s characteristic equation, tracking how its sign changes as
i increases. The key point in this analysis is to identify the value at which purely imaginary

roots of the form A o(p) = £i5(p) appear.

In order to guarantee the existence of a Hopf bifurcation, two basic conditions must be met:

e Condition 1 (Existence of Purely Imaginary Roots):

The system must have, at u = pu., exactly one pair of purely imaginary roots:

)\1,2(/Lc) = ilﬂ(ﬂc)a

and

Oé(/l’C) = 07
where a(u) is the real part of the root. Having exactly one such pair guarantees that the
system will oscillate with one frequency only, indicating the formation of a single limit
cycle. If there is more than one pair of purely imaginary roots, then the system can

oscillate with multiple frequencies.
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e Condition 2 (Transversality Condition):
The purely imaginary root must cross the imaginary axis transversally as p changes, so

that the derivative of the real part with respect to p at . is not zero:

dRe(A(p))

0.
du 7

H=pc

1. If the derivative is positive, the root moves from left to right (from stability to

instability). dRe(\(11))
e(A(p

2. If it is negative, the root moves from right to left (from instability to stability).

dRe(A(p))

This situation gives us information about the way the root changes position in the complex
plane when p varies. If the derivative is zero, there is no alteration of the behavior of the
root and hence no bifurcation (Hopf)(see Figure 2.2).

However, if the real part of the root becomes positive after the critical value, this indicates
that the solutions begin to grow, signifying a loss of stability and the appearance of a
stable limit cycle.

Hence, if the previous two conditions are met, we can conclude that the system undergoes

a Hopf bifurcation at p = p., giving rise to a limit cycle [14][5].

ImA
Ap)

Re A
A1)

Figure 2.2: Diagram showing the transition of eigenvalues across the imaginary axis at the
critical point p. in a Hopf bifurcation. (The two red points represent Ay o(p.) = £ifp).
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2.1.4 Hopf Bifurcation Diagrams

Definition 2.1.1 A bifurcation diagram for a delay differential system is a partitioning of the
parameter space based on changes in the system’s behavior (such as the number of equilibrium
points, their stability, or the emergence of limit cycles) when parameters like delay or other
parameters change, with the system’s behavior in each region represented by an appropriate

phase or graphical portrait.

To gain a deeper understanding of this concept, we present in the following paragraph the three
main stages that a dynamical system undergoes as the bifurcation parameter approaches its

critical value.

5 | | === Stable Limit Cycle
= = = lInstable Limit Cycle
= = = Critical point T

15

05

051

Amplitude of Oscillations

15

Figure 2.3: Hopf Bifurcation Diagram.

The accompanying illustration (Figure 2.3) illustrates the behavior of system (2.1) as the
bifurcation parameter p varies and shows the Emergence of stable and unstable limit cycles at

the critical value p.. This behavior can be divided into three main stages :

1. Before the bifurcation :(u < fi.)
In this stage, the equilibrium point (often y* = 0) is asymptotically stable, meaning that
all solutions are attracted to it over time.
This stability is due to the fact that all roots of the characteristic equation (resulting

from the analysis of the corresponding linearized system) have negative real parts, i.e.:
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2. At the bifurcation :(u = p.)
When the bifurcation parameter reaches the critical value .., the system loses its stability,

and a pair of purely imaginary roots appear in the characteristic equation:

>\1,2(/~Lc) = ﬂ:iﬁo, Re()‘(ﬂc)) =0.

This transition indicates that the roots have reached the imaginary axis a critical state
that precedes the emergence of periodic oscillations. At this point, the equilibrium point
loses its stability, leading to the appearance of small-amplitude periodic solutions the

beginning of a limit cycle.

3. After the bifurcation :(u > p.)
When 1 exceeds the critical value, the system exhibits a periodic solution in the form of a

limit cycle, which may be stable or unstable depending on the nature of the bifurcation:

e If the equilibrium point becomes unstable, the resulting limit cycle is stable. This is

in the supercritical bifurcation type.

e [f the equilibrium point before the bifurcation is unstable and after the bifurcation
it becomes stable, the limit cycle is unstable and this type of bifurcation is called a

subcritical bifurcation.

This behavior reflects the transition of some roots to having positive real parts:
d\  such that Re(\) > 0,

which leads to the complete loss of stability of the equilibrium point and the emergence

of oscillations.

Example: (Hutchinson’s Delayed Logistic Model) [3] Consider the following scalar delay dif-
ferential equation, which depends on a single parameter u:

dy

= = (O —y(t = 1)), (2.3)

This system is nonlinear and has two equilibrium points: y; = 0 and y5 = 1. By linearizing
the system around the nontrivial equilibrium y; = 1, and using Theorem (1.2.2), we find that
a change in stability indeed occurs at a critical value p. = g ~ 1,57. When p > ., the system
transitions from a steady state to a stable periodic solution. We can represent the maxima and
minima of y as a function of p, (see Figure 2.4). We observe that the amplitude of oscillations
increases smoothly from zero. This is an example of a bifurcation diagram that illustrates a

Hopf bifurcation at p = ..
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Figure 2.4: Bifurcation diagram of the stable solutions. A Hopf bifurcation to sustained oscil-
lations appears at p = u. =~ 1,57 (black dot).

2.2 Examples of Hopf Bifurcation Applications

In this section, we will study a various delayed differential systems with one and two-dimension.

2.2.1 Hopf bifurcation in Population Growth Model with Delay

We consider a nonlinear autonomous delay differential equation:

v (1- 220 (2.4)

where:

N(t) : Number of individuals (population) at the current time ¢.

p: Growth Rate.

7: delay.

r:Carrying Capacity.

This model, represented by equation (2.4), is illustrated in the Figure 2.5 where population
growth depends on both the current population size (reproductive growth) and the availability

of resources. The delayed logistic equation (2.4) represents this abstraction well [10].
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Figure 2.5: Schematic diagram of the model (2.4).

In this schematic, the study of population evolution over time is illustrated, where growth
depends on several interrelated factors. Initially, reproduction leads to an increase in the
population, and the growth rate is proportional to the current population size; the larger the
number of individuals, the faster the reproduction. However, this growth cannot continue
indefinitely due to the limitation of resources (such as food and shelter), which restricts the
population size to what is known as the environmental carrying capacity (the maximum number
the environment can support). Additionally, there is a time delay resulting from gestation and
maturation periods, newly born individuals do not contribute to the growth rate until after a
certain period has passed. This delay can lead to oscillations in the population size or even
chaotic and irregular behavior.

To simplify fomulation, we change a state N(t) by y(t), then we get:

dy _ py(t) (1 _ M) _ (2.5)

1. To identify the equilibrium points:

We have to solve the equation

so,we obtain

Therefore, the system (2.5) has two equilibrium points.
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2. Linearization around the equilibrium point system (2.5) and stability analysis:
&(t) = Az(t) + Bx(t — 1), (2.6)

we consider

Fl(t).(t — 7)) = (o) (1 - M) |

So,
of (y(®),y(t — 1)) y*
A= = 1—2),
dy(t) ) ( T) .
g _2f @)yt — 1)) _ —Hy
Iyt —7) ) ro

At equilibrium points y* = 0 by substituting (2.7) into (2.6), we get:

x(t) = px(t). (2.8)
Stability study of a first-order ordinary differential equation by derivative (dim = 1).

e if ;4 < 0, then y* = 0 is locally asymptotically stable.

e if ;1 > 0, then y* = 0 is unstable.

Hopf bifurcation does not occur in ODE of dim= 1.
At equilibrium points y* = r by substituting (2.7) into (2.6), we get:

(t) = —pax(t — 7). (2.9)

The characteristic equation, also known in delay differential equations as a transcendental

equation, is obtained by substituting the solution z(¢) = e* into equation (2.9):
A+ pe™™ = 0. (2.10)

When 7 = 0 equation (2.10) has only one root A = —u hence we discuss two cases:

e Case p < 0: In this case, y* = r is unstable (Re(\) > 0) for 7 = 0.

e Case i > 0: In this case, y* = r is locally asymptotically stable (Re(\) < 0) for
T=0.

As the value of 7 increases, the stability of the equilibrium point y* = r may change, if

the real part of one of the eigenvalues crosses the imaginary axis from left to right.

(a) So, we look for the critical value that makes the real part of the eigenvalue equal to

zero, that is, we look for A = i , where [ is a non-zero real number (3 > 0).
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By substituting A = i3 into equation (2.10), we obtain:

'LB - — /LeiiTﬁv
S /L(COS(Tﬁ) — iSin(Tﬁ)),
= — cos(78) + ipsin(7f),

By identifacotion we get:

=0
MCOS(T?) : (2.11)
B = psin(7p),
Therefore, we obtain:
76:(2k+1)g, k=0,1,2,.... (2.12)
By substituting (2.12) into (2.11):
, T
B =psin((2k + 1)5), k=0,1,2,...,
=u(=1)"
Therefore, we obtain:
w, k=0,2,...,
B = — fB=pup k=0,2,.... (213
—u, k=1,3,..., rejected,
By substituting (2.13) into equation (2.12), we obtain:
T
=@kt 15, k=02, (2.14)

All these values make the real part of the characteristic root equal to zero. Therefore,
we choose only one value, since one of the conditions for the occurrence of a Hopf
bifurcation is that the critical value corresponds to a single pair of purely imaginary

roots. When k£ = 0, the critical point becomes:

T
TH = —.
=3
If we consider i as the bifurcation parameter, then the critical point is

T
= —. 2.15
K 2T ( )
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If we consider 7 as the bifurcation parameter, then the critical point is

T
Te = —. 2.16
o (2.16)
Accordingly, we conclude that when the delay value lies within the interval 0 < 7 <
T., the equilibrium point y* = r is locally asymptotically stable. However, when the
delay exceeds the critical value, i.e., 7 > 7, , the equilibrium point loses its stability.
The value 7 = 7. is considered a bifurcation point, at which a qualitative change in

the system’s behavior occurs.

(b) Transversality condition.

Since A € C:
dRe(A(1))

dp

= Re (Q ) .
H=Hc d’u H=Hc

When considering 7 as the bifurcation parameter, equation (2.10) takes the following

form:
A7) = —pe N7, (2.17)

By differentiating equation (2.17) with respect to the delay, we obtain:

@ _ d(—ue‘A(T)T)

dr dr ’
_ d(_)\(T)T) 6—>\(T)T
dr ’
d
= (—AT + )\(T)) e AT,
d
so, we get:
d\ 1)1 ()T
o (1—Tpe A(T) ) =pe AMTA(T),

A\ pA(r)e T
dr 1 — pre=207’

We know A(7.) = i5(7.), a(1.) = 0.

@ :Zﬂﬁ(%) (COS(5<TC)7—C) — 1 Sin(ﬁ(TC)TC))
dr =1, 1— ,UTc(COS(ﬁ(Tc)TC) - Z.Sin(ﬁ(TC)TC))7

:lﬂ(%)ﬂ cos(B(7e)7e) + pB(7e) sin(B(7.)7e)
1 — ptecos(B(7.)7e) + iutesin(B(7.)7e)

Y
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we set:
A = pf(7e) sin(B(7e)7e).
B = B(7e)pcos(B(1.)7e).
C =1— pur.cos(B(1e)7e).
D = presin(B(7e)7e).
Therefore,
R A+iB\ AC+BD
‘\c+ip)~ c2+D*"
Since,
A+iB  dA
C+iD dr .
then,

A+1B d\
n(20) (8

TZTC>
After some simplifications, we find that:

S (D] uBr)sin(Bn)
dr —r 1 +/~L2Tc2 —2uT, COS(/B<TC>TC)7

After simplification, we find:

d\
Re [ 22
¢ (dT

7T
14—
+4

2
) -2 o (2.18)

From equations (2.16) and (2.18), and according to Hopf bifurcation theorem (2.1.1),
we conclude that the system (2.5) undergoes a Hopf bifurcation at 7. = i, and a
cycle limit emerges as a result of this bifurcation.

Since the crossing condition is positive, the bifurcation type is supercritical.

When considering ;o as the bifurcation parameter, the equation (2.10) takes the

following form:
Ap) = —pe 200,

We follow the same steps used in the simplification when 7 was the bifurcation

parameter, where we find that:

d\
'u H=c 1 _|_ ﬂ-_
4

From equations (2.16) and (2.19) , and according to Hopf bifurcation theorem (2.1.1),

bo|
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we conclude that the system (2.5) undergoes a Hopf bifurcation at p,. = 21, and a
T

limit cycle emerges as a result of this bifurcation.

3. Hopf Bifurcation Diagrams

— — — Equilibriumy” =k
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Figure 2.6: Bifurcation diagram of system (2.5) (a). wrt the growth rate p and (b). wrt delay
T.

[lustrative plots (see Figure 2.7) showing the behavior of the equilibrium point and the emer-
gence of the limit cycle at the critical value 7. = w/2, in the case where =1 and r = 1.

The Figure 2.7 shows that (a), (c), and (e) represent the behavior of the solution, while (b),
(d), and (f) show the phase planes.
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Figure 2.7: Phase portraits and time series plot of system (2.5) for various values of 7 using
history function ¢(t) = 0.2 4+ 0.05sin(t).

2.2.2 Hopf bifurcation in Simple Control Model

Consider the two dimensional system of delayed differential equations:

n(t) = —yi(t) —yalt — 7).
(2.20)
i(t) = y(t) — 3ya(t) + 295 (t — 7).
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1. To determine the equilibrium points, we must solve the equation:
*2 *
Y1 — Y2 = 07

* * *2
Y1 — 3ys +2y; =0,

so,we obtain:
y; =0 and y; = 0.

or
-1 -1
i=o and =
s . -1 -1
Therefore the system (2.20) has two equilibrium points E;(0,0) and EQ(?, %)
2. Linearization at the equilibrium point Fj:
X(t) = AX(t) + BX(t — 7). (2.21)

The Jacobian matrices are given by:

. (—2y1(t) 0) _ <0 0)
1 =3/l 1 -3

. ( 0 —1) _ (0 —1)
dyp(t—71) 0 ) g, 0 0

{ 1(t) = —zo(t — 7).

SO,

3. Stability analysis using the characteristic function.
We assume solutions of the form : X (t) = Ve ™, V > 0, by substituting the solution

into equation (2.21), we obtain:

(A+Be ™ =XV =0, V#0=det(A+ Be ™ —\)=0.

=-A=3=X)+e ™ =0.
1 —3-)\

After simplification, we find:
M43\ +e ™ =0. (2.22)

(a) When 7 = 0, equation (2.22) becomes as follows:
A +3A+1=0.

33



CHAPTER 2. HOPF BIFURCATION ANALYSIS

—3++5
M=
)\1:_3%\/3

where \; = Ay, Re(A\) = Re(\y) < 0.
Since the real part is less than 0, the equilibrium point E; locally asymptotically
stable.

When 7 > 0, to determine whether the system will remain stable as the delay
increases, the imaginary values should be examined, as they indicate a change in

stability.By substituting A = i3, [ > 0 into equation (2.22), we obtain :
(iB)* + 3if + e =0,

(iB)* +3if = —e~""", (2.23)

the right side of equation (2.23) is unit circle and the left side is a ratio carve.

The ratio curve intersects the unit circle if:
| (iB)* +3i |= 1= B' +96° =1,

B 4962 —1=0. (2.24)

Substituting z = 37 into (2.24), we find:

- ﬂ — 0.109772228.
2y = ﬂ — —0.390227771.

And from it z, Rejected because it is impossible 8% # —0.390227771, this means
that z; = 8% = 0.109772228 = 3 = 0.331318922.
To find 7, we substitute 8 = 0.331318922 into (2.23) and since e~™# = cos(73) —

isin(7f), we get:
—0.109772228 4 10.993956766 = — cos(0.3313189227) + i sin(0.3313189227),

S0,
cos(0.3313189227) = 0.109772228.
(2.25)

sin(0.3313189227) = 0.993956766 ~ 1.

34



CHAPTER 2. HOPF BIFURCATION ANALYSIS

Then,
(13313189227::gl+»nw

1
- 0.331318922
At n = 0 the critical value of the delay:

(z +nm), neN

=
T 2

™

= 2.2
0.662637844 (2.26)

Te

In particular, when 7. equation (2.22) has a pair of purely imaginary roots +if,
which are simple and all other roots have negative real parts.

Therefore, when 0 < 7 < 7., all roots of (2.22) have strictly negative real parts.
Denote A(1) = (1) +i8(7) the root of equation (2.22) satisfying,

a(t.) =0, neN.

To find out if the eigenvalue A(7) crosses the imaginary axis, we calculate the

dRe(\(T))

From equation (2.30):
A2(7) 4 3M\(7) + e ™ = 0.

To calculate the rate of change of the eigenvalue A with respect to the time delay 7,

we implicitly differentiate the equation with respect to 7.

dA(1 dA(7 d (1) —
2)\(7') +3 + e =0,

S0,
dA\(7) B /\(7)6*7)‘(7)

dr  2M7) +3 — e ™)’
We know A\ = i3, we obtain:

dA(7)
dr

_ iBe~ e
20+ 3 — Teemimh’

T=Tc
To find the real part of this expression, we need to simplify it. We start by writing

e~ = cos(fr,) — isin(Br.) :

d\(T)
dr

B ife P
rer 2084 3 —T(cos(BTe) — isin(B7.))’

Starting from the previous equations (2.25), we can greatly simplify the expression.
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After lengthy calculations, we obtain the following result.

d\
RG <E

) = 0.028883397 > 0. (2.27)
This implies that the branchs of eigenvalues \(7) crosse, at 7 = 7., the imaginary
axis and that the crossings are from left to right.

From equations (2.26) and (2.27), and according to Hopf bifurcation theorem (2.1.1),
we conclude that the system (2.20) undergoes a Hopf bifurcation at 7.

Since the crossing condition is positive, the bifurcation type is supercritical.

Accordingly, we conclude that when the delay value lies within the interval 0 < 7 < 7, the
equilibrium point F; is locally asymptotically stable. However, when the delay exceeds
the critical value, i.e., 7 > 7., the equilibrium point loses its stability. The value 7 = 7,
is considered a bifurcation point, at which a qualitative change in the system’s behavior

occurs.

4. Hopf Bifurcation Diagrams
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Figure 2.8: Bifurcation diagram of the system (2.20) wrt 7.

Be evidenced from the graph (see Figure 2.8), the equilibrium value is constant with
respect to before the critical value 7 ~ 4.743. The amplitude increases sharply with

changes in 7.
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Figure 2.9: The phases of a Hopf bifurcation (2.20) using the history function (y1(t), y2(t)) =
(0.0001;0.0001).

The (see Figure 2.9) shows that (a), (c), and (e) represent the behavior of the solution,
while (b), (d), and (f) show the phase planes.
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2.2.3 Hopf bifurcation in Glycaemic Regulation Model

We consider the glucose-insulin regulation system within the framework of two-dimensional

delayed differential equations as follows:

dG
— =3=G(t) = 2I(t - 7)G(1),
dI

where:

G(t) :Glucose concentration in the Blood at time ¢ ,G(t) > 0.
I(t) :Insulin concentration in the blood at time ¢ ,1(¢) > 0.

d :Positive coefficients.

7 :Delay.

Change of parameters where y; = G and y, = I.

% =3 —y1(t) — 2ua(t — T (D),
(2.28)
% = dy,(t — 7) — ya(1),

1. To determine the equilibrium points, we must solve the equation:
3=y — 2yo1 =0,
dy; —y, =0,

so,we obtain:

. (1+Vi+24d) . (1+V1+24d)

Y=~ and Yy = — )
4d 4

. (1-+VI+24d) . (1-VI+24d)

Y = — 1d and Yy = — A )

(1++v1+24d) (1++/1+24d)

Therefore, the system (2.28) has two equilibrium points F; (— ,—

4d 4
(1—-+v1+24d) (1 —+1+ 24d)
end Ey(— ,— ).
4d 4
2. Linearization at the equilibrium point Fjs:
X(t) = AX(t) + BX(t — 7). (2.29)
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The Jacobian matrices are given by:

= —-1-2y; O
0 —1
s_ (0~
d 0

{ i (t) = (1 — 2y3)a () — 2yfaa(t — 7).
.T2<t) = —Ig(t) + dl’l(t — 7').

And

S0,

3. Stability analysis using the characteristic function. We assume solutions of the form:
X(t)=Ve ™, V >0, by substituting the solution into equation (2.29), we obtain:

(A+Be ™ =XV =0, V #0= det(A+ Be ™ —\I)=0.

—1 =2y — X —2yie ™

= (14205 + A\ (1+\) +2dyfe 2 = 0.
de—™ IR ( Yo ) ) Y1

After simplification, we find:
A (24 25\ + 14 2y5 + 2dyje ™ = 0. (2.30)
(a) When 7 = 0, equation (2.30) becomes as follows:
M4 (24 205)A + 1+ 295 + 2dy; = 0. (2.31)

A =2(4(V1 —24d — (2 + 332)?).

(2 +2y3) + z'\/4\/1 —24d — (2 + 2u3)?

/\1:_

)

2
2+ 293) — iy/4v/T — 24d — (2 + 2932
5 )
where A\; = Ay, Re(\1) = Re(A\g) = —(1+y5) < 0,95 < 0.
Since the real part is less than 0, the equilibrium point E5 locally asymptotically
stable.

A = —

(b) When 7 > 0, to determine whether the system will remain stable as the delay

increases, the imaginary values should be examined, as they indicate a change in
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stability.By substituting A = i3, [ > 0 into equation (2.30), we obtain:
—B%+ (2+2y3)iB + 1+ 2y2 + 2dyje P =0,
We know that e 2™ = cos(273) — isin(2773).

—B% 4+ (24 2u3)iB + 1+ 2y2 + 2dy; (cos(278) — isin(273)) = 0.

Simplification,
—B% + 1+ 2y5 + 2yidcos(2B7) = 0,
(24 2y5)p — 2yjdsin(267) = 0,
S0,
_ A2 1 ik
cos(20T) = _(=5 ;yi‘; y2)'
(2.32)
2+ 2y;
sin(267) = —( —gyf?i;)ﬁ
To find 5.

We know that sin®(x) + cos®(x) = 1. By squaring both sides and adding them, we

(—6”+1+2£)2+(C%HM95)2:L

2dy; 2dy;

obtain :

by multiplying both sides by (2y}d)?, we obtain.
(=" + 1 +2y5)" + (2 +293)8)° = (2dy;)”.

After simplifying, we find :

B+ ((93)° +dys +2)8° + (1 +293)% — 4d’y; = 0.
To reduce the degree, we perform a change of variable by setting z = (2,

224+ ((y3)? +4ys +2)z + (1 +2y3)* — 4d*y; = 0.
Solution :
_ () + 4y +2) £VA

2 )

where A = (y3)" +8(y3)" + (y3)” + 164" (1), v3 > 0.

We need the positive square root of z because we set z = 42, and § must be a

positive real number. Where 3 = /2.

If 7 is the bifurcation coefficient: Finding the value of the delay 7 based on equation
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(2.32).

28T = arcsin M
2dy;

1 2 5
T :% (arcsin (#) + 27m) ,

At n = 0 the critical value of the delay:

T, = % arcsin (%) . (2.33)

>+27Tn, n € N.

In particular, when 7. equation (2.30) has a pair of purely imaginary roots +if,
which are simple and all other roots have negative real parts.

Therefore, when 0 < 7 < 7., all roots of (2.30) have strictly negative real parts.
Denote A(1) = (1) +i8(7) the root of equation (2.30) satisfying,

a(TC) = 07 /B(TC) = ﬁc-
To find out if the eigenvalue A(7) crosses the imaginary axis, we calculate the

dRe(\(T))

From equation (2.30):
(N(T))? + (2 + 205)\(7) + 1 + 2y + d2yie > = 0,

To calculate the rate of change of the eigenvalue \ with respect to the time delay 7,

we implicitly differentiate the equation with respect to 7.

d\(T)
dr

A7) + (2 + 2y;)—dA(T) +d2y; U=2rMT)) vy _

2
dr dr

50,
d\ d4yi\(T)e2AT)

— = : 2.34
dr 2M(7) + (2 + 2y3) — ddy;Te272 () (2:34)

By substituting A = i3, we obtain:

dx d4yiife — 1273
dr 28+ (2 +2y3) — ddyjTe 28

To find the real part of this expression, we need to simplify it. We start by writing
e 2T = cos(287) — isin(287):
d\ d4yiife — 273

dr 26+ (2 + 2y3) — ddyiT(cos(267) — isin(267))’ (2.35)
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Starting from the previous equations (2.32), we can greatly simplify the expression.

After lengthy calculations, we obtain the following result.

e ((@) ) N 26%(2 + 2y3)* — 45° (= 5% + 1 + 2y3)
dr ) |,_..)  ((242y35) +21(=82 + 1+ 2y}))> + (26 + 27.(2 + 243)3)%
we have: I\
Re (d_T TTC) # 0. (2.36)

The transversality condition is satisfied because this derivative is nonzero.

This implies that the branchs of eigenvalues A(7) crosse, at 7 = 7., the imaginary
axis.

From equations (2.33) and (2.36), and according to Hopf bifurcation theorem (2.1.1),

we conclude that the system (2.5) undergoes a Hopf bifurcation at .

4. Hopf Bifurcation Diagrams
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Figure 2.10: Bifurcation diagram of the system (2.20) wrt 7 for d = 1.

For the numerical simulations, we take d = 1: As can be evidenced from the graph (see
Figure 2.10), the equilibrium value is constant with respect to 7 before the critical value

Te =~ 0.441. The amplitude increases sharply with changes in 7.

Atd =1,
d\
Re (%

) ~ 1.022, and .~ 1.292.

T=Tc
The sign of the computed derivative is positive, which means that when 7 increases and
exceeds 7., the real part becomes positive, therefore, the eigenvalues move from the stable

region (negative real part) to the unstable region (positive real part).

Conclusion:

(a) The transversality condition is satisfied because the derivative is non-zero.

(b) The system undergoes a Hopf bifurcation at 7 = 7. ~ 0.441.
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(¢) The positive sign indicates that as 7 increases, the real parts of the eigenvalues cross
the imaginary axis from left to right, suggesting a supercritical bifurcation (a stable

limit cycle appears).
In summary:

(a) At 7 =7, a limit cycle is born.
(b) For 7 > 7., this cycle is stable, and the system oscillates around it.

(¢) The equilibrium point becomes unstable.
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Conclusion

Hopf bifurcation in delay differential equations was studied by analyzing the effect of the
bifurcation parameter whether it is the time delay or another parameter on the stability of
solutions and the emergence of periodic behavior. This work addressed both theoretical and
applied aspects related to a specific type of delay differential equations with a single constant
delay.

In the first chapter, we presented the fundamental properties of these equations, includ-

ing solution methods and the existence and uniqueness theorem that ensures the existence of
solutions. We also examined the stability of both linear and nonlinear systems based on the
study of the characteristic (transcendental) equation. Since there is no general theorem that
determines the number of its roots, which may be infinite, we adopted a geometric approach
as a tool to analyze stability and assess the effect of the time delay.
In the second chapter, we presented the main theorem for the occurrence of the Hopf bifur-
cation in delay equations and introduced the Hopf bifurcation diagram that illustrates how the
system behavior changes when crossing the critical values. Our study concluded with numerical
simulations of three models: one-dimensional and two-dimensional systems.

It is important to note that using the Method of Steps in analytical solutions requires
significant effort due to algebraic complexity. Alternatively, these equations can be solved
numerically using the dde23 function in MATLAB, which has proven effective in tracking the
system’s behavior after the bifurcation point.

The results obtained confirm that time delay can lead to fundamental changes in the stability
and dynamic behavior of systems, highlighting the importance of these equations in the math-
ematical modeling of biological and engineering phenomena. As future research directions, we
suggest studying Hopf bifurcation using more advanced numerical tools such as DDE-Biftool,
which allows accurate tracking of bifurcations in complex systems. Moreover, the research can
be extended to study other types of delays (such as time-varying or distributed delays), or
to apply bifurcation analysis in real biological models, thereby strengthening the link between

mathematical analysis and real-world applications.
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Appendix A: Mathematical Tools

Laplace Transform

Definition 2.2.1 Let f : I — C, where [0,+00) C I C R, admit a Laplace transform. For

s € C, the function :
+oo

F(s) := i f(t)e *dt,

is called the Laplace transform of f, and is denoted by L[f(t)](s).

Proposition 2.2.1 :

1. Linear of the Laplace Transform
Ll(of + Bg)()I(s) = aL[f()](s) + BLg()I(s), o, f€C.

2. Derivative

£12)(5) = ~(0) + Y (5).

3. Convolution Theorem

LI(f+ g)(D)](s) = F(s).G(s).

We need this definition and properties in the first chapter on solving differential equations with

delay.

Implicit Function Theorem

let g: Q C R? — R be a function such that:
e (20,%0) € Q and g(wo,yo) = 0.

If the following conditions hold:
L. g(zo,90) = 0.
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dg

2. 8_y<x0’y0> # 0.

3. geCh

Then, there exists an interval I,, around z, and an interval J,, around y, such that we can

define a unique function ¢ : I, — J,, satisfying:

* ¥(z0) = Yo
e forall x € I, g(x,9(x)) =0.

e The derivative of ¢(x) is given by:

oy galz(2))
VO == w psi@)
where:
T Ox
gy a_y

Theorem helps us study the Hopf bifurcation when applied to the characteristic equation

D(), p) = 0, where the following conditions must be satisfied:
1. D\, p) € C*

2. There exists a specific root A\g at .

oD

D(Xo, p1e) = 0, a()\oa,uc) # 0.

If these conditions are satisfied, then Theorem guarantees the existence of A(u) such that:

D()\(,LL),M) =0, )‘(/Lc) = Ao

Thus, by applying Theorem, we ensure the existence of the function A(x), which determines how

the eigenvalues change with u, allowing us to understand when and how the Hopf bifurcation

occurs.
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Appendix B: Programming Codes in
MATLAB

Figure 1.1

%» Definition of an equation with a delay
dde = @(t, y, Z) -2%xy + 3%Z;

%» Delay definition

lags = 1;

%“Definition of an Initial (Historical) Function
history = @(t) exp(t);

%» Solve the equation using dde23

sol = dde23(dde, lags, history, [0 20]);
% Draw the solution

figure;

plot(sol.x, sol.y, ’LineWidth’, 2);
xlabel (’t’);

ylabel (’y(t)’);

grid on;

Figure 2.1

b time

t = linspace(0, 50, 1000);

» Stable response before bifurcation (green curve)

T_stable = 1 - exp(-0.1 x t);

% Oscillatory response after bifurcation (red dashed curve)

T_oscillatory = 1 + 0.4 % sin(0.4 * t) .x exp(0.01 * t);
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20

21

%Critical value (black dotted line)
T_set = ones(size(t));

% Plotting the curves

figure;

plot(t, T_stable, ’g’, ’LineWidth’, 1.8); hold on;
plot(t, T_oscillatory, ’r--’, ’LineWidth’, 1.5);
plot(t, T_set, ’k:’, ’LineWidth’, 1.2);

sLabels and features of the figure

xlabel (’Time (t)’);

ylabel (’Temperature T(t)’);

legend(’Stable response (before bifurcation)?’,
>Oscillatory response (after bifurcation)’,
>Target temperature T_{set}’);

grid on;

Figure 2.3

% Hopf Bifurcation Diagram

%» Define parameter

mu= linspace(0, 5, 400);

mu_c = 2.5; 7/ Critical point

%» Define amplitudes

amp_stable = zeros(size(mu));
amp_unstable = zeros(size(mu));

% Only defined for mu > mu_c

amp_stable(mu > mu_c) = 1.5 * sqrt(mu(mu > mu_c) - mu_c);
amp_unstable(mu > mu_c) = 0.8 * sqrt(mu(mu > mu_c) - mu_c);
%» Plotting

figure;

hold on;

%» Plot upper and lower stable limit cycles (blue solid)
hl1 = plot(mu, amp_stable, ’b’, ’LineWidth’, 2);

h2 = plot(mu, -amp_stable, ’b’, ’LineWidth’, 2);

%» Plot upper and lower unstable limit cycles (red dashed)
h3 = plot(mu, amp_unstable, ’r--’, ’LineWidth’, 2);

h4 = plot(mu, -amp_unstable, ’r--’, ’LineWidth’, 2);

%» Critical delay line (purple dashed)
h5 = xline(mu_c, ’--’, ’Color’, [0.5 0 0.5], ’LineWidth’,

20

2);
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30

31

%» Labels and title

xlabel (’\mu’);

ylabel (’Amplitude of Oscillations’);

title (’Hopf Bifurcation Diagram with \mu?’);
%» Proper legend (no repetition)

legend ([h1, h3, h5],

{’Stable Limit Cycle’, ’Unstable Limit Cycle’, ’Critical point \
mu_c’},

’Location’, ’northwest’);

grid on;

axis tight;

Figure 2.6

h(a)
% Hopf bifurcation diagram for dy/dt = muxy(t)*(1 - y(t-1))
clear; clc;

mu_critical=pi/2;

mu_values = linspace(l, 3, 100);’% mu values around the critical
value

equilibrium = ones(size(mu_values));

delay = 1;

ymax = zeros(size(mu_values));

ymin = zeros(size(mu_values));

for i = 1:length(mu_values)

mu = mu_values(i);

% The function

dde = @(t, y, Z) mu *x y x (1 - Z);

% History function

history = @(t) 1 + 0.1%sin(2*pix*t);

%» Solve the equation using dde23

sol = dde23(dde, delay, history, [0, 200]);

% Evaluating the solution in the last period

t_sample = linspace (180, 200, 1000);
y_sample = deval(sol, t_sample);

%We take the maximum values

ymax (i) = max(y_sample);

ymin(i) = min(y_sample);

o1
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end

% plot

figure;

hold on;

plot (mu_values, equilibrium, ’k--’, ’LineWidth’, 1.5);
xline(mu_critical, ’r:’, ’LineWidth’, 1.5);

plot (mu_values, ymax, ’b’, ’LineWidth’, 1.5);

plot (mu_values, ymin, ’b’, ’LineWidth’, 1.5);

xlabel (’\mu’);

ylabel (’Steady state population’, ’FontSize’, 12);
legend (’Equilibrium y~* = 1’, ’\mu = \pi/2’,
’Location’, ’northwest’);

grid on;

Dol to oo TofotoTotoTotoTofo 1o TotoTo toTo o 1o To 1o To to To o 1o fo 1o To 1o To to 1o o 16 To 1o To To 1o o 16 o 1o o To To o %6 o 76 o o
% (b)

%» Hopf Bifurcation Diagram vs. tau (delay)

clear; clc;

mu = 1;

tau_values = linspace(0.1, 3, 100);

equilibrium = ones(size(tau_values));/ Delay values

tau_critical = pi/2;

ymax zeros (size(tau_values));

zeros (size(tau_values));

ymin
for i = 1:length(tau_values)

tau = tau_values (i) ;

%» Definition of a function

dde = @(t, y, Z) mu *x y *x (1 - Z);

hHistory function

history = @(t) 1 + 0.1*sin(2*pixt);

try

%» Solve the equation

sol = dde23(dde, tau, history, [0, 200]);

%» Extracting the solution in the last period
t_sample = linspace (180, 200, 1000);
y_sample = deval(sol, t_sample);

% Maximum and minimum values

ymax (i) = max(y_sample);
ymin(i) = min(y_sample);
end
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63 | end

o |figure;

65 |hold on;

o |plot (tau_values, equilibrium, ’k--’, ’LineWidth’, 1.5);
o | xline(tau_critical, ’r--’, ’LineWidth’, 1.5);

os |[plot (tau_values, ymax, ’b’, ’LineWidth’, 1.5);

o |plot(tau_values, ymin, ’b’, ’LineWidth’, 1.5);

0 |xlabel (’\tau’);

71 |ylabel(’Steady state population’, ’FontSize’, 12);
7 |legend (’Equilibrium y~* = 1’2, ’\tau= \pi/2’,

73 | ’Location’, ’northwest’);

71 |grid on;

Figure 2.7

1 |% Right-hand side of the DDE

> |sys_rhs = @(y,Z,k) y *x (1 - Z/k);

3 |% Constants

Sk o= 1;

5 [history =@(t) 0.2 + 0.05 * sin(t); 7 Initial condition

6 |%h Just before the Hopf bifurcation (tau < pi/2)

pi/2 - 0.2;

dde23(@(t,y,Z)sys_rhs(y,Z,k), taul, history, [0 100]);

7 |taul

s |soll
o |% time series plot

0 |close all

in |plot(soll.x,soll.y, ’LineWidth’, 2);

2 |xlabel (’$t$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);

13 [ylabel (’$y$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);

14 |% plot in phase-plane

15 | figure

6 |plot(soll.y,so0ll.yp, ’LineWidth’, 2);

17 |xlabel (’$y$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);

s |ylabel (?$\dot{y}$’, ’Interpreter’, ’latex’, ’LineWidth’, 2);
v |% at critical value

pi/2;

dde23(@(t,y,Z)sys_rhs(y,Z,k), taul, history, [0 100]);

20 |taul

21 |so0ll
22 |% time series plot

23 [plot(soll.x,soll.y, ’LineWidth’, 2);

23




28

29

30

31

33

34

35

48

49

50

xlabel (’$t$’,’Interpreter’, ’latex’, ’LineWidth’, 2);

ylabel (’$y$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);

% plot in phase-plane

figure

plot(soll.y,soll.yp, ’LineWidth’, 2);

xlabel (’$y$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);

ylabel (’$\dot{y}$’, ’Interpreter’, ’latex’, ’LineWidth’, 2);

% just after the hopf bifurcation

taul = (pi/2)+0.2;

options = ddeset(’MaxStep’,0.1);

soll = dde23(@(t,y,Z)sys_rhs(y,Z,k), taul, history, [0 100],
options)

sol2 = dde23(@(t,y,Z)sys_rhs(y,Z,k), taul, 0.9722229,[0 100],
options)

%» time series plot

close all;

figure

plot(soll.x,soll.y, ’LineWidth’, 2);

hold

plot(sol2.x,s0l12.y, ’LineWidth’, 2);

xlabel (’$t$’,’Interpreter’, ’latex’, ’LineWidth’, 2);
ylabel (’$y$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);
%» plot in phase-plane

figure

plot(soll.y,soll.yp, ’LineWidth’, 2);

hold

plot(sol2.y,s0l2.yp, ’LineWidth’, 2);

xlabel (’$y$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);
ylabel (’$\dot{y}$’,’ Interpreter’, ’latex’, ’LineWidth’, 2);

Figure 2.9

function solve_dde_system()

hdelay

%» Just before the Hopf bifurcation

tau = 4;

h at critical value(tau=4.743)

% just after the hopf bifurcation (tau=4.8)

o4




lags = tau;

history = [0.0001; 0.00017;

tspan = [0, 200];

%dde23

sol = dde23(@ddefun, lags, history, tspan);

figure;

subplot(2,1,1);

plot(sol.x, sol.y(1,:), ’b-’, ’LineWidth’, 1.5);
xlabel (’t?);

ylabel (Py_1(t)’);

grid on;

subplot(2,1,2);
plot(sol.x, sol.y(2,:
xlabel (’t7);

ylabel (’y_2(t) ) ;

grid on;

N
-

>r-?, ’LineWidth’, 1.5);

figure;

plot(sol.y(1,:),s0l.y(2,:), ’b-’, ’LineWidth’, 1.5);
xlabel (’y_17);

ylabel (’y_27);

grid on;

hold on;

hequlibrum point E1 = (0,0)

plot (0, O, ’ro’, ’MarkerSize’, 8, ’MarkerFaceColor’, ’r’);
legend(’Solution path’,’equilibrium point E_1 = (0,0)’);
hold off;

end

function dydt = ddefun(t, y, Z)

yl = y(1);
y2 = y(2);
y2_lag = Z(2,1); % y2(t - tau)
yl_lag = Z(1,1); % y1(t - tau)
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18

19
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21
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23

24

dyldt
dy2dt

-yl~2 - y2_lag;

yl - 3*%xy2 + 2xyl_lag~2;

dydt = [dyldt; dy2dt];

end

Figure 2.10

% Bifurcation Diagram for: tau is bifurcation parameter, d
% System:

% dG/dt = 3 - G - 2*xI(t - tau)*G

%h dI/dt = d*G(t - tau) - I

%» Fix d = 1, vary tau

%» Parameters

d = 1;

tau = linspace (0.1, 1.5, 300); 7 Range of delay values
equilibrium = zeros(size(tau));

amplitude = zeros(size(tau));

%» Compute G*x = (-1 + sqrt(l + 24d)) / (44d)

sqrt_term = sqrt(l1 + 24 * d);

(-1 + sqrt_term) / (4 * d);

d *x G_star;

G_star

I_star
% Store equilibrium

equilibrium(:) = G_star;

% Estimated critical tau (from analysis or simulation)
tau_crit = 0.441,;

%» Amplitude appears only after tau_crit

amp_mask = tau > tau_crit;

% Example growth

amplitude (amp_mask) = 0.2 * sqrt(tau(amp_mask) - tau_crit);
% Plotting

figure;

hold on;

% Equilibrium

plot (tau, equilibrium, ’k--’, ’LineWidth’, 1.5);
sBifurcation line

xline(tau_crit, ’r:’, ’LineWidth’, 1.5);
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% Upper bound

plot(tau, equilibrium + amplitude,
% Lower bound

plot (tau, equilibrium - amplitude,
xlabel (’\tau (delay)’, ’FontSize’,
ylabel (°G(t)’, ’FontSize’, 12);

’b?, ’LineWidth’, 1.5);

’b?, ’LineWidth’, 1.5);

12);

legend (’Equilibrium G~*’, ’\tau_{crit} \approx 0.441°’,

>’Limit cycle (approx.)’, ’Location’,

title(’Bifurcation Diagram with respect to \tau (d

grid on;

box on;

‘northwest’);

= 1)7);
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Abstract

This thesis focuses on the study of Hopf bifurcation in delay differential equations
(DDEs), which depend on both the current and past states of the system. The work aims
to examine the existence and uniqueness of solutions, and to analyze linear and nonlinear
stability using tools such as the characteristic equation and Lyapunov functions, in addi-
tion to adopting a geometric approach to the analysis. The study focuses on the conditions
under which Hopf bifurcation occurs, and shows how changes in parameters can lead to
the emergence of limit cycles. The theoretical part is supported by numerical applications
illustrating the system's behavior before and after the bifurcation.

Keywords: Delay Differential Equations, History Function, Stability Analysis, Hopf Bi-

furcation.
Résumé

Ce mémoire porte sur 1’é¢tude de la bifurcation de Hopf dans les équations différentielles
aretard (DDEs), qui dépendent a la fois de I’état actuel et de 1’état passé du systéme. Le
travail vise a étudier I’existence et I’unicité des solutions, ainsi que I’analyse de la stabilité
linéaire et non linéaire en utilisant des outils tels que 1’équation caractéristique et les
fonctions de Lyapunov, tout en adoptant une approche géométrique d’analyse. L’étude se
concentre sur les conditions d’apparition de la bifurcation de Hopf, et montre comment la
variation des paramétres peut conduire a I’apparition de cycles limites. La partie théorique
est appuyée par des applications numériques illustrant le comportement du systéme avant
et apres la bifurcation..

Mots clés: Equations différentielles a retard, Fonction historique, Analyse de stabilité,

Bifurcation de Hopf.
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