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Introduction

W hen studying natural phenomena from the motion of planets in the sky to

the flow of water in rivers, and even the spread of diseases within societies

we find that these phenomena are most accurately described by differential equations.

Furthermore, differential equations play a pivotal role in modeling complex diseases,

including cancer and infectious outbreaks.

The origins of differential equations trace back to the development of calculus in

the 17th century, with Isaac Newton among the first scientists to employ them. These

equations played a crucial role in the mathematical modeling of natural processes, re-

lating variables (functions) to their rates of change. Consequently, differential equations

fundamentally involve unknown functions subject to differentiation.

Differential equations can be classified into several types. Those that depend on a

single variable are called ordinary differential equations (ODEs), they are used to under-

stand the evolution of systems over time in applications such as chemical reactions and

population dynamics. Typically, ODEs are posed as initial value problems (Cauchy

problems), where an initial condition is imposed to ensure the selection of a unique solu-

tion. This research addresses two fundamental questions related to the Cauchy problem:

• Existence: Does a solution to the problem exist?

• Uniqueness: If a solution exists, is it unique?

Existence and uniqueness are the mathematical cornerstones of any reliable model.

Without them, predictions derived from a model are merely illusions without a sound

basis. Thus, many mathematicians including Picard and Cauchy–Lipschitz have estab-
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Introduction

lished precise conditions under which solutions to ODEs are guaranteed to exist and be

unique. This work is structured into three main chapters:

• Chapter 1: Foundational concepts of ordinary differential equations, including key

definitions, solution characteristics, and the formulation of the Cauchy problem.

• Chapter 2: Analysis of existence theorems, beginning with Peano’s theorem, fol-

lowed by existence and uniqueness criteria under Lipschitz conditions. This chapter

also examines solution extensions to the Cauchy problem, supplemented by practi-

cal modeling application.

• Chapter 3: Investigation of solution uniqueness under different conditions, leading

to the same conclusion as the Lipschitz condition.
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Chapter 1
Generalities on Ordinary Differential

Equations

In this chapter, we will discuss fundamental concepts, to prove the existence and unique-

ness of solutions to ordinary differential equations. Understanding this chapter is essential

for reading the subsequent ones and will help simplify this work.

1.1 Basic Definitions

Definition 1.1.1. An ordinary differential equation (ODE) of order n is equation that re-

lates an independent variable t, the unknown function y(t) and its derivatives y′, y′′, . . . , y(n),

defined by:

G
(
t, y, y′, . . . , y(n)

)
= 0, (1.1)

where G : U → Rm is a function defined on an open set U ⊂ R× (Rm)n+1.

Remark 1.1.1. :

• Term ordinary for the differential equation (1.1) means that the unknown function

y depends on a single variable t.

• When the equation (1.1) involves multiple variables ti, it is referred to as a partial

differential equation (PDE).

• Equation (1.1) is scalar when m = 1. Otherwise, it is called vectorial.

3



CHAPTER 1. GENERALITIES ON ORDINARY DIFFERENTIAL EQUATIONS

• Order of a differential equation is the highest derivative that appears in the differ-

ential equation.

Example 1.1.1. :

• y′′ + yy′ = 0 is the ordinary differential equation of order 2, where G(t, y, y′, y′′) =

y′′ + yy′.

• y′′′−ty′′+2y′ = 0 is the ordinary differential equation of order 3, where G(t, y, y′, y′′) =

y′′′ − ty′′ + 2y′.

Definition 1.1.2. A normal differential equation of order n can also be written in its

solved form as:

y(n) = g(t, y, y′, . . . , y(n−1)), (1.2)

where g : U → Rm is a function defined on an open set U ⊆ R× (Rm)n.

Example 1.1.2. y′ = −1

2
− 1

2
ty is the solved form of 2y′ + ty + 1 = 0.

Definition 1.1.3. An autonomous differential equation of order n is any equation of the

form:

y(n) = g(y, y′, . . . , y(n−1)), (1.3)

where g : V → Rm is a function defined on an open set V ⊆ (Rm)n.

Example 1.1.3. y′ = g(y) =
1

2
y +

3

2
is an autonomous differential equation.

Definition 1.1.4. An ordinary differential equation (ODE) of order n is said to be linear

if it has the form:

an(t)y
(n) + an−1(t)y

(n−1) + · · ·+ a0(t)y(t) = f(t), (1.4)

where:

• The functions t 7→ ai(t), for 0 ≤ i ≤ n are called the coefficients of (1.4).

• The functions t 7→ f(t) is called the second member of (1.4).

4



CHAPTER 1. GENERALITIES ON ORDINARY DIFFERENTIAL EQUATIONS

Remark 1.1.2. :

• The function f(t) and the coefficients ai(t), for 0 ≤ i ≤ n are continuous on the

interval I ⊆ R.

• If f(t) = 0, the equation (1.4) is called a homogeneous linear equation.

Example 1.1.4. :

• y′′′ + 2y′′ − 3y′ = 0 is a homogeneous linear equation of order 3.

• y′′′ − ty′′ + 2y′ = 4 is a nonhomogeneous linear equation of order 3.

• y′′ − y3 = 0 is a homogeneous nonlinear equation of order 2.

Writing in Coordinates

If m ≥ 2, let us write the functions with values in Rm in terms of their component

functions, that is to say: y = (y1, . . . , ym), g = (g1, . . . , gm). The equation (1.2) appears

as a system of m scalar differential equations of order n with m unknown functions

y1, . . . , ym, we could then write:



y
(n)
1 = g1(t, y, y

′, . . . , y(n−1)),

y
(n)
2 = g2(t, y, y

′, . . . , y(n−1)),

...

y(n)m = gm(t, y, y
′, . . . , y(n−1)).

(1.5)

This system is called a system of ordinary differential equations of order n.

1.2 Reduction of an Ordinary Differential Equation to

Order 1

Before starting the study of differential equation (1.2) for any order, we can observe that

it is possible to transform it into a system of first order differential equations by making

5



CHAPTER 1. GENERALITIES ON ORDINARY DIFFERENTIAL EQUATIONS

some appropriate changes. If we set Y0 = y, Y1 = y′, Y2 = y′′, . . . , Yn−1 = y(n−1), we find

that: 

Y ′
0 = y′ = Y1,

Y ′
1 = y′′ = Y2,

Y ′
2 = y′′′ = Y3,

...

Y ′
n−1 = y(n) = g(t, y, y′, . . . , y(n−1)),

= g(t, Y0, Y1, . . . , Yn−1).

(1.6)

The system (1.6) can still be written Y ′ = G(t, Y ), where:

• Y = (Y0, Y1, . . . , Yn−1) ∈ (Rm)n.

• G = (G0, G1, . . . , Gn−1) : U → (Rm)n, such that:

G0(t, Y ) = Y1, G1(t, Y ) = Y2 . . . , Gn−1(t, Y ) = g(t, Y ).

Thus, every differential system (1.2) of order n in Rm is equivalent to a differential system

(1.6) of order 1 in Rm.

Example 1.2.1. Consider the second order system y′′ = g(t, y, y′), where:

y =

y1
y2

 , g =

g1
g2

 =

−2y1 + 3y2 + sin t

4y1 − y′2 + et

 .

Thus, y′′ = g(t, y, y′) is given by:

y′′ =

y′′1
y′′2

 =

−2y1 + 3y2 + sin t

4y1 − y′2 + et

 .

We set Z0 = y, Z1 = y′, Z2 = y′′, where:

Z0 =

z1
z2

 =

y1
y2

 , Z1 =

z3
z4

 =

y1
y2

′

.

6



CHAPTER 1. GENERALITIES ON ORDINARY DIFFERENTIAL EQUATIONS



z1 = y1,

z2 = y2,

z3 = y′1,

z4 = y′2.

⇒



z′1 = y′1 = z3,

z′2 = y′2 = z4,

z′3 = y′′1 ,

z′4 = y′′2 .

We obtain 

z′1 = z3,

z′2 = z4,

z′3 = −2z1 + 3z2 + sin t,

z′4 = 4z1 − z4 + et.

The second order equation y′′ = g(t, y, y′) is equivalent to the first order system Z ′ =

G(t, Z), such that:

Z = (Z0, Z1), G(t, Z) = (G0(t, Z), G1(t, Z)) = (Z1, Z2).

In the later parts, we will study the differential equation (1.2) in the case n = 1. Let

U = I ×Ω, where I is an open interval in R, Ω is an open subset of Rm and g : U → Rm

is a continuous function. Consider the following differential equation:

y′ = g(t, y), (t, y) ∈ U. (1.7)

1.3 Characteristics of the Solutions

1.3.1 Local Solution

Definition 1.3.1.1. The solution of (1.7) on an interval I ⊂ R, is a differentiable

function y : I → Rm, such that:

• ∀t ∈ I, (t, y(t)) ∈ U .

• ∀t ∈ I, y′(t) = g(t, y(t)).

Definition 1.3.1.2. We say that y is a local solution of (1.7) if there exists a non empty

interval J ⊂ I, such that:

7
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• ∀t ∈ J, y(t) ∈ Ω.

• y is differentiable on J .

• ∀t ∈ J, y′(t) = g(t, y(t)).

Definition 1.3.1.3. (Extension) Let y : I → Rm and ỹ: Ĩ → Rm be solutions of (1.7),

we say that ỹ is an extension of y if:

• I ⊂ Ĩ.

• ∀t ∈ I, ỹ(t) = y(t).

Example 1.3.1.1. Consider the differential equation on I = R∗:

y′ =
2

t
y. (1.8)

The function y : J =]3,+∞[→ R defined by y(t) = t2 is a local solution of (1.8), because:

• J ⊂ I.

• ∀t ∈ J, y′(t) =
2

t
y(t).

The solution y1 : J1 =]2,+∞[→ R defined by y(t) = t2 is an extension of y, because:

• J ⊂ J1.

• t ∈ J, y(t) = y1(t).

The solution y2 : J2 =]1,+∞[→ R defined by y(t) = 0 is not an extension of y, because

J ⊂ J2, but y(t) ̸= y2(t).

Definition 1.3.1.4. We define y : I → Rm as a maximal solution of (1.7) if there is no

solution ỹ: Ĩ → Rm verifying I ⊂ Ĩ and ỹ ↾I= y.

Example 1.3.1.2. The function y : R → R defined by y(t) = et is a maximal solution of

y′ = y. Its domain of definition R constitutes the maximal interval of existence for this

solution, as it cannot be extended.

8
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1.3.2 Global Solution

Definition 1.3.2.1. A global solution of (1.7) is a solution that is defined on the entire

interval I.

Example 1.3.2.1. The function y : R → R defined by y(t) = et is also a global solution

of y′ = y.

Remark 1.3.2.1. Every global solution is maximal, but the converse is false.

Figure 1.1: Global and Maximal Solution.

In the diagram above, for example y(1) is global, while y(2) is maximal but not global.

Let us give an explicit example of this situation.

Example 1.3.2.2. Consider on R× R the differential equation:

y′ = y2. (1.9)

If y ̸= 0, we have:

y′ = y2 ⇒ dy

dt
= y2,

⇒
∫

dy

y2
=

∫
dt,

⇒
∫

y−2dy =

∫
dt,

⇒ −1

y
= t+ c,

⇒ y =
1

C − t
, C = −c ∈ R.

9
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This formula defines two solutions, which are respectively defined on ] − ∞, C[ and

]C,+∞[, these solutions are maximal but not global. In this example, y(t) = 0 is the

only global solution of (1.9).

1.4 Regularity of the Solutions

The regularity of a solution depends on how smooth the function g(t, y) is. In general,

the more regular g(t, y) is, the more regular solution will be. The next theorem explains

this relationship clearly.

Theorem 1.4.1. [4] If g : U → Rm is of class Ck, then every solution of (1.7) is of class

Ck+1.

Proof. We prove the theorem by induction on k:

• In the case k = 0, g is continuous. By hypothesis, y : I → Rm is differentiable,

hence continuous. Consequently, y′(t) = g(t, y(t)) is continuous, so y is of class C1.

• If the result is true at order k − 1, then y is of class Ck.

Since g is of class Ck, it follows that y′ = g(t, y(t)) is of class Ck as a composition

of functions of class Ck. Therefore, y is of class Ck+1.

1.5 Cauchy Problem

Sometimes, the goal is not to find all the solutions of an ordinary differential equation

but only those that satisfy certain constraints, known as Cauchy initial conditions.

Definition 1.5.1. The Cauchy problem (CP) for an ordinary differential equation, also

known as the initial value problem (IVP), consists of a differential equation (1.7) and an

initial condition y(t0) = y0. y′ = g(t, y),

y(t0) = y0, (t0, y0) ∈ U.

(1.10)
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Physical Interpretation: In many practical situations, the variable t represents

time, and y = (y1, . . . , ym) is a set of parameters describing the state of a given physical

system. The equation (1.10) physically represents the law of evolution of the system

as a function of time and the values of the parameters. Solving the Cauchy problem

means predicting the system’s evolution over time, knowing that at t = t0, the system is

described by the parameters y0 = (y0,1, . . . , y0,m). The point (t0, y0) is called the initial

data of the Cauchy problem.

Definition 1.5.2. (Classical Solution of (CP)) A function y : I → Rm is said to be

a solution of (1.10) if:

• y is of class C1 on I.

• ∀t ∈ I, y′ = g(t, y(t)).

• y(t0) = y0.

The simple lemma below shows that the solution of (1.10) is equivalent to the solution

of an integral equation.

lemma 1.5.1. The function y : I → Rm is solution of (1.10) if and only if:

• y is continuous and for all t ∈ I, (t, y(t)) ∈ U .

• ∀t ∈ I, y(t) = y0 +

∫ t

t0

g(r, y(r)) dr.

Proof. (=⇒) If y is a solution of (1.10), then it satisfies the following equations:

y′ = g(t, y), ∀(t, y) ∈ U,

y(t0) = y0.

By integrating from t0 to t, we obtain:

∫ t

t0

y′(r) dr =

∫ t

t0

g(r, y(r)) dr, ∀t ∈ I.

From the intial condition y(t0) = y0, we find:

y(t) = y0 +

∫ t

t0

g(r, y(r)) dr. (1.11)

11
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(⇐=) If y satisfies the integral equation (1.11), its differentiation leads to:

y′ = g(t, y(t)),

and y(t0) = y0, this confirms that y is a solution of (1.10).

1.6 Security Cylinder

Consider ∥·∥ as an arbitrary norm on Rm, and we denote by B(t, r) (respectively B̄(t, r))

the open (respectively closed) ball centered at t with radius r in Rm.

Since U is assumed to be open, there exists a cylinder C0 = [t0−a0, t0+a0]× B̄(y0, r0), of

length 2a0 and radius r0, such that C0 ⊂ U . The set C0 is closed and bounded in Rm+1,

hence compact. This implies that g is bounded on C0, that is,

M = sup
(t,y)∈C0

∥g(t, y)∥ < +∞.

Now, let us consider the cylinder C = [t0− a, t0+ a]× B̄(y0, r0) ⊂ C0 which has the same

diameter as C0 but length a ≤ a0.

Definition 1.6.1. We say that C is a security cylinder for equation (1.7) if every solution

y : [t0 − a, t0 + a] → Rm of (1.10) remains contained in B̄(y0, r0).

Figure 1.2: Security Cylinder.
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Let us assume that the solution y escapes from C on the interval [t0, t0 + a]. Let τ be

the first instant at which this occurs:

τ = inf{t ∈ [t0, t0 + a]; ∥y(t)− y0∥ > r0}.

By the definition of τ , we have ∥y(t)− y0∥ ≤ r for all t ∈ [t0, τ [. Then, by the continuity

of y, we obtain ∥y(τ)− y0∥ = r0. Moreover, since (t, y(t)) ∈ C ⊂ C0 for all t ∈ [t0, τ ], it

follows that:

∥y′(t)∥ = ∥g(t, y(t))∥ ≤ M.

Thus, we have:

r0 = ∥y(τ)− y0∥ = ∥
∫ τ

t0

y′(u) du∥ ≤ M(τ − t0).

Therefore

τ − t0 ≥
r0
M

.

Consequently, if a ≤ r0
M

, no solution can escape from C over the interval [t0 − a, t0 + a].

Remark 1.6.1. :

• For C to be a security cylinder, it is sufficient to take:

a ≤ min
(
a0,

r0
M

)
.

• If C ⊂ C0 is a security cylinder, then every solution of the Cauchy problem (CP)

y : [t0 − a, t0 + a] → Rm satisfies ∥y′(t)∥ ≤ M , so y is Lipschitz continuous with

constant M .
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Chapter 2
Fundamental Theorems

In this chapter, we study the local existence of solutions to problem (1.10) using Peano’s

theorem, as well as the possibility of extending these solutions. Additionally, we examine

the existence and uniqueness theorem for the system described by (1.10) within the

domain U = I ×Ω, where I is an open interval in R and Ω is an open subset of Rm. We

also consider the security cylinder C = [t0 − a, t0 + a]× B̄(y0, r0), where:

M = sup
(t,y)∈C

∥g(t, y)∥ and a ≤ min
(
a0,

r0
M

)
.

2.1 Peano’s Theorem: Existence of a Local Solution

Theorem 2.1.1. [4] Suppose that g is continuous in U . For every point (t0, y0) ∈ U , the

CP (1.10) admits a solution in the cylinder C = [t0 − a, t0 + a]× B̄(y0, r0).

The proof of Peano’s theorem is based on the following steps:

1. We begin by subdividing the interval [t0, t0 + a] with step h: t0 < t1 < · · · < tN =

t0+a. An approximate solution to problem (1.10) is constructed using explicit Euler

method. Specifically, consider the piecewise affine function y : [t0, t0 + a] → Rm

defined by:y(t0) = y0,

y(ti+1) = y(ti) + (ti+1 − ti)g(ti, y(ti)), ∀i ∈ {0, . . . , N − 1}.

By induction for i, prove that the approximated values ∀t ∈ [t0, ti], y(t) ∈ B̄(y0, r0):

14
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• For i = 0, y0 ∈ B̄(y0, r0).

• Assume that ∀t ∈ [t0, ti], y(t) ∈ B̄(y0, r0).

• We prove it ∀t ∈ [ti, ti + 1]:

∥y(t)− y0∥ = ∥y(t)− yi + yi − y0∥,

≤ ∥y(t)− yi∥+ ∥yi − y0∥,

≤ (t− ti)∥g(ti, y(ti))∥+ (ti − t0)∥g(ti, y(ti))∥,

≤ M(t− t0),

≤ Ma ≤ r0.

It follows that ∀t ∈ [t0, ti + 1], y(t) ∈ B̄(y0, r0).

2. We now aim to estimate the error ∥y′(t) − g(t, y(t))∥ for t ∈ [t0, t0 + a]. Let us

introduce the modulus of uniform continuity of the function g, defined for all

u > 0 as follows:

ω(u) = sup {∥g(u1, v1)− g(u2, v2)∥ ; |u1 − u2|+ ∥v1 − v2∥ ≤ u} . (2.1)

Since g is uniformly continuous on the compact set C, we have:

lim
u→0

ω(u) = 0.

On this subinterval, the function y satisfies: y′(t) = g(ti, y(ti)). Therefore:

∥y(t)− y(ti)∥ = ∥
∫ ti

t

y′(r) dr∥ = ∥
∫ ti

t

g(ti, y(ti))∥ ≤ Mh.

Using the definition of ω(u), we find:

∥y′(t)− g(t, y(t))∥ = ∥g(ti, y(ti))− g(t, y(t))∥ ≤ ω(Mh+ h).

Proof. For all p ≥ 1, let hp =
a

p
, and consider an approximate solution yp constructed

as before, using a subdivision of [t0, t0 + a] and [t0 − a, t0] with step size less than or

equal to hp. Since each yp is Lipschitz, the family (yp)p≥1 is equicontinuous. Moreover,

15
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for all p ≥ 1 and all t ∈ [t0 − a, t0 + a], we have yp(t) ∈ B̄(y0, r0). The hypotheses of

the Arzelà–Ascoli Theorem 3.4.2 are thus satisfied: we can extract subsequence (yφ(p))p≥1

which converges uniformly to a function y on [t0 − a, t0 + a], satisfying y(t0) = y0. To

complete the proof it suffices to show that y is a solution of (1.10). From the previous

analysis, for all p ≥ 1 and for all t ∈ [t0 − a, t0 + a], we have:

∥y′φ(p)(t)− g(t, y(t))∥ ≤ ω(Mhp + hp).

It follows that:∥∥∥∥yφ(p)(t)− y0 −
∫ t

t0

g(s, yφ(p)(s)) ds

∥∥∥∥ =

∥∥∥∥∫ t

t0

y′φ(p)(s) ds−
∫ t

t0

g(s, yφ(p)(s)) ds

∥∥∥∥ ,
≤
∫ t

t0

∥y′φ(p)(s)− g(s, yφ(p)(s)∥ ds,

≤ |t− t0|ω(Mhp + hp),

≤ a · ω(Mhp + hp).

By taking the limit as p → ∞, we have hp → 0, since ω(Mhp + hp) → 0, the right-hand

side of the inequality tends to zero. Moreover, yφ(p) → y uniformly, then g(s, yφ(p)(s)) →

g(s, y(s)) and conclude that:

y(t) = y0 +

∫ t

t0

g(s, y(s)) ds.

Thus, y is a solution of (1.10).

Example 2.1.1. Consider the differential problem:y′ = t2 + e−y2 ,

y(0) = 0,

(2.2)

where g(t, y) = t2 + e−y2 is a continuous in R2. For every point (t0, y0) ∈ R2, the CP

(2.2) admits a local solution in R = [t0 − a, t0 + a]× [y0 − r0, y0 + r0].

For example, we take a0 =
1
2

and r0 = 1, then R0 =
[
−1

2
, 1

2

]
× [−1, 1], we get

• M = sup
(t,y)∈R

(
t2 + e−y2

)
= 1

4
+ e0 = 1

4
+ 1 = 5

4
.

16
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• a ≤ min
{
a0,

r0
M

}
= min

{
1
2
, 4

5

}
= 1

2
.

Then, the CP (2.2) admits a local solution defined on the interval R =
[
−1

2
, 1
2

]
× [−1, 1].

2.2 Extending the Solution Domain

Since there is a local solution, can you extend it to a larger domain.

Theorem 2.2.1. [5] Every solution of (1.10) can be extended to a maximal solution.

Proof. Let y : J → Rm be a solution of (1.10) on an interval J ⊂ I. Define the set of

extensions of y as:

E := {x : Jx → Rm, J ⊂ Jx ⊂ I, x solves (1.10), y(t) = x(t) ∀t ∈ J}.

Note that y ∈ E, and so E ̸= ∅ satisfies the first condition of Zorn’s Lemma 3.4.1. We

define a partial ordering ⪯ on E by:

w ⪯ x ⇐⇒ Jw ⊂ Jx and w(t) = x(t), ∀t ∈ Jw.

To prove the theorem, it suffices to show that E has a maximal element (that is, an

element z ∈ E such that, if x ∈ E and z ⪯ x, then x = z). This we do by Zorn’s Lemma

3.4.1. To this end, let T be any totally ordered subset of E, Jz :=
⋃
x∈T

Jx and define the

function z : Jz → Rm by the property:

z|Jx = x, ∀x ∈ T.

1. Prove that Jz is a domain:

Let a, b ∈ Jz be arbitrary with a ≤ b. Since Jz =
⋃
x∈T

Jx, there exist xa, xb ∈ T such

that a ∈ Jxa , b ∈ Jxb
. In the other hand, T is totally ordered, we have two possible cases:

• If xa ⪯ xb, then Jxa ⊂ Jxb
, so a ∈ Jxb

and b ∈ Jxb
. Therefore, [a, b] ⊂ Jxb

⊂ Jz.

• If xb ⪯ xa, then Jxb
⊂ Jxa , so a ∈ Jxa and ∈ Jxa . Therefore, [a, b] ⊂ Jxa ⊂ Jz.

Thus, in both cases, we obtain [a, b] ⊂ Jz, so Jz is an interval.

17
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2. Prove that z is well defined:

Let t ∈ Jz, t ∈ Jx for x ∈ T and x̄ ∈ T such that t ∈ Jx̄. This leads to two different cases:

• x ⪯ x̄ ⇐⇒ Jx ⊂ Jx̄ and x(t) = x̄(t), ∀t ∈ Jx ⊂ Jz.

• x̄ ⪯ x ⇐⇒ Jx̄ ⊂ Jx and x(t) = x̄(t), ∀t ∈ Jx̄ ⊂ Jz.

Therefore, ∀t ∈ Jz, we may associate a unique solution z(t) of Rm defined by z(t) = x(t),

where x is any element of T such that t ∈ Jx. The function z : Jz → Rm is well defined

and has the property:

z|Jx = x ∀x ∈ T.

3. Prove that z is an upper bound for T :

We have Jx ⊂ Jz and z(t) = x(t) for t ∈ Jx. Thus, according to the definition f the

relation ⪯, it follows that z is an upper bound for T . By Zorn’s Lemma 3.4.1, it follows

that E has a maximal element.

Theorem 2.2.2. For every point (t0, y0) ∈ U , there exists a maximal solution of (1.10).

Moreover, the interval I of any maximal solution is open (but in general, there is no

uniqueness of these maximal solutions).

Proof. Based on what we previously established, there exists a maximal solution y of

(1.10). We want to prove that y is defined on an open interval [b, c[⊂ R → Rm. Suppose

that y is defined at the point c, then according to Peano’s existence theorem, we can find

another solution y1 of (1.10), but with the condition (c, yc), defined on an interval of the

form [c− ε, c+ ε]. Now, we define a new function:

ỹ(t) =

y(t), if t ∈ [b, c[,

y1(t), if t ∈ [c, c+ ε].

ỹ is a strict extension of y, which contradicts the maximality of y.

Example 2.2.1. The fonctions y1(t) = 0 and y2(t) = t2 are two solutions of the following

differential problem defined on R+ × R:y′ = 2
√
|y|,

y(0) = 0.

(2.3)

18



CHAPTER 2. FUNDAMENTAL THEOREMS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y(
t)

y (t) = 0
y (t) = t²

Figure 2.1: Solutions of CP (2.3).

2.3 Maximality Criterion

Theorem 2.3.1. [4] Let g : U → Rm be a continuous function and y : I = [t0, c[ be a

solution of (1.10). y can be extended beyond c if and only if there exists a compact set

K ⊂ I × Rm such that the curve t 7→ (t, y(t)), remains contained in K. In other words,

y is not extendable beyond time c if and only if (t, y(t)) escapes from every compact set

K as t 7→ c−.

Proof. If we extend the solution y to the interval [t0, c], then the image of this interval,

being compact and mapped by a continuous function, will be a compact set. Conversely,

suppose there exists a compact set K ⊂ U such that (t, y(t)) ∈ K for all t ∈ [t0, c[ and

since the function g is continuous, then:

M = sup
(t,y)∈K

∥g(t, y)∥ < +∞.

It follows that the solution y(t) is Lipschitz continuous on the interval [t0, c[, implying

its uniform continuity on the same interval. Consequently, lim
t→c−

y(t) = ℓ exists. We can

extend y continuously to c by setting y(c) = ℓ, and we have (c, y(c)) ∈ K ⊂ U . The

relation y′(t) = g(t, y) shows that y ∈ C1([t0, c]). By virtue of the local existence theorem,

there exists a local solution z to the CP (1.10) with initial condition z(c) = ℓ, defined on
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[c− ε, c+ ε].

ỹ(t) =

y(t), if t ∈ [t0, c[,

z(t), if t ∈ [c, c+ ε],

where ỹ is an extension of y.

Remark 2.3.1. A solution y :]b, c[→ Rm of (1.10) is maximal if and only if t 7→ (t, y(t))

escapes from every compact set K of U as t → b+ or t → c−. This also means that

(t, y(t)) either approaches the boundary of U or tends to infinity.

Example 2.3.1. Consider the following differential problems:

1. y′ = y2, y(0) = 1.

2. y′ = 1
2y
, y(0) = 1.

Equations Domain Solution Behavior Maximality
check

Reason

1 U = R2 y(t) =
1

1− t
on ]−∞, 1[

As t → 1−,
y(t) → +∞

Maximal Escapes to
infinity

2 U=R×]0,∞[ y(t)=
√
t+ 1

on ]− 1,∞[
As t → −1+,

y(t) → 0
Maximal Approaches

boundary

Table 2.1: Examples of Maximal Solutions.

As we have seen in the previous Example 2.2.1, the uniqueness property is not satisfied,

which calls for addressing the theories that guarantee the existence of a unique solution

of (1.10). Therefore, we will present below the sufficient condition to ensure uniqueness,

among which is represented by the Cauchy–Lipschitz.

2.4 Cauchy–Lipschitz Theorem: Existence and Unique-

ness

2.4.1 Local Existence and Uniqueness

Definition 2.4.1.1. We say that g is locally Lipschitz continuous with respect to its second

variable y, uniformly in t, if for every point (t0, y0) ∈ U , there exist a constant k > 0 and
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a cylinder C0 = [t0 − a0, t0 + a0] × B̄(y0, r0), such that g be k–Lipschitz continuous in y

on C0:

∀(t, y1), (t, y2) ∈ C0, ∥g(t, y1)− g(t, y2)∥ ≤ k∥y1 − y2∥.

Example 2.4.1.1. The function g(t, y) = y2 is locally Lipschitz continuous with respect

to its second variable y, uniformly in t on R2. Indeed, let (t0, y0) ∈ R2. For any t ∈

[t0 − a0, t0 + a0] and y1, y2 ∈ B̄(y0, r0), we have:

∥g(t, y1)− g(t, y2)∥ = ∥y21 − y22∥ = ∥(y1 + y2)(y1 − y2)∥,

≤ (∥y1∥+ ∥y2∥) · ∥y1 − y2∥.

But

∥y1∥ ≤ ∥y1 − y0 + y0∥ ≤ ∥y1 − y0∥+ ∥y0∥ ≤ r0 + ∥y0∥.

And

∥y2∥ ≤ ∥y2 − y0 + y0∥ ≤ ∥y2 − y0∥+ ∥y0∥ ≤ r0 + ∥y0∥.

Then

∥g(t, y1)− g(t, y2)∥ ≤ 2(r0 + ∥y0∥) · ∥y1 − y2∥.

Thus, g is k–Lipschitz with k = 2(r0 + ∥y0∥).

Remark 2.4.1.1. If g is a continuous function of class C1 (meaning that all partial

derivatives of g are continuous) in U , then this function is locally Lipschitz continuous.

To illustrate this, we use the mean value theorem on each component gi of g:

gi(t, y1)− gi(t, y2) =
∑
j

∂gi
∂yj

(t, ξ)(y1,j − y2,j),

with ξ ∈]y1, y2[. Taking the absolute value:

|gi(t, y1)− gi(t, y2)| ≤
∑
j

∣∣∣∣∂gi∂yj
(t, ξ)

∣∣∣∣ · |y1,j − y2,j|.

Let

A = max
i,j

sup
(t,y)∈C0

∣∣∣∣∂gi∂yj
(t, y)

∣∣∣∣ .
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We find

|gi(t, y1)− gi(t, y2)| ≤ A ·
∑
j

|y1,j − y2,j|,

≤ mA ·max
j

|y1,j − y2,j|.

Taking the maximum over i, leads to:

∥g(t, y1)− g(t, y2)∥ ≤ mA · ∥y1 − y2∥.

Thus, g is locally Lipschitz in y.

Theorem 2.4.1.1. Let g be a function that is locally Lipschitz continuous with respect

to y. Then, for every security cylinder C = [t0 − a, t0 + a]× B̄(y0, r0), the (1.10) admits

a unique solution y.

Proof. Let E = C([t0 − a, t0 + a], B̄(y0, r0)) be the set of continuous functions from

[t0 − a, t0 + a] into B̄(y0, r0), ∀y ∈ B̄(y0, r0), we associate the function ϕ(y) defined by:

Φ(y)(t) = y0 +

∫ t

t0

g(u, y(u)) du. (2.4)

The proof of the Lipschitz theorem consists of two steps:

1. Prove that Φ is a mapping from E into E: If t ∈ [t0 − a, t0 + a], then

∥Φ(y)(t)− y0∥ =

∥∥∥∥y0 + ∫ t

t0

g(s, y(s)) ds− y0

∥∥∥∥ =

∥∥∥∥∫ t

t0

g(s, y(s)) ds

∥∥∥∥ ,
≤ M |t− t0| ≤ r0.

Which implies Φ(y)(t) ∈ B̄(y0, r0) for all t ∈ [t0 − a, t0 + a], and hence Φ(y) ∈ E.

2. Prove that y is a fixed point of Φ: Let’s first show that Φp is a contraction i.e.,

∃k ∈]0, 1[, ∀y, z ∈ E : ∥Φp(y)− Φp(z)∥ ≤ k∥y − z∥.
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For p = 1:

∥Φ(y)(t)− Φ(z)(t)∥ =

∥∥∥∥y0 + ∫ t

t0

g(s, y(s)) ds− y0 −
∫ t

t0

g(s, z(s)) ds

∥∥∥∥ ,
=

∥∥∥∥∫ t

t0

(g(s, y(s)) ds− g(s, z(s))) ds

∥∥∥∥ ,
≤
∫ t

t0

∥g(s, y(s))− g(s, z(s))∥ ds,

≤
∫ t

t0

k∥y(s)− z(s)∥ ds,

≤ k|t− t0|∥y − z∥∞,

≤ ka∥y − z∥∞.

For p = 2, we have:

∥Φ2(y)(t)− Φ2(z)(t)∥ = ∥Φ(Φ(y))(t)− Φ(Φ(z))(t)∥,

=

∥∥∥∥∫ t

t0

(g(s,Φ(y)(s))− g(s,Φ(z)(s))) ds

∥∥∥∥ ,
≤
∫ t

t0

∥Φ(y)(s)− Φ(z)(s)∥ ds,

≤
∫ t

t0

k|t− t0|∥y − z∥∞ ds,

≤ k2|t− t0|∥y − z∥∞
∫ t

t0

ds,

≤ k2

2
|t− t0|2∥y − z∥∞,

≤ (ka)2

2
∥y − z∥∞.

By recurrence on p, we verify that:

∥Φp(y)− Φp(z)∥∞ ≤ (ka)p

p!
∥y − z∥∞.

There exists p ∈ N∗ such that
(ka)p

p!
< 1. It follows that Φp is contractive. Accord-

ing to the Picard fixed point Theorem 3.4.3, there exists a unique y ∈ E such that

Φp(y) = y, it follows that:

Φ(Φp(y)) = Φp(Φ(y)) = Φ(y).
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The uniqueness of the fixed point implies that Φ(y)(t) = y(t) = y0+

∫ t

t0

g(u, y(u)) du.

Thus y is unique solution.

2.4.2 Existence of the Global Solution

Definition 2.4.2.1. We say that a function g in U = I × Rm is globally Lipschit with

respect to its second variable y, if there exists a continuous function k : R → R+ such

that:

∥g(t, y1)− g(t, y2)∥ ≤ k(t)∥y1 − y2∥, ∀(t, y1), (t, y2) ∈ U.

Theorem 2.4.2.1. Let g is continuos and globally Lipschit in U , then every maximal

solution of (1.10) is global.

Proof. Since U = I×Rm, we can choose a security cylinder of radius r0 = +∞. Therefore,

the mapping Φ defined in (2.4) operates on the complete space E = C ([t0 − a, t0 + a′], Rm).

Let k = max
t∈[t0−a, t0+a′]

k(t). By assumption, the function g is k–Lipschitz continuous in y

over the domain [t0 − a, t0 + a′]× Rm.

According to the reasoning in (2.4.1), the mapping Φp is a Lipschitz function on E with

Lipschitz constant:
1

p!
kp (max(a, a′))

p
,

thus becomes contractive for sufficiently large p. This implies that the unique solution to

the CP (1.10) is defined over the entire interval [t0 − a, t0 + a′] ⊂ I.

Corollary 1. If the function g is continuous and globally Lipschitz with respect to y, then

the CP (1.10) admits a unique global solution.

Example 2.4.2.1. Consider the differential problem:y′ = b(t) y,

y(0) = y0,
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where g(t, y) = b(t) y is continuous on R2, we have:

∥g(t, y1)− g(t, y2)∥ = ∥b(t)(y1 − y2)∥,

= |b(t)|∥y1 − y2∥,

≤ k(t)∥y1 − y2∥,

such that k(t) = |b(t)| + 1 is continuous function on R. Thus, g is globally Lipschitz

function and the CP (2.4.2.1) admits a unique global solution.

Ordinary differential equations are fundamental tools for modeling dynamic processes

in various scientific fields. A classic example is the modeling of infectious disease spread

the SIR model. This model illustrates how the concepts of existence and uniqueness

discussed in this chapter are crucial for ensuring that the model provides reliable and

predictable results.

2.5 Practical Application (The SIR Model)

The SIR model divides a population into three compartments:

• S(t): Number of individuals susceptible to the disease at time t.

• I(t): Number of individuals infected with the disease and capable of transmitting

it at time t.

• R(t): Number of individuals who have recovered from the disease (or died) and are

immune (or removed from the population) at time t.

The dynamics of these compartments are described by the following system of autonomous

ordinary differential equations:



dS

dt
= − β

N
SI,

dI

dt
=

β

N
SI − γI,

.
dR

dt
= γI.
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Where:

• N : Total population size (N = S(t) + I(t) +R(t)).

• β > 0: Average number of contacts per person per time, multiplied by the proba-

bility of disease transmission in a contact between a susceptible and an infectious

subject (effective contact rate).

• γ > 0: Rate at which infected individuals recover or are removed (1/γ ) is the

average infectious period).

To study a specific scenario, we need initial conditions:

S(0) = S0, I(0) = I0, R(0) = R0,

with S0 ≥ 0, I0 ≥ 0, R0 ≥ 0, and S0 + I0 +R0 = N . Typically, S0 > 0 and I0 > 0 for an

epidemic to start.

Figure 2.2: Exponential Growth of Infected Individuals at the Beginning of an Epidemic.

2.5.1 Applying Existence and Uniqueness Theorems

Let our state vector be y(t) = (S(t), I(t), R(t))T . The system can be written as y′ = g(y),

where:

g(y) = g(S, I, R) =


− β

N
SI

β

N
SI − γI

γI

 .

The system montions the domain D = [0, N ]× [0, N ]× [0, N ]. This is closed and bounded

subset of R3.

26



CHAPTER 2. FUNDAMENTAL THEOREMS

Existence (Peano’s Theorem)

The function g(S, I, R) is composed of polynomial terms in S and I. Polynomials are

continuous functions everywhere therefore, g(y) is continuous on R3, and certainly con-

tinuous on any compact subset of our domain D. According to the Peano’s existence

theorem, the system admits a solution y(t) = (S(t), I(t), R(t)) defined on some intervel

[−a, a] (around t0). typically, t ≥ 0, so the solution exists on [0, a] for some a ≥ 0. This

means the model’s equations properly describe fundamental epidemic behavior.

Uniqueness (Cauchy–Lipschitz Theorem)

To guarantee that the model gives a single, predictable outcome, we need uniqueness,

which requires more than just continuity. We check if g is locally Lipschitz with respect

to y. We can examine the partial derivatives of the components of g:

Jg(S, I, R) =
∂g

∂y
=


−βI

N
−βS

N
0

βI

N

βS

N
− γ 0

0 γ 0

 .

All entries in the Jacobian matrix Jg are continuous functions of S and I on any compact

set within D, the function g(y) is locally Lipschitz continuous with respect to y on D (in

fact, it is globally Lipschitz on the compact set D itself).

According to the Cauchy–Lipschitz theorem, g is continuous and locally Lipschitz, for any

y0 ∈ D, there exists a unique local solution y(t) to the CP on some interval [0, a]. The

uniqueness of the solution means there’s only one possible epidemic behavior trajectory

for given condition.

Global Existence and Positivity

Furthermore, one can show that solutions starting with non negative S0, I0, R0 remain

non negative for all t > 0. Since S ′(t) + I ′(t) + R′(t) = 0, the total population S(t) +

I(t) + R(t) = N remains constant. This means the solution y(t) always stays within

the compact set D. Therefore, the SIR model guarantees a unique, non negative, global

solution for all t ≥ 0.

This existence and uniqueness guarantee is essential. It means that for a given set of
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parameters (β, γ) and initial conditions (S0, I0, R0), the SIR model predicts a single, well

defined trajectory for the epidemic’s progression over time.

2.5.2 Visualizing SIR Model Dynamics

The following figures illustrate the typical behaviors predicted by the SIR model using

Python. These behaviors will be computed using more accurate and reliable numerical

methods, such as the Runge-kutta method (3.4). The existence and uniqueness theo-

rems provide the theoretical foundation that justifies the convergence of these numerical

approximations to the true and unique solution as the step size decreases.
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Figure 2.3: Number of Susceptible (S), Infected (I), and Recovered (R) Individuals Over
Time Under Baseline Parameters Values.
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Figure 2.4: Comparison of the Infected Curve (I) for Different Values of β While Keeping
γ and the Initial Conditions Constant.
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Figure 2.6: Trajectory of the Epidemic in Terms of Susceptible vs Infected Individuals.

A key concept derived from the SIR model is the basic reproduction number, R0 =
β

γ
(at the start of the epidemic, when S ≈ S0). If R0 > 1, the number of infected individuals

initially increases, leading to an epidemic. If R0 < 1, the infection dies out.
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Figure 2.7: Epidemic Threshold Behavior R0 for the Infected I(t).

In summary, the SIR model is a prime example where the theoretical guarantees of ex-

istence and uniqueness of solutions for ODEs, as provided by Peano’s and Cauchy–Lipschitz

theorems, are essential for the model’s validity and utility in understanding and predicting

real world phenomena like epidemic spread.
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Chapter 3
Theories of Uniqueness

In the second chapter, we discussed the existence criterion, and since it is sufficient, we

continued working based on the assumption that solutions always exist. This assumption

leads us to study the uniqueness problem. We previously introduced the Cauchy Lipschitz

theorem, which ensures uniqueness under certain assumptions, but it is not the only

theorem. In this chapter, we will explore these theories related to uniqueness: if a

solution exists, it is unique. Let us return to the notations used at the beginning of the

Cauchy problem (1.10). We use the following notations:

C+ = [t0, t0 + a]× B̄(y0, r0), C− = [t0 − a, t0]× B̄(y0, r0), C = C+ ∪ C−.

And since y ∈ Rm, the norm is defined as follows ∥y∥ =
m∑
i=1

|yi|.

3.1 Peano’s Uniqueness Theorem

Theorem 3.1.1. [1] Let g(t, y) be continuous in C+ and for all (t, y), (t, ȳ) ∈ C+, it

satisfies:

(g(t, y)− g(t, ȳ)) · (y − ȳ) ≤ 0. (3.1)

Then, the CP(1.10) admits a unique solution in [t0, t0 + a].

Proof. Suppose that y, ȳ are solutions of (1.10), with t ∈ [t0, t0 + a], then for the function
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v(t) = ∥y(t)− ȳ(t)∥2, we find that:

v′(t) =
(
∥y(t)− ȳ(t)∥2

)′
,

=

(
m∑
i=1

(yi(t)− ȳi(t))
2

)′

,

= 2
m∑
i=1

(yi(t)− ȳi(t)) · (y′i(t)− ȳ′i(t)) ,

= 2
m∑
i=1

(yi(t)− ȳi(t)) · (gi(t, y(t))− gi(t, ȳ(t))) ,

= 2 (g(t, y(t))− g(t, ȳ(t))) · (y(t)− ȳ(t)) ,

≤ 0.

We have v(t) ≥ 0, v′(t) ≤ 0 and v(t0) = 0, then:

v(t) = 0 ⇒ y(t) = ȳ(t).

Using the norm’s definition, we find that the equation of (1.10) admits a unique solution

according to Peano’s uniqueness theorem.

Remark 3.1.1. :

• If the function g(t,y) is continuous in C− and for all (t, y), (t, ȳ) ∈ C− it satisfies:

(g(t, y)− g(t, ȳ)) · (y − ȳ) ≥ 0. (3.2)

Then, the CP (1.10) exists a unique solution in [t0 − a, t0].

• The function g(t,y) is continuous in C which satisfies (3.1) and (3.2) in C+ and

C−, then the CP (1.10) admits a unique solution in [t0 − a, t0 + a].

Example 3.1.1. Consider the differential problem:y′ = −y3,

y(0) = y0.
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Here, the function g(t, y) = −y3 satisfies:

(g(t, y)− g(t, ȳ)) · (y − ȳ) = (−y3 + ȳ3) · (y − ȳ).

We know that

y3 − ȳ3 = (y − ȳ) · (y2 + yȳ + ȳ2),

we obtain

(g(t, y)− g(t, ȳ)) · (y − ȳ) = −(y − ȳ)2 · (y2 + yȳ + ȳ2) ≤ 0.

Since this condition is satisfied, the uniqueness of the solution follows from Peano’s

uniqueness theorem.

3.2 Gard’s Uniqueness Theorem

Theorem 3.2.1. [1] Let g(t, y) be continuous in C+ and ϕ(t) be a continuous function

defined in [t0, t0 + a) and differentiable in (t0, t0 + a), such that ϕ(t) > 0 for t > t0 and

ϕ(t0) = 0. In addition to that:

1) ∀(t, y), (t, ȳ) ∈ C+:

(g(t, y)− g(t, ȳ)) · (y − ȳ) ≤ ϕ′(t)

ϕ(t)
∥y − ȳ∥2.

2) ∃L ∈ R, for i ∈ {1, . . . ,m}, such that:

gi(t, y) = Lϕ′(t) + o(ϕ′(t)) as t → t+0 , y → y0.

Then, the CP (1.10) admits a unique solution in [t0, t0 + a).

Proof. Suppose that y(t) and ȳ(t) be two solutions of (1.10), where:

v(t) =


1

2

[
∥y(t)− ȳ(t)∥

ϕ(t)

]2
, t ∈ (t0, t0 + a),

0, t = t0.

First, we study the continuity of v(t) at t0 using L’Hôpital’s Rule and condition (2).
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We have, for 1 ≤ i ≤ m:

lim
t→t+0

yi(t)− ȳi(t)

ϕ(t)
= lim

t→t+0

(yi(t)− ȳi(t))
′

(ϕ(t))′
= lim

t→t+0

gi(t, y(t))− gi(t, ȳ(t))

ϕ′(t)
,

= lim
t→t+0

gi(t, y(t))− Lϕ′(t)

ϕ′(t)
− gi(t, ȳ(t))− Lϕ′(t)

ϕ′(t)
= 0.

Then, for v(t) is continuous for t ≥ t0, we will differentiate v(t):

v′(t) =
1

2

(
∥y(t)− ȳ(t)∥2

ϕ(t)2

)′

=
(∥y(t)− ȳ(t)∥2)′ ϕ(t)2 − (ϕ(t)2)′∥y(t)− ȳ(t)∥2

2ϕ(t)4
,

=
(y(t)− ȳ(t)) · (g(t, y(t))− g(t, ȳ(t)))ϕ(t)2 − ϕ′(t)ϕ(t)∥y(t)− ȳ(t)∥2

ϕ(t)4
.

By exploiting the condition (1), we further obtain:

v′(t) =
1

ϕ(t)2

[
(g(t, y(t))− g(t, ȳ(t))) · (y(t)− ȳ(t))− ϕ′(t)

ϕ(t)
∥y(t)− ȳ(t)∥2

]
≤ 0.

From the results and given data, we find that v(t) = 0, for all t ∈ [t0, t0 + a]. Using the

same arguments in the proof of (3.1), we conclude that y is the unique solution.

Example 3.2.1. Consider the differential problem:


y′ =

y

t− t0 + 1
, t > t0,

y(t0) = 0.

Here, the function g(t, y) is given by:

g(t, y) =
y

t− t0 + 1
.

We find

(g(t, y)− g(t, ȳ)) · (y − ȳ) =
(y − ȳ)2

t− t0 + 1
.

Thus

(g(t, y)− g(t, ȳ)) · (y − ȳ) ≤ (y − ȳ)2

t− t0
.

We choose the function ϕ(t) in this inequality that satisfy the conditions of the Gard’s
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uniqueness theorem as follows:

ϕ(t) = t− t0 and
ϕ′(t)

ϕ(t)
=

1

t− t0
.

Therefore

g(t, y)− g(t, ȳ) ≤ ϕ′(t)

ϕ(t)
(y − ȳ)2.

The first condition holds. On the other hand:

g(t, y) = Lϕ′(t) + o(ϕ′(t)) as t → t+0 , y → y0.

Choosing L =
y0

t− t0 + 1
gives:

g(t, y) = L+ o(1) = Lϕ′(t) + o(ϕ′(t)).

Thus, the condition (2) holds. Since both conditions of the Gard’s uniqueness theorem

are satisfied, the solution is unique on the given interval.

3.3 Bownds Diaz’s Uniqueness Theorem

Theorem 3.3.1. [1] Let g be continuous in C+ and for all (t, y), (t, ȳ) ∈ C+ it satisfies:

(g(t, y)− g(t, ȳ)) · (ϕ(t, y)− ϕ(t, ȳ)) ≤ 0.

For 1 ≤ i ≤ m:

ϕi(t, y) =
∂gi(t, y)

∂t
+

m∑
j=1

∂gi(t, y)

∂yj
gj(t, y).

Thus

m∑
i=1

(gi(t, y)− gi(t, ȳ))·

[
∂gi(t, y)

∂t
+

m∑
j=1

∂gi(t, y)

∂yj
gj(t, y)−

∂gi(t, ȳ)

∂t
−

m∑
j=1

∂gi(t, ȳ)

∂yj
gj(t, ȳ)

]
≤ 0.

Then, the CP (1.10) admits a unique solution in [t0, t0 + a].

Proof. For t0 ≤ t ≤ t0 + a, we define the function v(t) as:

v(t) =
1

2
∥g(t, y(t))− g(t, ȳ(t))∥2.
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We find

v′(t) = (g(t, y(t))− g(t, ȳ(t))) · d

dt
(g(t, y(t))− g(t, ȳ(t))).

Using the chain’s rule, thus:

d

dt
g(t, y(t)) =

∂g(t, y)

∂t

dt

dt
+

∂g(t, y)

∂y1

dy1
dt

+ · · ·+ ∂g(t, y)

∂ym

dym
dt

,

=
∂g(t, y)

∂t
+

m∑
j=1

∂g(t, y)

∂yj

dyj
dt

,

=
∂g(t, y)

∂t
+

m∑
j=1

∂g(t, y)

∂yj
gj(t, y).

Then

v′(t) = (g(t, y)− g(t, ȳ)) ·

[
∂g(t, y)

∂t
+

m∑
j=1

∂g(t, y)

∂yj
gj(t, y) +

∂g(t, ȳ)

∂t
+

m∑
j=1

∂g(t, ȳ)

∂ȳj
gj(t, ȳ)

]
,

= (g(t, y)− g(t, ȳ)) · (ϕ(t, y)− ϕ(t, ȳ)) ≤ 0.

As in the previous v(t) = 0, so:

1

2
∥g(t, y(t))− g(t, ȳ(t))∥2 = 0 ⇒ g(t, y(t)) = g(t, ȳ(t)),

⇒ y′(t) = ȳ(t),

⇒
∫ t

t0

y′(x) dx =

∫ t

t0

ȳ(x) dx,

⇒ y(t)− y(t0) = ȳ(t)− ȳ(t0).

Since y, ȳ are solutions of (1.10) it means that y(t0) = ȳ(t0) so admits a unique solution

y.

Example 3.3.1. Consider the differential problem:y′ = −y + sin(t),

y(0) = 1.

By definition:

ϕ(t, y) =
∂g

∂t
+

∂g

∂y
g(t, y).

36



CHAPTER 3. THEORIES OF UNIQUENESS

Thus

ϕ(t, y)− ϕ(t, ȳ) = (cos(t) + y − sin(t))− (cos(t) + ȳ − sin(t)) = y − ȳ.

And

g(t, y)− g(t, ȳ) = (−y + sin(t))− (−ȳ + sin(t)) = ȳ − y.

We find

(g(t, y)− g(t, ȳ)) · (ϕ(t, y)− ϕ(t, ȳ)) = −(ȳ − y)2 ≤ 0.

The condition is satisfied, and thus the solution is unique.

3.4 Giuliano’s Uniqueness Theorem

In some cases, the function g may not be fully continuous, but it can still be partially

continuous. Therefore, before understanding the Giuliano’s uniqueness theorem, we must

first define some conditions and properties to prove it.

Carathéodory Conditions

In what follows, we present the existence results in the sense of Carathéodory.

Definition 3.4.0.1. Let g verify Carathéodory conditions if:

• g(t, y) is measurable in t for each fixed y = (y1, y2, . . . , ym).

• g(t, y) is continuous in y for each fixed t.

• There exists an integrable function Mi(t) in Ī such that:

|gi(t, y)| ≤ Mi(t), 1 ≤ i ≤ m, ∀(t, y) ∈ U.

Theorem 3.4.1. [1] Let g(t, y) be a function that satisfies the Carathéodory conditions

in I0: t0 < t < t0 + a, ∥y∥ < ∞. For all (t, y), (t, ȳ) ∈ I0 and the Giuliano’s inequality:

(g(t, y)− g(t, ȳ)) · (y − ȳ) ≤ h(t)f(∥y − ȳ∥2), (3.3)
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where h(t) > 0 is a Lebesgue integrable function on [α, β] ⊂ (t0, t0+a) and f satisfies the

following conditions

• f(z) be a continuous and non decreasing function in the interval [0,∞).

• f(0) = 0, f(z) > 0 for z > 0.

• lim
ε→0+

∫
ε

dt

f(t)
= ∞.

Then, the CP (1.10) admits a unique solution in [t0, t0 + a].

Proof. Suppose that y, ȳ are two solution of (1.10) in [t0, t0 + a]. Consider the following

function:

ϕ(t) = ∥y(t)− ȳ(t)∥2 .

By using the inequality (3.3), we find:

ϕ′(t) = (g(t, y)− g(t, ȳ)) · (y − ȳ) ≤ 2h(t)f(∥y − ȳ∥2),

≤ 2h(t)f(ϕ(t)).

Since ϕ(t) > 0 ⇒ f(ϕ(t)) > 0, implies:

ϕ′(t)

f(ϕ(t))
≤ 2h(t).

∀t̄ ∈ [t0, t0 + ε], we integrate both sides:

∫ t0+ε

t̄

ϕ′(x)

f(ϕ(x))
dx ≤ 2

∫ t0+ε

t̄

h(x) dx.

We set z = ϕ(x), dz = ϕ′(x)dx, then:

∫ ϕ(t0+ε)

ϕ(t̄)

1

f(z)
dz ≤ 2

∫ t0+ε

t̄

h(x) dx.

The above inequality, as t̄ → t0, the right-hand side remains bounded, whereas the

left-hand side, according to the conditions on f , becomes unbounded. This leads to a

contradiction. Therefore, we must have ϕ(t) = 0 or ϕ(t) < 0. From the definition of the

norm, we conclude that ϕ(t) = 0, which implies that y(t) = ȳ(t).
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Example 3.4.1. We consider the differential problem:y′ = g(t, y),

y(0) = 1,

where

g(t, y) =

t sin(y), t ≥ 0,

cos(y), t < 0.

1. We check the measurability of g(t, y) in t for a fixed y:

• For t ≥ 0, g(t, y) = t sin(y). Since sin(y) is a constant for a fixed y, and t is a

measurable function, their product remains measurable.

• For t < 0, g(t, y) = cos(y), which is a constant function in t and therefore measur-

able.

Thus, g(t, y) is measurable in t for each fixed y.

2. We verify that g(t, y) is continuous in y for each fixed t:

• For t ≥ 0, g(t, y) = t sin(y). Since sin(y) is continuous and t is constant, g(t, y) is

continuous in y.

• For t < 0, g(t, y) = cos(y), which is a well-known continuous function.

Since the continuity in y is only required for each fixed t, the function satisfies this con-

dition.

Thus, g(t, y) is continuous in y for each fixed t.

3. We now show that there exists a function M(t) such that ∥g(t, y)∥ ≤ M(t)

for all t:

• For t ≥ 0, we have:

∥g(t, y)∥ = ∥t sin(y)∥ ≤ |t|, since ∥ sin(y)∥ ≤ 1.
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• For t < 0, we have:

∥g(t, y)∥ = ∥ cos(y)∥ ≤ 1.

We choose M(t) = max(|t|, 1). Then, for all t ∈ R, we have ∥g(t, y)∥ ≤ M(t), where

the function M(t) is Lebesgue integrable on any finite interval. Since g(t, y) satisfies

Carathéodory’s conditions, we now verify the Giuliano’s inequality:

g(t, y)− g(t, ȳ) =

t(sin(y)− sin(ȳ)), t ≥ 0,

cos(y)− cos(ȳ), t < 0.

Using trigonometric identities:

sin(y)− sin(ȳ) = 2 cos

(
y + ȳ

2

)
sin

(
y − ȳ

2

)
,

cos(y)− cos(ȳ) = −2 sin

(
y + ȳ

2

)
sin

(
y − ȳ

2

)
.

Thus, we get:

(g(t, y)− g(t, ȳ)) · (y − ȳ) =


2t cos

(
y + ȳ

2

)
sin

(
y − ȳ

2

)
(y − ȳ), t ≥ 0,

−2 sin

(
y + ȳ

2

)
sin

(
y − ȳ

2

)
(y − ȳ), t < 0.

We know that sin(a)a ≤ a2, we find:

(g(t, y)− g(t, ȳ)) · (y − ȳ) ≤


4t cos

(
y + ȳ

2

)(
(y − ȳ)2

4

)
, t ≥ 0,

−4 sin

(
y + ȳ

2

)(
(y − ȳ)2

4

)
, t < 0.

Hence, we obtain:

(g(t, y)− g(t, ȳ)) · (y − ȳ) ≤

|t|(y − ȳ)2, t ≥ 0,

(y − ȳ)2, t < 0.

To satisfy Giuliano’s inequality, we choose:

h(t) = |t|, f(z) = z.

40



CHAPTER 3. THEORIES OF UNIQUENESS

Where h(t) > 0 is a Lebesgue integrable function on [α, β] and f(z) satisfies the conditions

of Giuliano’s theorem. Therefore, the solution is unique. This example shows that it still

applies even when g(t, y) is not fully continuous.

.
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Conclusion

I, n this work, the study initially focused on two fundamental problems in the

theory of ODEs:

1. The existence of solutions under specified initial conditions.

2. The uniqueness of solutions, ensuring that no other solutions satisfy the same condi-

tions.

To address these problems, we examined key theoretical results, including Peano’s

existence theorem, which guarantees that a continuous right-hand side in the ODE en-

sures the existence of at least one solution. However, continuity alone does not suffice

to ensure uniqueness. Consequently, we expanded our study to the uniqueness prob-

lem and concluded that this property holds when certain conditions are met, such as

the Cauchy–Lipschitz condition, Giuliano’s condition, among others. In conclusion, this

study resolves the central questions posed at the outset, which concern the criteria for

the existence and uniqueness of solutions.
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Annex

Zorn’s Lemma

Definition 3.4.1. (Partial Order)

A relation ⪯ on a set S is called a partial order if it satisfies the following properties

for all elements t, y, z ∈ S:

1. Reflexivity: For all t ∈ S, we have t ⪯ t.

2. Antisymmetry: If t ⪯ y and y ⪯ t, then t = y.

3. Transitivity: If t ⪯ y and y ⪯ z, then t ⪯ z.

If (S,⪯) is a partially ordered set, there may exist elements t, y ∈ C such that neither

t ⪯ y nor y ⪯ t, in which case they are said to be incomparable.

Remark 3.4.1. If any two elements in S are always comparable (i.e., for all t, y ∈ S,

either t ⪯ y or y ⪯ t), then the partial order becomes a total order (or linear order).

lemma 3.4.1. (Zorn’s) Let S be a non empty partially ordered set. If every totally ordered

subset T ⊂ S has an upper bound in S, then S contains at least one maximal element.

Ascoli–Arzelà

Theorem 3.4.2. Assume that (E, d) and (F, d′) are compact metric spaces.

Let φn : E → F be a sequence of functions. If the sequence (φn)n∈N satisfies:
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• Boundedness:

∃M > 0, ∀x ∈ E, ∀n ∈ N, then ∥φn∥ ≤ M.

• Equicontinuity:

∀ε > 0, ∃δ > 0, ∀x, y ∈ E, d(x, y) ≤ δ ⇒ ∀n ∈ N, d(φn(x), φn(y)) < ε.

Then, there exists a subsequence (φnk
)k∈N that converges uniformly, and the limit

function is continuous.

Picard Fixed Point

Theorem 3.4.3. Let (E, d) be a complete metric space, and let T : E → E be a contrac-

tive mapping, i.e.,

∃ k ∈]0, 1[, d(Tx, Ty) ≤ k d(x, y), ∀x, y ∈ E.

Then, there exists a unique x ∈ E such that:

T (x) = x.

Numerical Methods for Solving Differential Equations

Consider the differential problem: y′ = g(t, y),

y(t0) = y0,

(3.4)

where g : U = I × Ω → Rm, with I an open interval in R, and Ω an open subset of Rm.

In many cases, it is impossible to find an explicit solution to a differential equation.

Therefore, numerical methods are employed to approximate solutions. One of the simplest

and most fundamental numerical methods:
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Fourth Order Runge-Kutta Method (RK4)

Methods are a family of explicit multi stage schemes for approximating the solution of

the CP (3.4). The classical fourth order Runge-kutta method (RK4) computes the next

value yi+1 from the current value yi using a step size h = ti+1 − ti. The update involves

calculating:

k1 = hg(ti, yi),

k2 = hg

(
ti +

h

2
, yi +

k1
2

)
,

k3 = hg

(
ti +

h

2
, yi +

k2
2

)
,

k4 = hg(ti + h, yi + k3).

Then

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4).

This process is repeated for subsequent steps.

Here are brief definitions of Python with the libraries relevant to the provided scientific

computing code:

Python: A high level, interpreted, general purpose programming language known for

its clear syntax and readability. It provides the core structure for executing the

scientific simulation code presented with the help of libraries such as NumPy, SciPy

for the heavy computation and Matplotlib for ploting.
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اिऻڪٌۘ
اܳٺڰ؇ݪܹ٭۰ اৎ৊أ؇د৖৑ت ሒᇭ اࠍ੆ߺࠊل ۰ਃ಻ڎا༡وو وۏިد ّݯ݄݆ มฆܳا ا๤དྷܳوط دراݿ۰ ި۱ اৎ৊ڍாணة ۱ڍه ݆݁ ๴ཏ྘ཬීෂا ا୒ୖڎف
وۋ٭ڎا؟ً اࠍ੆ܭ ۱ڍا لܝިن ۱ܭ و༥ڎ، وᎂذا గጻዧأ؇دᄭᄟ؟ ༡ܭ ل༥ިڎ ۱ܭ :ඔ൹ܳاܳފޝا ޗݠح ఈః༠ل ݆݁ ዻዧوذ اܳأ؇دل۰،
଩ଐܳ٭ྟފ٭-๴ཇި܋ و۱ଫଊ݁ٷ۰ ިَ؇ਃಸ ۱ଫଊ݁ٷ۰ ݁ټܭ ا৙৑ݿ؇ݿ٭۰، ا۱ଫଊৎ৊ٷ؇ت وਊುᎂ؇ت ؜ਵض ቕቆ ،ඔ൹ܳاܳފޝا દઊ۱ڍ ؜݆ ۰ً؇༥ఇዳዧ
ل؇ت َޙݠ ቕሹّگڎ ቕቆ ،ዻዧذ ሌᇿإ إݪ؇ڣ۰ .۰਀ಸو৙৑ا اཹྥލ؇ر ஓ஁ިذج আॻ༟ ਐಸޚٴ٭ݑ ༇຀؇اܳٷٺ ۱ڍه دᆇّᅦُب პაႰ ،۰ਃ಻ڎا༡ިܳوا ܳߺࠊۏިد
اࠍ੆ߺࠊل. وأَިاع اܳٺڰ؇ݪܹ٭۰، ً؇ৎ৊أ؇د৖৑ت ੯੩أਐಾ أݿ؇ݿ٭۰ ل؇ݪ٭۰ ر ݁ڰ؇۱ࡗࡲ ࢻࣖال۰ ሒᇭ ڢڎ݁ب პაႰ ،۰ਃ಻ڎا༡ިܳا ۋިل أරඝى

.๴ཇި܋ ᄭႍၽ݁ލ ،۰ਃ಻ڎا༡ިܳا اܳިۏިد، اܳأ؇دل۰، اܳٺڰ؇ݪܹ٭۰ اৎ৊أ؇د৖৑ت اৎ৊ڰٺ؇ۋ٭۰: اగၵၽܳ؇ت

Abstract

The main objective of this thesis is to study the conditions that guarantee the existence
and uniqueness of solutions to ordinary differential equations, by addressing the following
two questions: Does a solution to the equation exist? And if so, is this solution unique? To
answer these questions, the fundamental theorems, such as Peano’s existence theorem and
the Cauchy–Lipschitz theorem on existence and uniqueness, were presented and proved.
These results were supported by an application to an epidemic spread model. In addition,
other theories related to uniquenesswere introduced. At the beginning, basic concepts and
definitions related to differential equations and types of possible solutions were provided.
Key words: Ordinary Differential Equations, Existence, Uniqueness, Cauchy Problem.

Résumé

L'objectif principal de ce mémoire est d'étudier les conditions qui garantissent l'existence
et l'unicité des solutions des équations différentielles ordinaires, à travers les deux ques-
tions suivantes : une solution existe-t-elle pour l'équation ? Et si elle existe, est-elle
unique ? Pour répondre à ces deux questions, les théorèmes fondamentaux ont été présen-
tés et démontrés, tels que le théorème de Peano et le théorème de Cauchy–Lipschitz sur
l'existence et l'unicité. Ces résultats ont été appuyés par une application à un modèle de
propagation d’épidémie. En outre, d'autres théorèmes relatifs à l'unicité ont été présentés.
Des notions et définitions de base concernant les équations différentielles et les types de
solutions ont également été introduites au début.
Mots clés: Équations différentielles ordinaires, Existence, Unicité, Problème de Cauchy.
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