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Introduction

T
he assumptions needed to apply parametric methods are frequently not met in

statistical studies, especially when the underlying distribution of the data is un-

clear or hard to ascertain. Researchers use what are referred to as non-parametric

approaches in these circumstances. These statistical methods are adaptable and don�t rely heav-

ily on presumptions regarding the distribution of the data. When exploring the general behavior

of data or estimating important functions, like the quantile function or survival function, without

being limited by strict model structures, non-parametric approaches are particularly e¤ective

However, what occurs if we are unable to observe the phenomenon of interest in its entirety

or if the data we gather is insu¢ cient? This brings up the idea of censoring, which is a major

problem in many real-world research projects. There are various types of censorship. One of

the most prevalent is right-censoring, which happens, for instance, in studies on the length of

unemployment: some people may still be unemployed at the end of the study period, giving us

only a partial picture. Another type is left-censoring, which is seen in studies of chronic illnesses

where the disease�s actual onset occurs before the initial diagnosis is noted. Interval or double

censoring is a more complicated situation that frequently occurs in engineering or technology

testing, like when a machine is inspected on a regular basis and wenot precisely when a failure

occurred, but only that it occurred between two inspection times.

and also this work is dedicated to leveraging non-parametric estimation techniques to handle

doubly censored data, with a focus on estimating survival functions, density functions, and

hazard rates. The methods and insights presented here aim to o¤er robust tools for analyzing

incomplete data� an endeavor both statistically rich and practically essential.

Mixed censoring refers to a scenario where data is censored from both sides� left and right�

making it a more complex form of censoring to handle. This type of censoring often arises in

situations where both the starting and ending points of an event are unknown, and can be seen in
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Introduction

areas such as engineering, medical studies, and reliability testing. Addressing mixed censoring

requires specialized non-parametric estimators that can provide accurate insights despite the

incomplete nature of the data.

Chapter 1: In this opening chapter, we laid the foundation by reviewing the fundamental

concepts of statistics that are essential for understanding the study. We covered key topics such

as the cumulative distribution function, density function,probability space, Random Variable�

and probability distributions. These concepts form the theoretical basis for the estimation

methods discussed in the following chapters.

Chapter 2: This chapter focuses on the concept of simple censoring, with particular emphasis

on right-censoring, which is the most commonly encountered type in real-world applications.

We introduced the main types of simple censoring, namely right-censoring, left-censoring, and

interval censoring. Special attention was given to the Kaplan-Meier estimator, a widely used

non-parametric method for estimating the survival function under right-censoring

Chapter 3: In this �nal chapter, we focus on mixed (or double) censoring, a more complex

scenario where data is censored from both sides (left and right). We discuss the asymptotic

properties of the non-parametric estimators used to analyze such data. Speci�cally, we examine

the Patilea and Rolin Estimator and the Maximum Likelihood Estimator (MLE), both designed

to handle mixed censoring

2



Chapter 1

A General Notion about Statistics

Statistics is the branch of mathematics that deals with the collection, organization, ana-

lysis, interpretation, and presentation of data. It provides methods for making inferences

and predictions based on limited information from data samples.

Statistics is broadly divided into two main branches:

1. Descriptive Statistics: Focuses on summarizing and describing data through measures like

mean, median, standard deviation, and visualizations such as histograms.

2. Inferential Statistics: Involves drawing conclusions or making predictions about a popula-

tion based on sample data, using techniques like hypothesis testing, con�dence intervals,

and regression analysis. [4] [9][18]

This chapter is dedicated to a review of the basic notations in mathematical statistics, such as

probability spaces, random variables, distributions, and the two types of estimation.

1.1 concepts and de�nitions:

1.1.1 probability space:

A probability space is a mathematical model used to represent random experiments or phenom-

ena where the outcomes are uncertain. It consists of three componentsh.

De�nition 1.1.1 The sample space(
):

3



A General Notion about Statistics

The set of all possible outcomes of the random experiment. Each outcome is considered an

element of the sample space.

De�nition 1.1.2 The sigma-algebra (F):

A collection of events (subsets of the sample space) for which probabilities are de�ned. It

includes the sample space itself, the empty set, and is closed under complement and countable

unions and intersections.

De�nition 1.1.3 The probability function (P ):

A function that assigns a probability to each event in the sigma-algebra. It satis�es the following

properties:

1. P (
) = 1 (the probability of the sample space is 1),

2. P (A) > 0 for any event A(probabilities are non-negative),

3. P is countable additive, meaning that if A1; A2:::::::::::::::::: are disjoint events

, then P (tiAi) =
P

i P (Ai): [20]

The Sample Space:

The following de�nitions are from the book,Bernard Garel [2]

We will �rst discuss random experiments, which are de�ned by the fact that their outcomes

cannot be precisely predicted and, when repeated under identical conditions, may yield di¤erent

results. The set of all possible outcomes of such an experiment is denoted as

the set 
 is called the sample space (or fundamental space), representing all possible states or

outcomes. An element ! of 
 is called an elementary event.

Sigma-Algebra:

let 
 be a sample space F sigma-algebra (or �-algebra) is a non-empty collection F of subsets

of 
 (i.e.,F � P (
) where P (
) is the power set of 
) that satis�es:

� 
 2 F (the entire sample space is included).

4



A General Notion about Statistics

� Closure under complementation: If A 2 F then AC 2 F

� Closure under countable unions: If A1; A2. . . . . .2F ;An 2 F .for all n 2 N then [n 2 NAn

2 F

The pair (
;F) is called a probabilizable space.

Probability: As de�ned in Defnition 1.1.3

The triplet (
;F ; P ) is called a probability space.

1.1.2 Random Variable

A random variable is a mathematical function that assigns numerical values to the outcomes of

a random experiment. It allows the transformation of abstract events into quanti�able data for

probabilistic analysis.

In another de�nition, A real random variable X is a function de�ned on a measurable space,

taking values in the set of real numbers R and it is measurable with respect to the Borel �-algebra

B( R) from Saporta [22], 2006

X : (
; F )! (R; BR)

A! X(A)

Types of Random Variables

The following de�nitions are from the book Ross, S. M. (2014). [21]

Discrete Random Variables A random variable is discrete if it takes a �nite or countable

set of distinct values.

� Counting the number of heads obtained when �ipping a coin three times.

� Common distributions include Binomial, Poisson, and Geometric distributions.

Continuous Random Variables A random variable is continuous if it can take on any value

within an interval or across the real number line.

5
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� Measuring the exact height of a person selected at random

� Frequently used distributions include Normal, Exponential, Uniform distributions.

1.1.3 statistical distribution:

from the book Krishnamoorthy[12] 2006

A statistical distribution describes how the values of a random variable are spread or distributed

across di¤erent outcomes. It provides a detailed representation of the probability of various

values or ranges of values that a random variable can take. This distribution can be discrete or

continuous and is characterized by its probability mass function (PMF) in the case of discrete

variables or probability density function (PDF) for continuous variables. Statistical distributions

are essential for modeling, analyzing, and making inferences from data, as they help to quantify

uncertainty and predict future outcomes based on observed patterns.

probability density function (PDF) The density distribution, is a function that describes

the likelihood of a continuous random variable taking on a particular value. Unlike discrete

distributions where probabilities are assigned to speci�c outcomes, a continuous distribution

assigns probabilities over intervals. The probability that the random variable takes a value

within a certain range is given by the area under the PDF curve within that range. The total

area under the PDF curve is always equal to 1, re�ecting the certainty that the random variable

will take some value within its possible range.

For a continuous random variable X the probability that X lies within the interval [a�b] is

given by:

P (a � X � b) =

Z b

a
fX(x)dx

where fX(x) is the probability density function of X and x represents a possible value of the

variable.

cumulative distribution function (CDF): from Saporta [22], 2006

let X be a random variable. The cumulative distribution function (CDF) of X is de�ned as

a function from (R; BR) to the interval [0�1] , given for every x 2 R by

6



A General Notion about Statistics

F (x) = P (X � x)

1. F (x) is a non-decreasing function on R

2. F (x) is continuous from the right at every point in R

3. limx!�1 F (x) = 0 ; limx!+1 F (x) = 1

Survival Function The survival function, denoted by S(x) or sometimes written as F (x) is

de�ned on R + (the set of non-negative real numbers) as:

S(x) = 1� F (x) = P (X > x)

For a time t this function represents the probability of "surviving" or not experiencing the event

until time t

1. F (x) is also called the tail function

2. F (x) is a monotonically decreasing function.

3. F (x) is a left-continuous function.

Estimation from [5] cour yahya djabrane 2024

Parametric Statistics: Parametric statistics is the "classical" approach to statistics. We

have a sample X1; X2; :::::::::::::; Xn of observations drawn from a population X The goal is to

estimate a function or quantity related to this population (such as mean, variance, density,

distribution, etc.) based on the sample X1; :::::::::::XnIn this approach, it is assumed that the

function to be estimated is known, except for a vector of parameters.

Example 1.1.1 Consider a sample (X1; :::::::::::; Xn)of i.i.d. observations from a normal dis-

tribution N(m;�2)Estimating the mean m corresponds to estimating the probability density

function:

f(x) =
1p
2��2

exp(�(x�m)
2

2�2
)
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A General Notion about Statistics

This is an example of parametric estimation.

However, often:

� We do not assume a speci�c parametric form for the function to estimate. For example,

if we want to study the average size of a dwelling Y as a function of salary X :

m(x) = E[Y j X = x] we don�t assume any speci�c distribution or functional form for

this relationship.

� Nonparametric statistics (SNP) involves cases where we do not make any assumptions

about the form of the distribution of random variables. For example, if

F = f f : [0; 1] ! R is increasing gwe are engaging in nonparametric estimation,

where we estimate the density function f without assuming any speci�c model for it.

When to use nonparametric methods (SNP):

� When it is di¢ cult to �t the observations to a parametric distribution.

� When there is no clear model to use or if you prefer not to impose a prior assumption on

the model.

� When it is unclear how many components should be included in the model.

� When dealing with a high-dimensional problem where parametric models are impractical

due to the large number of parameters

Advantages and Disadvantages:

� Less prior information is required about the observations.

� More general models that are more robust and �exible

� Slower convergence rates: nonparametric methods generally require more data to achieve

the same level of precision as parametric methods.

Empirical Distribution Function (EDF): Suppose we observe a sampleX1; X2; ::::::::::::; Xnfrom

a real-valued random variable with a cumulative distribution function (CDF) F :

F (x) = P (X � x)

8



A General Notion about Statistics

The natural estimator for F , called the empirical distribution function Fn is de�ned as:

Fn(x) =
1

n

nX
i=1

I(Xi � x)

where I(Xi � x)is an indicator function that equals 1if Xi � x and 0 otherwise.

Formally, the EDF is given by:

Let n be the sample size, and let the random sample be:

X1; X2; X3 � � � � � � � � � �

We sort these observations in ascending order:

X1 � X2 � X3 � � � � � �� � Xn

The i-th order statistic, denotedX(i)is the value that occupies the i-th position in this sorted

list, i.e., the i-th smallest value in the sample.

Fn(x) =

8>>>><>>>>:
0 If X(1) > x

i
n If X(i) � x � X(i+ 1) for i = 1; 2; :::::::::::n

1 If X(n) < x

where X(1) is the minimum and X(n) is the maximum of the sample X1; X2; ::::::::::::; Xn

It is clear that Fn is a nonparametric estimator of the CDF F

Propertie 1.1.1

1. Bias of Fn(x) :

The bias of the empirical distribution function Fn(x)is de�ned as the di¤erence between

the expected value of Fn(x)and the true CDFF (x)To calculate the bias:

9



A General Notion about Statistics

Figure 1.1: ghraph 1

E(Fn(x)) = E

 
1

n

nX
i=1

I(Xi � x)

!
=
1

n

nX
i=1

E(IfXi�xg) =

=
1

n

nX
i=1

p(Xi � x) =
1

n
� n F (x)

= F (x)

This is equal to the probability P (X � x) = F (x) so:

Bias(Fn(x)) = E (Fn(x)� F (x)) = 0

Thus, the bias of Fn(x) is zero, meaningFn(x) is an unbiased estimator of F (x)

2. Variance of Fn(x)

Next, the variance of Fn(x)is computed. We start with the squared expected value:

E
�
F 2n(x)

�
= E

0@ 1
n

nX
i=1

I(Xi � x)

!21A
10



A General Notion about Statistics

This expands into:

1

n2

24 nX
i=1

E(I(Xi � x))2 +
X
i6=j

E(I(Xi � x)(Xj � x))

35
Evaluating each part:

E(I(Xi � x)) = F (x)

Thus, the variance is:

V ar (Fn(x)) =
1

n
F (x)(1� F (x))

This shows that the variance of Fn(x) decreases as n increases.

3. Convergence of Fn(x)(Probability Convergence):

as V ar (Fn(x)) ! 0 (i.e., the variance becomes smaller as n grows), by Chebyshev�s

inequality, we can conclude that:

Fn(x)! F (x) in probability as n!1

4. Convergence Distribution:

For all x the empirical distribution function Fn(x)converges to the true CDF F (x) almost

surely (with probability 1), which is a consequence of the strong law of large numbers

(SLLN).

5. Central Limit Theorem (CLT):

According to the Central Limit Theorem, we have:

p
n (Fn(x)� F (x))

d!N(0;F (x)(1� F (x)))

This means that the di¤erence between Fn(x) and F (x) scaled by
p
n converges in distri-

bution to a normal distribution with mean 0 and varianceF (x)(1� F (x)

6. Glivenko-Cantelli Theorem:

11
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The Glivenko-Cantelli Theorem provides the following result:

sup
x
jFn(x)� F (x)j

p! 0 as n!1

This means that Fn(x) converges uniformly to F (x)almost surely.

7. Kolmogorov�s Theorem:

Kolmogorov�s theorem on uniform convergence implies that:

P

�p
n sup

x
jFn(x)� F (x)j � z

�
! e�2z

2
as n!1

This result provides a probabilistic bound on the uniform convergence of Fn(x) to F (x)

Application The empirical survival function: Fn(t) is de�ned as:

Fn(t) =
1

n

nX
j=1

I(Xj > t)

where t2 R

Key Properties of Fn(t) :

� Fn(t) serves as the empirical estimate of the survival function. The indicator function

I(Xj > t) is 1 if Xj > t and 0 otherwise.

where each term I(Xj > t) follows a Bernoulli distribution with parameterp = P (Xj >

t) = F (t) Therefore, the sum of these Bernoulli random variables:

nFn(t) =

nX
j=1

I(Xj > t)

follows a Binomial distribution with parameters(n; p)

Expectation of

E(Fn(t)) =
1

n
E

0@ nX
j=1

I(Xj > t)

1A =
1

n
� n� F (t) = F (t)

Thus,Fn(t)is an unbiased estimator of F (t)

12
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� Variance of Fn(t) :

The variance of Fn(t)is given by:

V ar(Fn(t)) =
1

n2
V ar

0@ nX
j=1

I(Xj > t)

1A
Since the random variablesI(Xj > t)are Bernoulli with parameter p = F (t)we have:

V ar(I(Xj > t)) = F (t)(1� F (t))

Thus, the variance of Fn(t)becomes:

V ar(Fn(t)) =
1

n
F (t)(1� F (t))

The empirical quantile :

The empirical quantile is an estimate of the quantile of a random variable X based on a sample

of size n it is de�ned as follows:

The theoretical Quantile:

Let Q(p)be the quantile function associated with X

Q(p) = F�1(p) = inf fx : F (x) � pg ; for p 2 (0; 1)

where F (x) is the cumulative distribution function (CDF) of X

the Empirical Quantile:

Given a sample X1; X2; ::::::Xnsorted in ascending order
�
X(1); X(2); ::::::X(n)

�
the empirical

quantile Qn(p) is de�ned as:

Qn(p) = F�1n (p) = X(j) for
j � 1
n

� p � j

n

whereFn(x) is the empirical cumulative distribution function.

Expectation Estimation Using the Quantile Function:

The mathematical expectation of X can be expressed using quantiles:

13



A General Notion about Statistics

E(x) =

Z 1

0
Q(p)dq

Using the empirical quantile estimator, we obtain an estimate of

Ê(x) =
1

n

nX
j=1

X(J)

This estimation is simply the empirical mean of the sample.

Kernel Density Estimation (KDE): from the book Density Estimation for Statistics and

Data Analysis" by B. W. Silverman [7]

"Kernel density estimation (KDE) is a fundamental non-parametric method for estimating the

probability density function (PDF) of a random variable. Unlike parametric methods, which as-

sume a speci�c form for the distribution, KDE constructs an estimate directly from the observed

data, providing a �exible and smooth approximation of the underlying distribution.

The mathematical formulation of the KDE estimator is given by:

f̂h(x) =
1

nh

nX
i=1

K

�
x�Xi

h

�
where:

� f̂h(x) is the estimated probability density function at point x

� n is the number of observed data points

� X1; X2; :::::::::::; Xn are the observed data points

� K(�) is the kernel function, which determines the shape of the local weighting

� h is the bandwidth parameter, which controls the smoothness of the estimated density.

Explanation of KDE Components:

1. Kernel FunctionK(�)

� The kernel function assigns weights to data points relative to the estimation point x

� Common kernel choices include:

14



A General Notion about Statistics

� Gaussian kernel:

K(u) =
1p
2�
e�

u2

2

� Epanechnikov kernel:

K(u) =
3

4
(1� u2) for juj � 1

� Other kernels include uniform, biweight, and triweight functions.

2. Bandwidth h

� The bandwidth is a crucial parameter that controls the smoothness of the density

estimate.

� Small h!The estimate is too sensitive to �uctuations (over�tting, too much noise).

� Largeh! The estimate is oversmoothed (important details may be lost).

� .An optimal choice of h can be determined using methods like Silverman�s rule of

thumb or cross-validation.

15



Chapter 2

Simple Censorship

This Master thesis focuses on estimation in a censored model, starting with an intro-

duction to the concept of censoring. In survival analysis and reliability studies, the

interest lies in the time until a speci�c event occurs. This time is referred to as failure time,

lifetime, survival time, or simply duration. It is a positive random variable, often assumed to

have an upper bound. This could represent, for example, the lifespan of a patient after receiving

treatment, the duration of unemployment, the time until a machine breaks down, or the age at

which a child learns to perform a speci�c task. Often, for various reasons, the time of interest

cannot be fully observed. This might occur due to losing contact with a patient, the beginning

or end of the study period, and so on. These values are considered censored. While the censored

values are unknown, they must still be accounted for to ensure accurate estimates and valid

conclusions. Depending on the speci�c context, the statistical literature o¤ers many methods

for handling censored observations. Di¤erent types of censoring exist.

De�nition 2.0.4 (De�nition of Censoring)

Censoring: in statistics refers to a situation where the full data on an event is not fully observed

due to some limitations in the data collection process. It occurs when the exact time of an

event is unknown, but there is enough information to determine that the event either occurred

before or after a certain time point. Censoring is commonly encountered in survival analysis

and time-to-event studies.

The primary types of censoring are:

16



Simple Censorship

Right Censoring: The event of interest has not occurred by the end of the observation period

or the individual left the observation before the end of the experiment.

Left Censoring: The event has already occurred before the subject was observed, but the exact

time is unknown.

Interval Censoring: The event is known to have occurred within a speci�c time interval, but

the exact time remains unknown.

In statistical modeling, censoring is addressed by utilizing the available information to estimate

the probability of the event happening over time, even with incomplete data.[1] [14] [6]

In this section, we introduce the concept of censorship and its types, such as left-censoring,

right-censoring, and interval-censoring.

The censoring variable, denoted by Y refers to the fact that the event of interest is not fully

observed ,Instead of observing the actual event timeXwe observe Y and we only know that:

� if X > Y , we have right censoring

� if X < Y , it�s called left censoring

� If Y1 < X < Y2 , it�s referred to as interval censoring

For a given individual J , we consider:

� XJ : the individual�s true survival time

� YJ : the censoring time, i.e., the time when observation ends

� Zj : the actual observed duration, which is either the event time or the censoring time,

depending on which came �rst

2.1 right censoring:

The lifetime is said to be right-censored if the individual has not experienced the event by their

last observation. In the presence of right censoring, not all lifetimes(y)are fully observed; for

some of them, we only know that they are greater than a certain known value. Let R be a random

censoring variable. Instead of observing the variable Y, which we are interested in, we observe a

pair of variables(Z; �)where Z = min(Y;R) and � = IfY�Rg � � is called the censoring indicator

because its values inform us whether the observation is complete(if � = 1)or right-censored
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Figure 2.1: RIGHT CENSORED

Figure 2.2: graph 2

(if � = 0)An illustrative example is when we are interested in the lifetime of a speci�c type of

machine, but these machines break down if there is an electrical surge. Here, the machine�s

lifetime is right-censored by the moment at which the surge occurs." [10]

Example 2.1.1 Consider a study designed to monitor the post-operative survival time of a

group of patients. Each patient is followed for a maximum of �ve years or until death, whichever

occurs �rst, starting from January 1, 2020. ,Suppose that, as of January 1, 2025� the end of

the follow-up period� one patient remains alive and has not experienced the event of interest

(death).In this scenario, we only know that the patient survived at least �ve years, but the exact

time of death is unknown. Thus, the patient�s survival time is considered right-censored.[25]

2.2 Left Censoring:

refers to the situation where the individual has already experienced the event before they are

observed. In this case, we only know that the event of interest occurred before a certain known

value, represented by a random variableL For each individual, we can associate a pair of random

variables(Z; @) such thatZ = max(Y; L)and @ = IfY�LgOne of the �rst examples of left censoring

found in the literature involves researchers observing baboons and their behavior of descending
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Figure 2.3: left cnsored

Figure 2.4: graph 3

from trees to eat (baboons spend the night in trees). The event of interest here is the time

when the baboon descends from the tree. This time is observed if the baboon descends after

the arrival of the observers. However, the data is censored if the baboon had already descended

before the observers arrived. In this case, we only know that the time the baboon descended

was before the observers arrived. Therefore, we observe the maximum of the baboon�s descent

time and the observers�arrival time.

The goal of a study on monkey behavior in a forest was to track how long the monkeys spent in

trees over a given time frame. Although the study began on January 1, 2020, it was noted that

some monkeys had already started to spend time in the trees before that date.

In this case, it is unclear exactly when the monkeys began to remain in the trees, but it is

evident that they were there prior to the start of the study period. Their time spent in the

trees is therefore regarded as left-censored because it took place before the observation period

began[15].

2.3 Interval censoring:

Occurs when the exact time of an event is unknown, but it is known to lie within a speci�c time

interval. This situation arises when data are collected at discrete time points, and the event
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of interest is only observed between these points. For example, in medical studies, a patient

may be examined periodically, and the event (e.g., disease progression) is only known to have

occurred between two visits, but the precise time of the event is not observed.

This concept is central to survival analysis methods dealing with censored data, where the exact

event times are not directly observed but are constrained within known intervals

In early childhood education, it�s common to assess the age at which children acquire speci�c

skills. This "time-to-event" refers to when a child successfully performs a particular task. How-

ever, some children may already have these skills upon entering a study, making it di¢ cult

to determine the exact age they acquired them. This situation is known as left censoring in

survival analysis, where the event of interest has occurred before observation begins, but the

precise timing is unknown.

Survival analysis deals with situations where the exact timing of events isn�t fully known. Left

censoring happens when an event has already occurred before a subject joins the study, but the

exact time is uncertain. This contrasts with right censoring, where the event hasn�t occurred

by the study�s end, and interval censoring, where the event�s timing is known to fall within a

speci�c range.

To handle left-censored data e¤ectively, specialized statistical methods are needed to accur-

ately estimate event time distributions. Ignoring left censoring can lead to biased results, as it

overlooks instances where the event has already occurred before observation[16]

2.4 Double censoring

For example, a study focused on the age at which children in an African community learn to

perform certain tasks. At the start of the study, some children already knew how to perform

the tasks being studied. In this case, we only know that the age at which they learned is earlier

than their age at the start of the study. By the end of the study, some children had still not

learned these tasks, and we only know that the age at which they will eventually learn the tasks

is later than their age at the end of the study. The age at the start of the study (left-censoring

variableL)

s obviously less than the age at the end of the study (right-censoring variable R)The age of

interest is observed if it falls within the study period. We observeZ = max(min(Y;R); L) with a
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censoring indicator. This model was studied by Turnbull, who introduced an implicit estimator

for the survival function ofY which is the solution to a self-consistency equation.

Type I Censoring: Fixed The experimenter sets a �xed (non-random) end date for the

experiment. The maximum duration of participation is then �xed (non-random) and, for each

observation, it is the di¤erence between the experiment�s end date and the date the patient

enters the study. The number of observed events, however, is random. This model is commonly

used in epidemiological studies.

The number of observed events is random.

This model is commonly used in epidemiological studies.

Type II Censoring: Waiting The experimenter pre-de�nes the number of events to observe.

In this case, the end date of the experiment becomes random, while the number of events remains

non-random. This model is often used in reliability studies.

This model is frequently used in reliability studies.

Type III Censoring: Random This is typically the model used in therapeutic trials. In

this type of experiment, the inclusion date of the patient into the study is �xed, but the end

observation date is unknown (for example, it may correspond to the patient�s hospital stay

duration). Suppose fX1; ::::::::Xng is a sample from a positive random variable X, we say that

there is random censoring of this sample if there exists another positive random variable Y

with a sampleY1::::::Yn In this case, instead of observing the values ofXJ5, we observe a pair of

random variables(ZJ ; �J), where:

ZJ = min(XJ ; YJ)

�J = I(XJ � YJ)

Here, �J is the censoring indicator, which determines whether X was censored or not:

If �J = 1 the event duration is observed (ZJ = XJ)

if �J = 0 the event is censored (ZJ = XJ)

In this case, the observed durations are incomplete.

This chapter focuses exclusively on random right censoring, which is widely used in real-world

applications and thus deserves particular attention.[15]
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The hazard rate

The hazard rate (or risk function) is de�ned as the instantaneous probability that an individual

will experience the event of interest within a very short time interval, given that the individual

has survived up to the start of the interval.

Formally, the hazard rate �(t) is expressed as:

�(t) = lim
h!0

P (X � t+ h j X � t)

h
= lim

h!0

P (X � t+ h j X � t)=P (X � t)

h
=

1

P (X � t)

P (X � t+ h j X � t)

h

= lim
h!0

P (t � X � t+ h j X � t)

h

In other words, �(t) represents the probability that an individual will experience the event within

a small time interval [t; t+ h] conditional on surviving up to time

This can also be written as:

�(t) =
f(x(t))

S(x(t))

f(x(t))

1� f(x(t))

where

� f(x(t)) is the probability density function of the event time,t

� S(x(t)) is the survival function, representing the probability of surviving beyond time t

[10]

Cumulative Hazard Rate:[23]

The cumulative hazard rate, also known as the cumulative hazard function at time t is obtained

by integrating the hazard function from 0 to t

H(t) =

Z t

0
�(u) du = � logS(t)

where H(t) is the cumulative hazard at timet;and �(u) is the hazard function at time u;
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The survival function can be derived from the cumulative hazard rate using the following relation:

S(t) = exp(�H(t)) = exp
�
�
Z t

0
�(u) du

�

2.5 Kaplan-Meier Estimator:

From the books [3] [8] [24]

let X1::::::::::Xn be a sample representing the durations of interest (assumed to be positive), with

a distribution function F and C1:::::::Cn be a sample representing the censoring times, assumed

to be independent of the durations of interest, with a distribution function G In the random

right-censorship model, instead of observing the duration of interestXiwe observe the minimum

of the two values,Zi = min(Xi; Ci)

Censoring Indicator�i : The censoring indicator �i takes the value of 1 if the event of interest is

observed and 0 if it is censored. It is de�ned as: �i = IfXi � Cigwhere Xi

is the observed event time, andCiis the censoring time.

Survival or Reliability Data: In the context of survival analysis or reliability data, where the

goal is to estimate the time until a speci�c event occurs, the distribution function F

is estimated using the Kaplan-Meier estimator, introduced by Kaplan and Meier (1958).This

estimator is de�ned for values

Fn(z) = 1�
Y

i=Zi�z

�
Ni(Zi)� 1
Ni(Zi)

��i
Here Nn(x) =

Pn
i=1 IfZi � xg represents the number of subjects at risk at time x for z � Zn

there are several conventions to de�ne Fn(z)

1. It can be de�ned as Fn(zn)but this might not make Fn a proper distribution function

ifZnis censored.

2. It can be de�ned as 0

3. It can be left unde�ned.
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Some properties of the Kaplan-Meier estimator

In survival analysis ~Sn serves a similar purpose for incomplete data as the empirical distribution

function does for standard data.

Bias and Convergence

The Kaplan-Meier estimator is slightly biased; generally

E( ~Sn(t)) < �S(t)

where E(�) represents the expectation. However, it is a consistent estimator For all " > 0

lim
n!1

P
���� ~Sn(t)� S(t)��� � "

�
= 0

Thus, it is asymptotically unbiased:

lim
n!1

E( ~Sn(t)� S(t)) = 0

Auto-coherence: In the absence of censoring, an estimator for S(t) is

�Sn(t) =
1

n

nX
i=1

I(ti>t)

In the presence of censoring, we can still write:

�Sn(t) =
1

n

nX
i=1

�
�i�ti>t

+ (1� �i
�
Iti>t)

However, the value of Iti>t is not known for censored data.

If an estimator �Sn(t) of S(t) is known, we can estimate the expectation of Iti>t given that �i = 0

and ti > si

we have

E (Iti>tj�i = 0 and ti > si) =
P (ti > t)

P (ti > si)

Thus,

�E (Iti>t�i = 0and ti > si) =
�Sn(t)
�S(si)
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The Kaplan-Meier estimator has the property of being auto-coherent, i.e.,

Ŝn(t) =
1

n

nX
i=1

(�iIti>t + (1� �i)
Ŝn(t)

Ŝn(si)

(Constraints on a Survival Function)

Given �S0nwe can iteratively calculate an estimate �S
k
nby:

�Skn(t) =
1

n

nX
i=1

(�iIti>t + (1� �i)
�S
(k�1)
n (t)

�S
(k�1)
n (si)

And we have:

lim
k!n

�Skn = Ŝn

Limitations of the Kaplan-Meier Estimator: The Kaplan-Meier estimator has a discon-

tinuous nature. In some situations, it may be necessary to smooth the estimator by applying

a kernel function. It also doesn�t account for uncertainties in the observed values of ti (event

times) and si (censoring times).

In medical statistics, these uncertainties are usually small, as event times like death or discharge

are typically known precisely. However, when combined with the inherent variability of the

data (which can be described by the standard deviation around the mean), this can a¤ect the

estimated variability from the Kaplan-Meier estimator. To correct for these e¤ects, simulations,

such as bootstrap methods, can help model these uncertainties and adjust the results accordingly.

The Kaplan-Meier estimator

The Kaplan-Meier estimator (EKM) is the most widely used method for estimating the survival

function without making any assumptions about the distribution of survival times. It is also

known as the Product Limit (PL) estimator because it is derived from the limit of a product.

How the Kaplan-Meier Estimator (EKM) is Constructed:

The Kaplan-Meier estimator is based on progressively calculating the probability of survival at

each time point, considering the events that occur and the individuals who remain "at risk" at

each moment .The mathematical formula for the estimated survival function S(t)at time t such

25



Simple Censorship

that t0 < t

S(t) = P (X > t;X > t0)

= P (X > t=X > t0)S(t0)

We repeat the operation by choosing t00 � t0 yielding:

S(t0) = P (X > t0 j X > t00)S(t00)

Therefore:

S(t) = P (X > t;X > t0)P (X > t0 j X > t00)S(t00)

When selecting the dates for conditioning, we choose those where an event (death or censoring)

has occurred, i.e.,T(i)We then estimate quantities of the form:

Pi = P (X > T(i) j X > T(i�1)

where Pi represents the probability of surviving during the interval Ii = [T(i�1); T(i)] given

survival at the start of this interval. Let Ri denote the number of subjects at risk at time T(i)

and Mi the number of observed deaths at this time. The probability qi = 1 � pi represents

the chance of dying during interval Ii conditional on being alive at the start of the interval. A

natural estimator for qi is

bqi = Mi

Ri
=

dj
Dj

=
number of deaths at time T(i)

number of subjects at risk

Assuming no ties (i.e.T(i) are distinct), if �(i) = 0(indicating censoring at timeT(i)) then Mi = 0

In this case, we have:

bqi =
8><>:

1
Ri

if �(i) = 1

0 if �(i) = 0

Consequently bpi = 1� bqi becomes:
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bpi =
8><>: 1� 1

Ri
if �(i) = 1

1 if �(i) = 0

bpi = (1� 1

Ri
) �(i)

It is evident that Ri = n � i + 1 Thus, the Kaplan-Meier estimator (KME) for the survival

function of the lifetime variable X is obtained:

Ŝkm(t) = 1� bFkm(t) =
8>><>>:

Y
i=T (i)�t

(1� 1
Ri
)
�(i)

if t < T (n)

0 if t � T (n)

Similarly, the KME for the survival function of the censoring variableC is

Gn(t) = 1� Ĝkm(t) =

8>><>>:
Y

i=T (i)�t
(1� 1

n�i+1)
1��(i)

if t < T (n)

0 if t � T (n)

here T (i) and �(i) for i = 1 � � � � � �n are such that T (1) � T (2) � T (3) � � � � � � � � � T (n) and �(i)

are the corresponding indicator variables.

The Kaplan-Meier estimator can also be expressed in the following form:

Ŝkm(t) =

8>><>>:
nY
i=1

(1� 1
n�i+1)

IfT (i)�tg if t < T (n)

0 if t � T (n)

Gn(t) =

8>><>>:
nY
i=1

(1� 1
n�i+1)

IfT (i)�tg if t < T (n)

0 if t � T (n)

2.6 Simulation

2.6.1 Kaplan-Meier estimator of the survival function

Clinical Study Example:

Title: Clinical Trial of HAART (Highly Active Antiretroviral Therapy) in HIV Patients
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Study Objective: The goal of the study was to evaluate the e¤ectiveness of Highly Active

Antiretroviral Therapy (HAART) in improving CD4+ T cell counts and survival duration among

HIV patients.

Study Design: A total of 200 HIV-infected patients were divided into two groups:

Group 1: 100 patients receiving Highly Active Antiretroviral Therapy (HAART).

Group 2: 100 patients receiving traditional antiretroviral treatment (ART) with lower e¢ cacy.

Results:

Group 1: Showed a 45% increase in CD4+ T cell count after 6 months of treatment, and a 30%

improvement in survival time compared to Group 2.

Group 2: Showed no signi�cant improvement in CD4+ T cell counts and had a lower survival

duration compared to Group 1.

Data for Group 1 (HAART):

8, 15, 24, 34, 45, 50, 60, 72, 84*, 100, 120*, 135, 150, 180*, 200*, 210, 225*, 240, 265*, 280, 300,

320*, 340*, 365*

(* indicates that these patients are still alive after the speci�ed days in the trial).

Data for Group 2 (Traditional ART):

12, 18, 23, 31, 40, 52, 60, 70, 90*, 110, 130*, 145, 155, 170*, 190*, 210, 220*, 235, 250*, 270,

290, 310*, 330*, 350*

(* indicates that these patients are still alive after the speci�ed days in the trial)[26].

Methodology

1. Sorting the Time Points: Arrange the event (or censoring) times t1; t 2; � � � � � � ��; tn in

ascending order such that t1 < t 2 < � � � � � � �� < tn

2. Calculating Events and Risk Set:

� For each time point tj , determine:

� dj :The number of events (such as relapses or deaths) that occur at time tj

�Dj The number of individuals at risk at time tj (i.e., individuals who were alive

or in remission up to time tj)
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3. Calculating the Conditional Probability: For each time point tj calculate the conditional

probability pj of surviving between tj�1and tj

where pj = 1� dj
Dj

where dj
Dj
is the event rate at time tj

4. Calculating the Cumulative Survival Function: The cumulative survival function at time

tj is calculated as:

Ŝ(tj) =

jY
k=1

pk where Ŝ(tj) represents the cumulative survival probability up to time tj

HAART Group Data (Group 1) CODE IN R

library(survival)

df_haart <- data.frame(

time = c(8, 15, 24, 34, 45, 50, 60, 72, 84, 100, 120, 135, 150, 180, 200, 210, 225, 240, 265, 280,

300, 320, 340, 365),

status = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0)

)

event_times <- sort(unique(df_haart$time[df_haart$status == 1]))

n_at_risk <- sapply(event_times, function(t) sum(df_haart$time >= t))

n_died <- sapply(event_times, function(t) sum(df_haart$time == t & df_haart$status ==

1))

death_prob <- n_died / n_at_risk

surv_step <- 1 - death_prob

cum_surv <- cumprod(surv_step)

result <- data.frame(

Time = event_times,

Died = n_died,

AtRisk = n_at_risk,

�d/n�= round(death_prob, 3),

�1 - d/n�= round(surv_step, 3),

�Survival Probability�= round(cum_surv, 4)
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)

print(result)

km_�t <- surv�t(Surv(time, status) ~1, data = df_haart)

plot(km_�t,

xlab = "Days",

ylab = "Survival Probability",

main = "Kaplan-Meier Survival Curve - HAART Group",

col = "blue",

lwd = 2)

grid()

Even in these conditions we can calculate the Kaplan-Meier estimates as summarized in this

Table1:
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Time to event (t) Died (d) AtRisk (n) P(death) = d
n P( survival)=1� d

n P(Survival at L)

1 8 1 24 0,042 0,958 0,9583

2 15 1 23 0,043 0,957 0,9167

3 24 1 22 0,045 0,955 0,8750

4 34 1 21 0,048 0,952 0,8333

5 45 1 20 0,050 0,950 0,7917

6 50 1 19 0,053 0,947 0,7500

7 60 1 18 0,056 0,944 0,7083

8 72 1 17 0,059 0,941 0,6667

9 100 1 15 0,067 0,933 0,6222

10 135 1 13 0,077 0,923 0,5744

11 150 1 12 0,083 0,917 0,5265

12 210 1 9 0,111 0,889 0,4680

13 240 1 7 0,143 0,857 0,4011

14 280 1 5 0,200 0,800 0,3209

15 300 1 4 0,250 0,750 0,2407

Table 2.1: Kaplan Miere estimate group 1
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Figure 2.5: KPLAN MEIER HAART

Group 2 (Conventional Treatment - ART) CODE IN R

library(survival)

df_art <- data.frame(

time = c(12, 18, 23, 31, 40, 52, 60, 70, 90, 110, 130, 145, 155, 170, 190, 210, 220, 235, 250, 270,

290, 310, 330, 350),

status = c(1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0)

)

event_times <- sort(unique(df_art$time[df_art$status == 1]))

n_at_risk <- sapply(event_times, function(t) sum(df_art$time >= t))

n_died <- sapply(event_times, function(t) sum(df_art$time == t & df_art$status == 1))

death_prob <- n_died / n_at_risk

surv_step <- 1 - death_prob

cum_surv <- cumprod(surv_step)

result <- data.frame(

Time = event_times,

Died = n_died,

AtRisk = n_at_risk,

�d/n�= round(death_prob, 3),
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�1 - d/n�= round(surv_step, 3),

�Survival Probability�= round(cum_surv, 4)

)

print(result)

km_�t <- surv�t(Surv(time, status) ~1, data = df_art)

plot(km_�t,

xlab = "Days",

ylab = "Survival Probability",

main = "Kaplan-Meier Survival Curve",

col = "red",

lwd = 2)

grid()

Even in these conditions we can calculate the Kaplan-Meier estimates as summarized in this

Table 2
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Time to event (t) Died (d) AtRisk (n) P(death) = d
n P(survival) =1� d

n P(Survival at L)

1 12 1 24 0,042 0,958 0,9583

2 18 1 23 0,043 0,957 0,9167

3 23 1 22 0,045 0,955 0,8750

4 31 1 21 0,048 0,952 0,8333

5 40 1 20 0,050 0,950 0,7917

6 52 1 19 0,053 0,947 0,7500

7 60 1 18 0,056 0,944 0,7083

8 70 1 17 0,059 0,941 0,6667

9 110 1 15 0,067 0,933 0,6222

10 145 1 13 0,077 0,923 0,5744

11 155 1 12 0,083 0,917 0,5265

12 210 1 9 0,111 0,889 0,4680

13 235 1 7 0,143 0,857 0,4011

14 270 1 5 0,200 0,800 0,3209

15 290 1 4 0,250 0,750 0,2407

Table 2.2: Kaplan mier group 2

Figure 2.6: KPLAN MIEIER ART
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Comparative Survival Analysis: HAART vs. ART We will compare two groups of

patients� those receiving highly active antiretroviral therapy (HAART) and those receiving

conventional antiretroviral therapy (ART)� using Kaplan-Meier survival curves. The goal is to

assess whether there are signi�cant di¤erences in survival duration between the two treatment

approaches.

CODE IN R

group1 <- c(8, 15, 24, 34, 45, 50, 60, 72, 84, 100, 120, 135, 150, 180, 200, 210, 225, 240, 265,

280, 300, 320, 340, 365)

status1 <- c(1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0)

group2 <- c(12, 18, 23, 31, 40, 52, 60, 70, 90, 110, 130, 145, 155, 170, 190, 210, 220, 235, 250,

270, 290, 310, 330, 350)

status2 <- c(1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0)

X <- c(group1, group2)

D <- c(status1, status2)

t <- c(rep("HAART", length(group1)), rep("ART", length(group2)))

f <- data.frame(X, D, t)

library(survival)

s <- surv�t(Surv(X, D) ~t, data = f)

plot(s, lty = c(1, 2), col = c("blue", "red"), xlab = "Time", ylab = "Survival Probability")

legend("topright", legend = c("HAART", "ART"), lty = c(1, 2), col = c("blue", "red"))

This R code performs survival analysis on a dataset that includes survival times, censoring

indicators, and treatment types. The dataset is created by combining three variables: X, D, and

t.

X contains the survival times for each observation, where each observation represents a patient.

D includes the censoring indicators, which indicate whether an observation was censored or not.

A value of 1 means the observation was censored, while 0 means it was not.

t is a categorical variable indicating which treatment each observation received. In this case,

there are two treatments: HAART and ART. The �rst group of patients received HAART, while

the second group received ART.

35



Simple Censorship

The code then loads the �survival�library and uses the �surv�t�function to �t a Kaplan-Meier

survival curve to the data. The formula speci�es that the survival object should be modeled

based on the treatment variable t.

Finally, the �plot� function is used to generate a plot of the survival curves, and the �legend�

function is used to add a legend to the plot.

The resulting plot shows the estimated survival probabilities for each treatment over time, and

the legend indicates which line corresponds to each treatment. Overall, the code is used to

compare the survival properties of two di¤erent treatments and visually display the results.

Figure 2.7: KAPLAN MIEIER FOR 2 GROUP

Survival analysis using Kaplan-Meier curves showed a clear di¤erence between the two groups:

patients who received Highly Active Antiretroviral Therapy (HAART) and those who received

traditional Antiretroviral Therapy (ART).

The survival curves for the HAART group remained consistently higher throughout the follow-up

period, indicating a greater chance of survival compared to the ART group.

This di¤erence was evident through a vertical gap between the two curves at various time points,

where the proportion of surviving patients was higher in the HAART group. A horizontal gap

was also observed, showing that HAART patients took longer to reach the same mortality rate
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seen in the other group.

These �ndings suggest that HAART not only increases the likelihood of survival but also delays

death compared to traditional ART, supporting its e¤ectiveness as a better treatment option

for HIV patients.
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Chapter 3

Mixed Censorship

Survival analysis experienced signi�cant development in the second half of the twentieth

century after Kaplan and Meier introduced their famous estimator of the survival func-

tion for right-censored data. This estimator generalizes the complement to one of the empirical

distribution function. Later, in 2006, Patilea and Rolin expanded this framework to include

more complex cases such as mixed censoring, where censoring occurs from both the left and the

right. These are situations that the Kaplan-Meier estimator does not adequately address. In

this context, they introduced new statistical tools and more sophisticated models to extend the

scope of survival data analysis to cover these more complex censoring scenarios.

in this section, we will address all aspects related to the concept of mixed censoring in survival

analysis, such as the properties of mixed censoring and the estimator of the mixed censoring

distribution (Patilea and Rolin). Below is a simpli�ed de�nition of mixed censoring:

3.1 De�niton of Mixed censoring :

Mixed censoring refers to a situation in survival analysis where one or two types of censoring

occur simultaneously within the same dataset. Typically, this includes right censoring� where

the exact time of the event is unknown because the event did not occur during the observation

period� and left censoring� where the event has already occurred before the observation begins.

This dual occurrence complicates the analysis of time-to-event data, as it introduces additional

uncertainty in the estimation of survival functions and hazard rates. Specialized statistical

methods are required to properly handle these varying censoring mechanisms, ensuring that the
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resulting estimates are both accurate and reliable.[25]

With another de�nition [13]

It is said that there is mixed censoring when two types of censorship (one on the left and the

other on the right) can prevent the observation of the phenomenon of interest, without necessarily

being able to determine the interval to which it belongs. Instead of observing a sample of the

variable of interestY we observe a sample of the pair (Z;A)

Z = max(min(Y ;R);L)

and A write As in the model described in the article by [Patilea and Rolin (2006)].[19]

A =

8>>>><>>>>:
0 if L < Y < R

1 if L < R < Y

2 if min(Y ;R) � L

Here L and R denote the left-censoring and right-censoring times, respectively, and A is the

censoring indicator that distinguishes among three types of observations

� A = 0 indicates an exact observation (with Y observed within the interval (L;R))

� A = 1 corresponds to right censoring (where we know only that Y > R)

� A = 2 corresponds to left censoring (where we know only that Y � L)

To highlight the di¤erence between one-sided censoring, such as right or left censoring, and

mixed censoring, the following table presents the key characteristics of mixed censoring
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Figure 3.1: graph 4

Property Explications

Unbiasedness

Estimators like the Kaplan�Meier are unbiased when dealing with right

-censored data, but they may become biased when applied to mixed

or doubly censored datasets

Consistency
Turnbull�s nonparametric estimator is known to be consistent even under

complex censoring structures, including mixed or double censoring

Non-parametric �exibility
Survival functions can be estimated without needing to assume a,

particular distributionusing methods such as Turnbull or Patilea�Rolin.

Bias risk
When left censoring is heavy or censoring types are unbalanced,

bias may be introduced into the estimation process.

Use of iterative algorithms
For complex censoring scenarios, iterative methods like the EM algorithm

are employed to achieve accurate estimates.

Table 3.1: The properties of mixed censoring

1. Strong Uniform Consistency:
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sup
t2[a;b]

���Ŝn(t)� S(t)���!a;s 0 as n!1

where [a; b]is a condensed subset of T; is support, and the convergence is almost certain.

2. Asymptotic Normality: In the presence of regularity

p
n
�
Ŝn(t)� S(t)

�
!d N(0; �2(t))

where �2(t) depends on the underlying censoring and survival distributions.

3. Turnbull�s estimator bounds are provided by the Patilea-Rolin estimator.

Ŝlowern (t) � ŜTurnbulln (t) � Ŝuppern (t)

The modi�ed product-limit formulas are applied to intervals that are de�ned by the ob-

served censoring patterns in order to construct these bounds.

4. Bootstrap Validity: Given bootstrap samples f(X�
i ; �

�
i )g, the estimator Ŝ�n(t) satis�es:

p
n
�
Ŝ�n(t)� Ŝn(t)

�
!d N(0; �̂2(t))

where convergence is conditional on the sample, or in the bootstrap sense

.

Non-parametric estimation for mixed censoring model

For situations in which a censoring mechanism is applied to the observations Ti a new class

of estimators is presented. Patilea and Rolin (2006) discussed this model, which is based on

non-parametric estimation.

this is due to the fact that the estimator of the distribution of kaplan-Meier is no longer valid

in this case hence the use of the new Patilea and Rolin estimator
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3.2 Patilea and Rolin Estimator:

Examine a sample (Zi; �i) for 1 < i < n of the pair (Z; �) where Z is de�ned as follows:

Z = (T ^ C) _ L = max(min(T;C); L)

for X = (T ^ C )

where T;C; L are independent positive random variables representing the variable of interest,

the left-censored variable, and the right-censored variable, respectively

Assume that H is the distribution function of Z and that H(0) represents the sub-distribution

for the uncensored observations. The following expressions supply these.

H(t) = P (Z � t) = FL(t)FX(t)FC(t)(1� ST (t)SC(t))

Uncensored data (� = 0) ! H(0)(t) = P (Z � t; � = 0) =

tZ
0

FL(x)SC(x) dFT (x)

Right-censored data (� = 1)

H(1)(t) = P (Z � t; � = 1) =

tZ
0

FL(x)FT (x) dFC(x)

Left-censored data (� = 2)

H(2)(t) = P (Z � t; � = 2) =

tZ
0

ST (x)FC(x) dFL(x)

The following are their corresponding empirical versions:

Hn(t) =
1

n

nX
i=1

IfZi�tg

H(0)
n (t) =

1

n

nX
i=1

IfZi�t;�i=0g =
1

n

nX
i=1

IfZi�t; Ti�Ci�0, Li�Ti�0g
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H(1)
n (t) =

1

n

nX
i=1

IfZi�t;�i=1g

H(2)
n (t) =

1

n

nX
i=1

IfZi�t;�i=2g

Let ZJ for (1 � j � M) represent the di¤erent observed values of Zi arranged in ascending

order. For each k 2 f0; 1; 2g de�ne:

Dkj =
nX
i=1

I
�
Zi = Z 0J ; �i = k

	
The following form represents n, the bounded product estimator put forth by Patilea and Rolin

(2006)

Sn(t) = 1� eFn(t)
Sn(t) =

Y
j=Z0J�t

(1� D0J
_F (Z 0J�1)� nHn(Z 0J�1)

)

_Fn stands for the Kaplan�Meier estimator of the distribution functionFL, which is created by

time reversal, or by inverting time in the manner described below:

_Fn(t) =
Y

j=Z0J�t
(1� D0J

nHn(Z 0J)
)

Non parametric Estimation of Copulas under Double Censoring: [11]

Let X = (X1; X2) be a pair of positive random variables with support X = X1 �X2and joint

distribution functionF let R = (R1; R2) respectively L = (L1; L2) be a pair of random variables

for right censoring (respectively, left censoring). We consider X;L and R to be independent

variables. When double censoring is used, we see independent copies (Z1i; Z2i; A1i;A2i; ) 1 �

i � n

of the vector (Z1; Z2; A1;A2; ) where for each K 2 f1; 2g; ZK = max(min(XK ; RK); LK) and AK

is the censoring indicator given by:
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AK =

8>>>><>>>>:
0 if LK < X < RK

1 if LK < RK < XK

2 if min(XK ;RK) � LK

For any random variable V; FV ; SV ; IvTv ,the following represent its distribution function, sur-

vival function, lower endpoint, and upper endpoint of the support of V , respectively Further-

more, we de�ne '(t�) = lim"!0+ '(t � ") for any right-continuous function ' = R ! R When

it exists, the left-hand limit of ' at t when it exists Moreover, for any di¤erentiable function

 = R2 ! R we represent the partial derivative of  with respect to the �rst (or second) variable

by @1 (or @2 ) respectively

We assume that the functions FXK ; FRKand FLK (for K 2 f1; 2g)are continuous.

The following notations must be introduced in order to de�ne the empirical copulaCn(U; V )for(U; V ) 2

[0; 1]2we need to introduce the following notations.forK 2 f1; 2gand j 2 f0; 1; 2g denote by

H
(j)
K (t) = P (ZK � t; AK = j)

when AK = j we take into account the sub-distribution function of ZK which is represented

by H(j)
K which is represented by I

H
(j)
K

= infft 2 R = H
(j)
K (t) > 0gThis is the lowest value of

t for which the sub-distribution function is larger than zero.The empirical representations of

the overall distribution function and the sub-distribution function H(j)
K ; FZK are described as

follows:

H
(j)
nK(t) =

1

n

nX
i=1

IfZKi�t ; AKi=jg

F̂ZK =

nX
i=1

IfZKi�t g

The indicator function in this case, represented by If�gis equal to 1 when the condition inside is

true and 0 otherwise.let(Z 0Kj ) 1 � J � m where m � n represent the unique observed values

of

(ZKi)1 � i � n These are used to de�ne the product-limit estimator F̂LK (t) of the function

FLK (t) as
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F̂LK (t) =
Y

j=Z0Kj>t

 
1�

Pn
i=1 IfZKi=Z0Kj ; AKi=2g

nF̂ZK (Z
0
Kj)

!

This estimator is conceptually similar to the Kaplan-Meier estimator, but it is constructed by

reversing time.

Additionally, the product-limit estimator for SRk is given in reference [25]

SRk(t) =
Y

i=Zki�t

0@1� IfAki=1g

n
�
F̂LK (Z �Ki)� F̂ZK (Z �Ki)

�
1A

The empirical distribution function of X cannot be directly constructed from the data due to

its unobservability.

~Fn(x1x2) =
1

n

nX
i=1

IfX1i�x1 ; X2i�x2g

The empirical distribution function cannot be used to estimateF (x1; x2) since X is unobserved.

Thus, in accordance with[27] and noting that.

E
h
g(Z1Z2)IfAi=0gIfZ1�x1 ;Z2�x2g

i
= E

�
IfX1�x ; X2�x2g

�
= F (x1 , x2)

ĝ(Z1iZ2i)IfAi=0gIfA2i=0gIfZ1i�x1 ;Z2i�x2g

where

Fn1(x1) = lim
x2!1

F (x1; x2) and Fn2(x2) = lim
x1!1

F (x1; x2)
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Conclusion

We looked at a number of nonparametric estimation topics in the context of censored

data in my graduation Master thesis.

We covered some fundamental and basic ideas in Chapter One, including random variables and

the distribution function. Simple censoring techniques, such as left- and right-censoring, were

covered in the second section, along with how to use the Kaplan-Meier estimator to estimate

these censored parameters. Alongside ideas like risk rate estimation

We showed in the last section that another nonparametric estimator, like the Patilea and Rolin

estimator, can be applied when there is mixed censoring, or combined right and left censoring
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Appendix A: Abbreviations and Notaions

Appendixe A: Abbreviations and Notations

v:a:r : Real random variable(s)

i:i:d : Independent and identically distributed

p:s : Almost surely

�F : S(t) = 1� F (t) survival function

F : Cumulative distribution function (CDF )

R : Set of real numbers

X
d! Y : Convergence in distribution

SX : survival function of X

f : Probability density function

Fn : Empirical cumulative distribution function

IA : Indicator function of the set A


 : Sample space

�T : Hazard function of T

N The set of natural numbers
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ڲڪٌۘ
اܳٴ٭؇َ؇ت ොູܹ٭ܭ ሒᇭ أݿ؇ݿ٭۰ Ⴇ၍داة اܳٴگ؇ء ᄭᄟدا ቕሹّگڎ ቕቆ ۋ٭ت ،۰ਃಮ؇ۋݱ৕৑ا اܳٴ٭؇َ؇ت ሒᇭ اৎ৊ݠاڢٴ۰ ݁ިݪިع ሌᇿإ اܳٺޚݠق ቕቆ اܳٴۜت، ۱ڍا ሒᇭ
ᄭᄟدا ܳٺگڎߌߵ واݿؕ ႟ၽ૰૖ ૭ُ૏ٺ༱ڎم اᄳᄟي ఈఃًႤ၍ن-݁؇ߌߵ ݁گڎر اݿٺأݠاض ቕቆ .ปฃاࡺࢋࢦ اৎ৊ݠاڢٴ۰ ᄭᄟ؇༡ ሒᇭ ۊݱިݬً؇ ਵਦاڢٴ۰، আॻ༟ ොູٺިي มฆܳا
ఈ႙၍ ݆݁ اܳٴ٭؇َ؇ت ਵਦاڢٴ۰ لࡤࡲ ۋ٭ت ا௰௯௫ٺܹޚ۰، اৎ৊ݠاڢٴ۰ ᄭᄟ؇༡ ሒᇭ ဦݬ؇ࠍ ଫଃ༚ اৎ৊گڎر ۱ڍا أن ඔ൹ਊಾ ،ዻዧذ و݁ؕ ஓ୷٭ྡྷ٭ً؇. اৎ৊ݠاڢٴ۰ اܳٴ٭؇َ؇ت ሒᇭ اܳٴگ؇ء
اܳٴ٭؇َ؇ت ؕ݁ اܳٺأ؇݁ܭ আॻ༟ ًگڎرّ۬ ଩ଃറണ೭ اᄳᄟي ،(2006) ඔ൹ܳورو ً؇ਃಾܹ٭؇ ݁گڎر ቕሹܳٺگڎ ۰༥؇੆اࠍ ೑಻Ⴄ၍ ۱ٷ؇ ݆݁ .(ඔ൹واࡺࢋࢦ (ا྘ܳފ؇ر ඔ൹ਊ಻؇੊اࠍ

اܳފ٭؇ق ۱ڍا ሒᇭ اܳފ؇ًݑ اৎ৊گڎر ݬఈఃۋ٭۰ ༟ڎم ᄭႍၽ݁ލ وොຬܭ ا௰௯௫ٺܹޚ۰، اৎ৊ݠاڢٴ۰
ඔ൹ܳورو ً؇ਃಾܹ٭؇ ݁گڎر , ఈఃًႤ၍ن-݁؇ߌߵ ݁گڎر . ا௰௯௫ٺܹޚ۰ اৎ৊ݠاڢٴ۰ ,ปฃاࡺࢋࢦ اৎ৊ݠاڢٴ۰ اܳٴگ؇ء, ᄭᄟؼמ١:,داոء׫िऻا اڤոஈ࿦࿮ت

Résumé
Dans cette étude, nous avons abordé la problématique de la censure dans les données statistiques, en

présentant la fonction de survie comme un outil fondamental pour l’analyse des données censurées,

notamment dans le cas de la censure à droite. L’estimateur de Kaplan-Meier, largement utilisé pour

estimer la fonction de survie dans ce type de données, a été examiné. Cependant, il s’avère que cet

estimateur n’est pas adapté dans le cas de la censure mixte, où les données sont censurées à la fois à

gauche et à droite. Cela a donc motivé la présentation de l’estimateur de Patilea et Rolin (2006), qui est

spécifiquement conçu pour traiter ce type de censure et pallie les limites de l’estimateur précédent dans

ce contexte.

Mots-clés :Fonction de survie, censure à droite, censure mixte, estimateur de Kaplan-Meier, estimateur

de Patilea et Rolin.

Abstract
In this study, the topic of censoring in statistical data was addressed, with the survival function presented

as a fundamental tool for analyzing data affected by censoring, particularly in the case of right-censoring.

The Kaplan-Meier estimator, widely used for estimating the survival function in right-censored data,

was reviewed. However, it was found that this estimator is not suitable for mixed censoring, where

data is censored from both sides (left and right). This highlighted the need to introduce the Patilea and

Rolin (2006) estimator, which is specifically designed to handle mixed censored data and addresses the

limitations of the previous estimator in this context.

Keywords:Survival function, right censoring, mixed censoring, Kaplan-Meier estimator, Patilea and

Rolin estimator.
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