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Notations and symbols

K(:) : kernel.

� (h) ; � (hjx) : A prior distribution .A posteriori.

MCMC : Markov chain Monte Carlo methods.

MSE : The mean square error.

ISE : The integrated squared error.

MISE : The integrated -mean square error.

LCV : likelihood cross-validation.

UCV : Unbiased cross-validation.

�(x1; :::; xn) : Normalization constant.

hlcv : Bandwidth using likelihood cross-validation.

hucv : Bandwidth using Unbiased Cross-Validation (UCV ).

L2! : convergence in the L2 norm.
p:s! : convergence in the almost sure convergence.

P! : convergence in probability.
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Introduction

Due to their simplicity, practitioners have widely used classical (symmet-

ric) kernels, introduced by Rosenblatt ( 1956) and Parzen ( 1962), for

estimating probability density functions with unbounded support. However, the

literature has shown that classical kernel estimators exhibit boundary bias when

applied to data from distributions with bounded support. To address this issue,

researchers have proposed alternative estimators, often based on modi�cations of

classical kernels. Notable contributions include the re�ection method of Schuster

( 1985), the boundary kernels of Müller ( 1991, 1993), and the empirical trans-

formation of Marron and Ruppert ( 1994).

Chen ( 1999) proposed replacing classical kernels with beta kernels for kernel dens-

ity estimation when data are supported on [0; 1]. Inspired by beta kernels, Chen

( 2000) extended this approach to density estimation for semi-bounded support,

introducing gamma kernels. The literature presents a variety of asymmetric ker-

nels linked to beta, gamma, inverse Gaussian, and lognormal probability densit-

ies. Speci�cally, beta and gamma kernels were proposed by Chen ( 1999, 2000),

while Birnbaum-Saunders (BS) and lognormal kernels were introduced by Jin

and Kawczak ( 2003). Additionally, Scaillet ( 2004) proposed inverse Gaussian

and reciprocal inverse Gaussian kernels.
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INTRODUCTION

This memoir focuses on kernel-based estimation techniques, particularly for dens-

ities with positive support, addressing key challenges such as boundary bias and

smoothing parameter selection. Traditional symmetric kernels often prove in-

adequate for bounded or semi-bounded data, motivating the use of asymmetric

kernels, including gamma, inverse Gaussian, and lognormal kernels. This work ex-

amines the construction of these associated kernels, their properties, and the con-

vergence of the corresponding estimators. It also explores Bayesian approaches for

smoothing parameter selection, leveraging Monte Carlo methods such as Markov

Chain Monte Carlo (MCMC). These approaches are compared with classical

methods, including cross-validation, and their performance is evaluated on both

simulated and real-world datasets.

The main contributions of this memoir include:

Theoretical insights into kernel construction.

Bias reduction and normalization techniques.

Empirical evaluations of various kernels and smoothing methods.

This memoir consists of a general introduction, three chapters, and a conclusion:

Chapter 1 : introduces asymmetric continuous associated kernels, their con-

struction, and the associated kernel density estimator, along with its convergence

properties.

Chapter 2 : addresses smoothing parameter selection, presenting both frequent-

ist and Bayesian approaches.

Chapter 3 : presents simulation results using well-known target densities with

varying characteristics, as well as real-world datasets commonly referenced in the

literature.

All numerical results and visualizations were generated using R software.
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Chapter 1

Asymmetric kernel

1.1 Associated kernel estimator

The following de�nitions present the concepts of the associated kernel and the

associated kernel estimator for the density function f Unknown on the support @.

De�nition 1.1.1 Let x 2 @ and h > 0. The associated kernel is called Kx;h .

Any probability density associated with a continuous or discrete random variable

Kx;h of support @x;h . Verifying the following four conditions :

@x;h \ @ 6= �; (1)

[
x
@x;h � @; (2)

lim
h!0
E (Kx;h) = x; (3)

lim
h!0
V ar (Kx;h) = 0: (4)

3



CHAPTER 1.ASYMMETRIC KERNEL

1.2 Univariate asymmetric continuous associated

kernel

The asymmetric continuous kernel estimator is suitable for estimating densities

with compact and bounded support. Let X1; X2; :::; Xn .A sample of (i:i:d) ran-

dom variables from an unknown continuous probability density function f with

support @ = [a; b], where (a 2 R and b 2 R)In general, the continuous kernel

estimator is of the form:

f̂n(x)=
1

n

nX
i=1

Kx;h(Xi) = f̂n;h;K(x); (1.1)

where x 2 @ set, h 2 R; (h > 0): is the smoothing parameter, Kx;h is associated

with a veri�ed asymmetric continuous kernel :

K(u) � 0 ; Kx;h(�) = 1
h
K(x��

h
) and

R
RK(u)du = 1:

Remark 1.2.1 A symmetric kernel also satis�es the de�nition of the associated

asymmetric kernel.

1.2.1 Examples of Associated Asymmetric Kernels

Gamma Kernel:

The associated kernel Gamma was introduced by Chen (2000 ) for the estimation

of densities with support Sx;h = [0;+1). He used the Gamma distribution to

construct asymmetric continuous associated kernels. The Gamma kernel is de�ned

4



CHAPTER 1.ASYMMETRIC KERNEL

:

KGA(1+x=h;h) (y) =
yx=h

� (1 + x=h)h1+x=h
exp

�
�y
h

�
; (1.2)

where � (:)is the classical gamma function . It is the probability density function

of the gamma distridution with scale parameter 1+ x=h and shape parameter h ;

see Chen (2000 )and also Libenguè (2013 ). The Gamma kernel estimator is given

by:

f̂n(x) =
1

n

nX
i=1

KGA(1+x=h;h) (Xi) : (1.3)

Modi�ed Gamma Kernel:

The second class was proposed by the same author to improve the performance

(reduce the bias) of the estimator. The form of the modi�ed Gamma kernel is

given by:

KGAM(�h(x);h) (y) =
yx=h

� (�h (x))h�h(x)
exp

�
�y
h

�
; (1.4)

where �(�) =
R1
0
e(�t)t��1dt, � > 0 is the gamma function and h is the parameter

of smoothing satisfying the conditions h! 0 and nh!1 when n!1 where:

�h(x) =

8>>>><>>>>:
x

h
si x � 2h

1
4

�x
h

�2
+ 1 si x 2 [0; 2h[

;

The modi�ed Gamma kernel estimator is written as:

f̂n(x) =
1

n

nX
i=1

KGAM(�h(x);h) (Xi) =
1

n

nX
i=1

X
x=h
i exp (�Xi=h)

� (�h (x))h�h(x)
: (1.5)

Beta Kernel:

5



CHAPTER 1.ASYMMETRIC KERNEL

The extended beta kernel is de�ned on Sx;h;a;b = [a; b] with a hbh1; and h > 0:

KBEx;h;a;b (y) =
(y � a)(x�a)=f(b�a)hg (b� y)(b�x)=f(b�a)hg

(b� a)1+h�1 B (1 + (x� a) = (b� a)h; 1 + (b� x) = (b� a)h)
;

(1.6)

where B (r; s) =
R 1
0
tr�1 (1� t)s�1 dt is the usual beta function with r > 0; s >

0. For a = 0 and b = 1, the extended beta kernel corresponds to the beta

kernel whith is the probability density function of the beta distribution with

shape parameters 1 + x=h ; see Libenguè(2013 ) :

The Beta kernel estimator f̂n(x) is denoted:

f̂n(x) =
1

n

nX
i=1

KBEx;h;a;b (Xi) : (1.7)

Gaussian-Inverse and Gaussian-Inverse-Reciprocal Kernels:

Scaillet (2004 ) introduced the associated Gaussian-inverse and Gaussian-reciprocal-

inverse kernels de�ned on ]0;1[. The Gaussian-inverse and Gaussian-reciprocal-

inverse kernels are given respectively as follows:

KIG(x;1=h) (y) =
1p
2�hy3

exp

�
� 1

2hx

�
y

x
� 2 + x

y

��
; (1.8)

KRIG(1=(x�h);1=h) (y) =
1p
2�hy

exp

�
�x� h

2h

�
y

x� h � 2 +
x� h
y

��
; (1.9)

where h > 0 and x 2 R+:: see Igarashi and Kakizawa (2015 ) and also Libenguè

(2013 ) :

The estimators of the unknown probability density f using the inverse-Gaussian

6



CHAPTER 1.ASYMMETRIC KERNEL

kernel @x;h Kx;h(u) Expectation Variance
Gamma(a; b) R+ 1

�(a)ba
ua�1e�

u
a ab ab2

Bêta(a; b) [0; 1] 1
�(a;b)

ua�1(1� u)b�1 a
(a+b)

a

f(a+b)2(a+b+1)g
IG(a; b) R+

p
bp

2�u3
exp

�
� b
2a

�
u
a
� 2 + a

u

�	
a a3

b

RIG(a; b) R+
p
bp
2�u
exp

�
� b
2a

�
au� 2 + 1

au

�	
1
a
+ 1

b
1
ab
+ 2

b2

Table 1.1: Some asymmetric continuous kernels.

and inverse-Gaussian kernels are given, respectively by:

f̂n(x) =
1

n

nX
i=1

KIG(x;1=h) (Xi) =
1

n

nX
i=1

1p
2�hX3

i

exp

�
� 1

2hx

�
Xi

x
� 2 + x

Xi

��
:

(1.10)

f̂n(x) =
1

n

nX
i=1

KRIG(1=(x�h);1=h) (Xi) =
1

n

nX
i=1

1p
2�hXi

exp

�
�x� h

2h

�
Xi

x� h � 2 +
x� h
Xi

��
:

(1.11)

Log-Normal Kernels:

The lognormal kernel is de�ned on Sx;h = [0;1) , and h > 0:

KLN(ln(x);4 ln(1+h)) (y) =
1p

8� ln(1 + h)y
exp

"
�(ln(y)� ln(x))

2

8 ln(1 + h)

#
; (1.12)

Using this kernel, the unknown density f is estimated by:

f̂n(x) =
1

n

nX
i=1

KLN(ln(x);4 ln(1+h)) (Xi) : (1.13)

It is the probability density function of the classical lognormal distribution with

mean log (x) + h2 and standard deviation h; see Igarashi and Kakizawa (2015)

and also Libenguè (2013) :In this section, we provide the di¤erent fundamental

properties of the associated kernel estimator.

where: IG(a; b), RIG(a; b) are the inverse Gaussian laws and the reciprocal inverse

7



CHAPTER 1.ASYMMETRIC KERNEL

Gaussian laws, respectively, and �(�) =
R +1
0

t��1e�tdt and �(a; b) =
R 1
0
(1 �

t)b�1ta�1dt; with a; b 2 R�+.

1.2.2 The properties of the asymmetric kernel estimator

Point Bias For a �xed x, the bias of the associated asymmetric continuous

kernel estimator is generally calculated.

Point Variance For a �xed x, we generalize the expression of the variance of

f̂n.

Mean Integrated Squared Error (MISE) We assume throughout that f

has a continuous second derivative on the support @ and that the following terms

are �nite:
R
@ [f

0(u)]2 du ,
R
@ [xf"(u)]

2 du and
R
@ [x

3f"(u)]
2
du:

Example 1.2.1 The Gamma kernel estimator is denoted:

f̂n(x) =
1

n

nX
i=1

KGA(1+x=h;h) (Xi)

The asymptotic bias of f̂n(x) is expressed by the following formula:

Biais
h
f̂n(x)

i
= hf 0 (x) +

1

2
h2f " (x) + � (h) ;

The asymptotic variance of f̂n(x) is given by:

V ar
h
f̂n(x)

i
t

8>>>><>>>>:
1

2
p
�
n�1h�1=2x�1=2f(x) + �

�
n�1h�1=2

�
si x

h
!1

�(k+1)
22k+1�2(k+1)

h�1n�1x�1=2f(x) + � (n�1h�1) si x
h
! K

;

8



CHAPTER 1.ASYMMETRIC KERNEL

The MISE is measured as:

MISE
h
f̂n(x)

i
= h2

Z +1

0

�
xf 0 (x) +

xf" (x)

2

�2
dx

+
n�1h�1=2

2
p
�

Z +1

0

x�1=2f(x)dx+ �( 1

n
p
h
+ h2)

1.2.3 Convergence of associated kernel estimators

A large body of literature has been devoted particularly to the issues of boundary

estimation by asymmetric kernel estimators. for example Bouezmarni and Scaillet

( 2005) analyze the behavior of the asymmetric kernel estimator at the point x = 0

in the case of densities with a pole at x = 0.

Theorem 1.2.1 (Bouezmarni and Scaillet, 2005) Let f be a probability density

function on [0;+1[ that is not bounded at x = 0, and let f̂h be its associated

asymmetric kernel estimator. If :

limh
n!1

= 0 and limnh
n!1

2a = +1 (a > 0);

Then:

f̂h(0)
P! +1; as n!1;

and if for every � > 0,

�

Z �

0

K�(0;h)(u)du! 1 as h! 0

where P! denotes convergence in probability, it is noted that the additional condi-

tion in the previous theorem is veri�ed for the Gamma kernel estimator. Indeed,

9



CHAPTER 1.ASYMMETRIC KERNEL

for any � > 0 and x = 0, we have:

Z �

0

KGam(1;h)(u)du = 1� exp
�
� �
h

�
! 1 as h! 0

Consequently, the Gamma kernel estimator assigns signi�cant weight to the bound-

ary points when the bandwidth is small. This is due to the particular property of

the Gamma kernel at x = 0.

Thus, Bouezmarni and Scaillet (2005) advise against using other asymmetric ker-

nels that do not satisfy the above property for estimating densities with a pole at

x = 0 (for example, the inverse Gaussian and reciprocal inverse Gaussian kernels).

Similarly, Malec and Schienle (2014) have recommended the use of the Gamma

kernel for the estimation of such densities.

The following theorem addresses the pointwise conditions for both weak and

strong consistency of the associated kernel estimator.

Theorem 1.2.2 (Kokonendji and al., 2012) Let f 2 C2(T) be a probability dens-

ity function and f̂h its associated kernel estimator for a given kernel type K . For

any �xed x 2 T and for h = h(n) , assume there exists a positive real number

r = r(K;x) such that nhr ! +1. Then,

f̂h(x)
L2 and P:s! f (x) ; as n!1:

where L
2 and P:s! denote convergence in the L2 norm and almost sure convergence,

respectively.

10



CHAPTER 1.ASYMMETRIC KERNEL

1.3 Multivariate asymmetric kernels

This section presents the method of multidimensional density estimation using

continuous asymmetric kernels. The concept of a multivariate associated ker-

nel Kx;Hof target vector x and the smoothing window matrix H was introduced

by Kokonendji and Somé ( 2015) In the continuous case, the observed variables

X1; :::; Xn are independent and identically distributed random vectors (iid),Taking

real values with the same density f . The multivariate asymmetric kernel estimator

of f can be de�ned by:

f̂n(x)=
1

n

nX
i=1

Kx;H(Xi) 8x 2 @d � Rd (1.14)

where Kx;H(:) =
1

(detH)
K(H

1
2 (x� :)):

De�nition 1.3.1 Let x 2 @d � Rd and H a smoothing matrix, with @d is the

support of the function f to be estimated. Kx;H(:) of support @x;H � Rd is called

a multivariate associated kernel if the following conditions are satis�ed:

x 2 @x;H ; E (Kx;h) = x + a (x; H) ; Cov (Kx;h) = B(x; H): (1.15)

where a (x; H) !
H!0d

0d , B(x; H) !
H!0d

0d ( 0d is a null square matrix of order

d) Kx;h is a vector of discrete random variables with a distribution Kx;H .

11



Chapter 2

Smoothing Parameter Selection

2.1 Bandwidth Selection for Univariate asym-

metric Kernel

At this stage, we present methods for selecting window sizes to approximate the

optimal window value h de�ned by:

hopt = argmin
h >0

MISE
�
f̂n(x)

�
: (2.1)

2.1.1 Minimization of the integrated mean squared error

This method involves minimizing the integrated mean squared error (MISE) or

asymptotic mean integrated squared error (AMISE). We recall that the MISE

is given by:

MISE
�
f̂n(x)

�
=
X
x2N

Biais2
h
f̂n(x)

i
+
X
x2N

V ar
h
f̂n(x)

i
(2.2)

12



CHAPTER 2.SMOOTHING PARAMERTER SELECTION

The variance can be approximated as follows:

V ar
�
f̂n(x)

�
=
1

n
V ar (Kx;h (X)) =

1

n

"
f(u)

X
x2N

K2x;h � f 2 (x)
#
+ �

�
h

n

�
; (2.3)

Under the condition lim
h!0

P
u2@x;h

u K (u) = x, We have the following approximation:

~V ar
�
f̂n(x)

�
=
1

n
f(x)P (�x;h = x): (2.4)

where Kx;h is the discrete random variable with density Kx;h. The bias of f̂n

is approximated using the second-order discrete Taylor expansion.

Biais
�
f̂n(x)

�
= E

h
f̂n(x)

i
�f(x) = f [E(Kx;h)]�f(x)+

1

2
V ar (Kx;h) f" (x)+� (h)

(2.5)

Finally, the MISE can be approximated by:

AMISE(h) =
1

n

X
x2N

f (x)P (Kx;h = x) (2.6)

+
X
x2N

�
f [E(Kx;h)]� f(x) +

1

2
V ar (Kx;h) f" (x) + � (h)

�2
(2.7)

The smoothing parameter hAMISE In this case, it can be obtained as follows:

hAMISE = argmin
h
AMISE (h) : (2.8)

The smoothing parameter hAMISE is not directly usable in practice, because

AMISE(h) it depends on the unknown discrete density f .

13



CHAPTER 2.SMOOTHING PARAMERTER SELECTION

2.1.2 Classical Methods for Bandwidth Selection

Plug-In Method

The popular plug-in (or re-injection) selector in kernel density estimation is due to

Sheather and Jones ( 1991). This method adopts the asymptoticMISE (AMISE)

as criterion, de�ned by:

AMISE =
h4

4
�4K

Z
f"2 (x) dx+

R
K2 (y) dy

nh
; (2.9)

The optimal bandwidth can be obtained by minimizing AMISE as:

h� =

�
R (K)

�4KR (f")

�1=5
n�1=5; (2.10)

where: R(K) =
R
K2(y)dy and R(f") =

R
f"2(x)dx.

The expression of the optimal bandwidth h� depends on unknown density f

through R(f"). This ideal bandwidth is not directly calculable.Sheather and

Jones( 1991) choose to estimate R(f") =
R
f"2(x)dx by:

R̂a (f") =
1

n2a5

nX
i=1

nX
j=1

L
(4)

�
Xi �Xj

a

�
; (2.11)

Where: L(4) is the fourth derivative of the kernel function L, a is the pilot band-

width parameter,The estimator R̂a (f") is obtained as follows:

R(f") =

Z
f"2(x)dx =

Z
f (4) (x) f (x) dx

14



CHAPTER 2.SMOOTHING PARAMERTER SELECTION

E
�
f (4) (x)

�
;

the quantity R(f") can be estimated by:

R̂a (f") =
1

n

nX
i=1

f (4)a (Xi) ;

The optimal bandwidth is given by:

hsj =

 
R (K)

�4aR̂a (f")

!1=5
n�1=5: (2.12)

These authors select a to minimize the asymptotic MSE, which is denoted by

AMSE(a).

In the case of using asymmetric associated kernels, the ideal smoothing parameter

in the sense of AMISE generally depends on three unknown quantities through

f , f
0
and f

00
. This makes it more di¢ cult to choose the smoothing parameter

by plug-in methods. The only method that has been proposed in this case is

the reference rule method by analogy with the case of symmetric kernels. Scaillet

[2004] suggests estimating the unknown quantities by replacing f by a log-normal

reference model with parameters �f and �2f .

Example 2.1.1 For example, the smoothing parameters obtained by Scaillet [2004]

for the reference rule using the inverse-reciprocal-Gaussian kernel is given by:

hRIGrdr =

 
16�5f exp

�
1
8

�
�17�2f + 20�f

�	
12 + 4�2f + �

4
f

!2=5
n�2=5:

In practice, the two parameters �f and �2f are estimated using the observations

15



CHAPTER 2.SMOOTHING PARAMERTER SELECTION

X1; :::; Xn by the empirical mean and variance. This method tends to provide

very small valuesfor the smoothing parameter, which leads to the phenomenon of

under-smoothing.

Excess of zeros

In this section, the choice of the window is based on count data with @ which is

none other than the excess of zeros in the sample X = (X1; X2; :::; Xn). One can

choose a suitable window h0 = h0 (X;K) of h satisfying:

nX
i=1

P (�Xi;h0 = 0) = n0 (2.13)

Where n0 denotes the number of zeros in X (n0 = Card(Xi = 0) ). The equation

(2:12) is obtained from the expression:

E
�
f̂n(x)

�
=
X
u2@x;h

f(u)P (Kx;h = u): (2.14)

In which we take u = 0 and f(0) = 1 n order to match the number of theoretical

zeros with the number of empirical zeros n0. The window h0 adjusts the number

of theoretical zeros to the number of observed zeros.

Cross-Validation Methods

Unbiased Cross-Validation Rudemo ( 1982) and Bowman ( 1984) introduced

the idea of this method. By using the expanded formula of the integrated squared

error ISE(h), the smoothing parameter h is chosen to minimize this error. The

cross-validation criterion UCV (h) is applicable to both symmetrical and asym-

metrical kernels.
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ISE(h) =

Z
(f̂h(x)� f(x))2dx =

Z
f̂
2

h(x)dx� 2
Z
f̂h(x)f(x)dx+

Z
f 2(x)dx:

(2.15)

We note that
R
f 2(x)dx does not depend on h, so we can choose h in such a way

that it minimizes the Unbiased cross-validation criterion de�ned by:

UCV (h) = ISE(h)�
Z
f 2(x)dx =

Z
f̂ 2h(x)dx� 2

Z
f̂h(x)f(x)dx: (2.16)

We must therefore �nd an estimator for
R
f̂h(x)f(x)dx: Let us note that:

Z
f̂h(x)f(x)dx = E

h
f̂h(x)

i
(2.17)

The empirical estimator of
R
f̂h(x)f(x)dx is then: 1

n

Pn
i=1 fh;i(xi):

The criterion to be optimized is then:

UCV (h) =

Z
f̂h(x)

2dx� 2

n

nX
i=1

fh;i(xi);

where fh;i(xi) = 1
(n�1)h

P
j 6=i;j=1

K(
Xi�Xj
h
) is the density estimator constructed from

the set of points except for the point xi:

Using the explicit formulas of f̂h(x) and fh;i(xi), the criterion UCV (h) is given

by:

UCV (h) =
R(K)

nh
+

nX
i=1

X
j 6=i;j=1

0@ 1

(nh)2

Z
K

�
x�Xi

h

�
K

�
x�Xj

h

�
dx�

2K
�
Xi�Xj
h

�
n(n� 1)h

1A
(2.18)

where R(K) =
R
K2(x)dx:
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The optimal bandwidth hUCV is thus obtained as follows:

ĥucv = argmin
h

(UCV (h)) : (2.19)

Likelihood cross-validation The simplest of the cross-validation methods is

that proposed by Habbema and al. [1974], called maximum likelihood cross-

validation. It consists in maximizing with respect to h a likelihood estimator

given by:

LCV (h) =
nY
i=1

f̂h;i(xi) =
1

(n� 1)n
nY
i=1

nX
j=1;i6=j

Kxi;h(xj); (2.20)

The optimal smoothing parameter provided by this method is given by:

ĥlcv = argmax
h

(LCV (h)) : (2.21)

2.1.3 Bayesian Approach to Bandwidth Selection

Global Bayesian approach

This approach was proposed by Kuroita and al. ( 2010) to estimate the pdf . By

the natural logarithmic kernel and then by Zoghab and al. ( 2013b) to estimate

pdf. By separate connected kernels. f̂n estimated with linked kernels f . The idea

is to treat the smoothing parameter h as a random variable. We then choose the

priori distribution � (:) for h.

Bayesian inference concerning a parameter h conditional on data is made via

the posterior density �(hjdata). In particular, we consider a sequence X1; :::; Xn

of i:i:d. real random variables with density of probability or probability mass

function (pmf) f and x1; :::; xn an independent random sample drawn from f .

18
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The likelihood function is written as:

L(x1; :::; xn;h) = �(x1; x2:::; xnjh) =
nY
i=1

f̂n(xi) =
1

(n� 1)n
nY
i=1

nX
j=1;i6=j

Kxi;h(xj);

(2.22)

Thus, the likelihood cross-validation is given by the Bayes theorem, the posterior

of h takes the form:

LCV (x1; :::; xn;h) = �(x1; :::; xnjh) =
nY
i=1

f̂
h;i
(xi) (2.23)

�(h j x1; x2:::; xn) =
�(x1; :::; xnjh)�(h)
�(x1; x2; :::; xn)

=

�(h)
nY
i=1

f̂h;i(xi)

�(x1; x2;:::; xn)
(2.24)

where �(x1; x2:::; xn) =
R
�(x1; x2;:::; xnjh)�(h)dh: We can also write:

�(h j x1; x2:::; xn) � �(x1; :::; xnjh)�(h) = �(h)
nY
i=1

f̂
h;i
(xi); (2.25)

Therefore, the posterior is given by:

�(h j x1; x2;:::; xn) � �(h)
nY
i=1

1

(n� 1)

nX
j=1;i6=j

Kxi;h(xj) (2.26)

The Bayes estimator is the posterior mean given by:

ĥGBay =

Z
h�(h j x1; x2:::; xn)dh: (2.27)
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Local Bayesian approach

We derive the Bayesian bandwidth at each point x where the density is being

estimated (Bayesian local approach) in the context of kernel density estimation

with positive support using the asymmetric kernel. Our goal is to estimate the

bandwidth h at each point x by using the Bayesian approach. Now, consider h as

a scale parameter for fh(x).

f̂h(x) =
1

n

Xn

i=1

1

h
K

�
x�Xi

h

�
=
1

n

Xn

i=1
Kx;h(Xi) (2.28)

Our approach consists in using fh(x) and constructing a Bayesian local estimator

for h. Let �(h) be a prior distribution, then by the Bayes rule, the posterior of h

at the point of estimation x takes the form:

�(h j x) = fh(x)�(h)R
fh(x)�(h)dh

; (2.29)

Since fh(x) is unknown, we use a suitable estimator f̂h(x) we can estimate a

bayesian model which depend on the prior and likelihood function by:

�̂(h j x;X1; X2:::; Xn) =
f̂h(x)�(h)R
f̂h(x)�(h)dh

(2.30)

The Bayes estimates of the smoothing parameter h can be computed under

squared error loss. The Bayes estimator is the posterior mean given by:

ĥ(x) =

Z
h�̂(h j x;X1; X2; :::; Xn)dh: (2.31)
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2.2 Multivariate bandwidth selectors

2.2.1 Excess of Zeros

The choice of the window matrix for this method is based on a particularity of

count data (@d), We will generalize this technique from the one-dimensional case

to the multidimensional case. Given a multivariate associated kernel Kx;H , we

can choose H0 such that:

nX
i=1

P
�
K[1]X1;H0 = 0; :::;K

[d]
Xd;H0

= 0
�
= n0:

2.2.2 Cross-validation methods

In the multivariate case of the UCV criterion of least squares validation the gen-

eralization of the univariate form devised by Rudemo ( 1982) and Bowman ( 1984)

(see also Duong and Hazelton [ 2005]),

UCV (H) =

Z
Rd

�
f̂n(x)

�2
dx� 2

n

nX
i=1

f̂n;�i(Xi) (2.32)

where f̂n;�i(Xi;H) = (n� 1)�1
Xn

j 6=i
KH (x�Xj) is being computed as f̂n(Xi)

excluding the observation Xi . The bandwidth matrix obtained as follows:

ĤUCV = arg min
H2M

UCV (H): (2.33)

whereM is the set of all positive de�nite full bandwidth matrices. The optimal
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window matrix, denoted HLSCV ,is given by:

HLSCV = argmin
M
LSCV (H): (2.34)

whereM is the space of symmetric positive-de�nite smoothing matrices and

LSCV (H) =

Z
Sd
f̂n(x)dx�

2

n

Xn

i=1
f̂n;�i(Xi)dx: (2.35)

Figure 2.1: Asymmetric associated kernels for di¤erent smoothing parameters and
for a �xed target x = 1:5

Figure 2.2: Asymmetric associated kernels for di¤erent targets x and for a �xed
smoothing parameter h = 0:25
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Chapter 3

Simulation and numerical results

This chapter presents a simulation study comparing several methods for se-

lecting the smoothing parameter h, with a focus on asymmetric continuous kernel

functions. All estimators are developed in a univariate setting and evaluated using

the Integrated Squared Error and Mean Integrated Squared Error.

The simulation emphasizes the performance of Bayesian inference in selecting

the smoothing parameter ĥbays, especially for density estimation with positive

support on ]0;+1[ . The results are compared to classical approaches, including

unbiased cross-validation (UCV ) and the theoretical optimal bandwidth h�. This

comparison highlights the strengths and weaknesses of each method.

3.1 Simulation Study

In this section, we illustrate the performance of several asymmetric continuous

kernel estimators: Gamma, Modi�ed Gamma, Reciprocal Inverse Gaussian, and

Lognormal kernels. We simulate samples of sizes n 2 f25; 100; 200; 400g. For each

kernel, the optimal bandwidth is selected using UCV and Bayesian (MCMC)
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methods.

3.1.1 Methods Used

Among the methods and criteria presented in previous chapters, we use:

1. Kernel Types: Gamma (GA), Modi�ed Gamma (GAM), Inverse Reciprocal

Gaussian (RIG), and Lognormal (LN).

2. Smoothing Parameter Selection:

- Classical: Using UCV .

- Bayesian: Using MCMC.

3. Error Criteria: We chose to evaluate the estimation error using the ISE

and MISE.

Let us denote:

n : Sample size.

h� : Theoretical optimal smoothing parameter

ĥucv : Bandwidth from unbiased cross-validation.

ĥbays : Bandwidth from Bayesian inference.

MISE�: Theoretical mean integrated squared error.

ISE�: Relative deviation from optimal ISE:

dISEUCV : The empirical mean ISE with the smoothing parameter ĥucv.dISEBays: The empirical mean ISE with the smoothing parameter ĥbays.
For the numerical application we considered the following distributions: Density

set to ]0;+1[
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1. Gamma model with parameter (2; 2) :

f1(x) =
x

4
exp

�
�x
2

�
, x > 0:

2. Log-normal with parameters � = 2 and � = 1 :

f2(x) =
1

x
p
2�
exp

�
�1
2
(log(x)� 2)2

�
, x > 0:

3. Weibull model with shape parameter � = 2 and scale parameter � = 2:

f3(x) =
x

2
exp

�
�x

2

4

�
, x � 0:

3.1.2 Algorithm

- Simulate a sample of size n from the target density,

- Select an asymmetric kernel (GA, GAM , RIG, or LN).,

- Calculate the optimal smoothing parameter (ĥucv, ĥbays) using one of the selec-

tion algorithms (UCV; MCMC),

- Construct the kernel estimator using the observations and the calculated band-

width.

- Compute the ISE for the estimated density,

- Plot the theoretical and estimated densities for comparison.

3.2 Discussion of results
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Gamma Model

n K h� ĥucv ĥbays MISE� ISE� dISEUCV dISEBays
25

GA

GAM

RIG

LN

0:15227

0:55189

0:55189

0:11959

0:75383

0:75382

0:22361

0:45769

0:24293

0:22766

0:53715

0:19806

0:02264

0:01570

0:01190

0:01760

0:00894

0:00227

0:02220

0:05144

0:00153

0:00153

0:06437

0:01397

0:00608

0:00644

0:02244

0:02064

100

GA

GAM

RIG

LN

0:08746

0:31698

0:31698

0:06869

0:35214

0:35212

0:33808

0:39264

0:35980

0:33980

0:65980

0:35980

0:00747

0:00518

0:00392

0:00581

0:00319

0:00127

0:00917

0:02130

0:00128

0:00128

0:00820

0:00300

0:00129

0:00127

0:00322

0:00244

200

GA

GAM

RIG

LN

0:06628

0:24022

0:24022

0:05206

0:28743

0:28744

0:52477

0:29443

0:22482

0:21722

0:14884

0:05404

0:00429

0:00297

0:00225

0:00334

0:00190

0:00136

0:00403

0:00725

0:00152

0:00152

0:00373

0:00089

0:00132

0:00130

0:00582

0:00692

400

GA

GAM

RIG

LN

0:05023

0:18206

0:18205

0:03945

0:11081

0:11080

0:40206

0:22575

0:23934

0:21934

0:53934

0:23934

0:00246

0:00171

0:00129

0:03813

0:00128

0:00074

0:00361

0:00812

0:00070

0:00070

0:00218

0:00064

0:00093

0:00085

0:00267

0:00065

Table 3.1: Simulation results for the selection of the smoothing parameter by

UCV and Bays, case of Gamma model with parameter (2,2)

Reading table (3.1) and estimated and theoretical curves presented in �gures

(3.1), (3.2), (3.3) and (3.4) show that:

For n = 25 :

* GAM kernel: gives the lowest ISE� = 0:00227 , and the Bayesian estimatedISEBays = 0:00644 remains very competitive.
* GA kernel provides the best dISEUCV = 0:00153:
* RIG and LN performs poorly for small samples (especially LN in ISE�).

For n = 100 :

* GAM : gives the lowest theoretical error ISE� = 0:00127, and the Bayesian

estimate dISEBays = 0:00127 matches it, showing strong consistency and

accuracy.
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* GA :provides the best dISEUCV = 0:00128, indicating competitive performance
in data-driven bandwidth selection.

* RIG and LN performs poorly for small samples (especially LN in ISE�).

Observations:

- ĥucvtends to be larger than h�, especially for the GA and GAM kernels.

- All selection methods yield ĥbays values close to h� for the GA and GAM .

- MISE� is small but ISE values vary: particularly large for LN .

- Relative errors dISEUCV and dISEBays are higher for the RIG and LN kernels

(indicating unstable estimation for small n).

For n 2 f200; 400g :

* LN : consistently outperforms all others when the UCV and Bayesian methods

are used, with dISEUCV as low as 0:00089 for n = 200 and dISEUCV =

0:00064 ; dISEBays = 0:00065 for n = 400, indicating superior performance
and stability with large sample sizes

Although the MISE for the LN kernel remains relatively high for large

sample sizes (0:03813::), the low ISE indicates good sample stability.

* GAM exhibits balanced performance, but it is not the best option for large

samples.

How does performance change with increasing sample size?

When n increases to 400, the results shift:
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* LN kernel outperforms all others, especially in terms of ISE using UCV and

Bayes. Although the MISE for the LN kernel remains relatively high

(0:03813), the low ISE indicates good stability for this sample.

* GAM exhibits balanced performance, but it is not the best option for large

samples.

* RIG remains unstable, often yielding the worst results.

* GA exhibits balanced performance, but it is not the best option for large

samples (Figure 3.1) because shows a tendency to over smooth for small

n, especially with ĥucv, due to the large bandwidth ( the estimated curve is

�atter than the true density.when n = 25, but it aligns better as n increases).

Associated Figures

Gamma Kernel Estimators of a Gamma Density (Figure 3.1):

* Shows performance of the GA kernel across all sample sizes (n = 25� 400):

* Demonstrates close matching to true density for large samples.

* For small samples, the estimated curve tends to oversmooth when using UCV

bandwidths.

Modi�ed Gamma Kernel Estimators of a Gamma Density (Figure 3.2 ):

* Shows the performance of the GAM kernel.

* Displays high variability, especially at small sample sizes (n = 25).

* Shows potential over-smoothing/under-�tting due to unstable bandwidths se-

lection .
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Log-Normal Kernel Estimators of a Gamma Density (Figure 3.3 ):

* Demonstrates the superiority of the LN kernel for large sample sizes (n � 200).

* Showing excellent stability and accuracy at n = 400:

* Reveals poor performance for small samples (n = 25),though better than RIG.

RIG Kernel Estimators of a Gamma Density (Figure 3.4 ):

* Displays RIG kernel instability across all sample sizes.

* It Shows signi�cant �uctuations and a weaker �ts, especially with small n:

* Indicates slight improvement for larger samples but still less stable thanGA=LN

estimators.

Key Visual Observations:

Small samples (n = 25):

GAM Kernel: Shows the closest �t to the true density as shown in (Figure 3.2).

RIG and LN Kernels :exhibit signi�cant deviations from the true density (Figures

3.3-3.4).

Large samples (n = 400):

LN Kernel: The curve aligns nearly perfectly with the true density (Figure 3.3 ).

GA Kernel: Shows a balanced �t, but it�s less precise compared to LN , as seen

in Figure (Figure 3.1 ).

Conclusions :

Performance by Method:

* Bayesian methods excellent for small to medium samples (n � 100).
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* The UCV method performs best for larger samples (n � 200).

Kernel Performance:

* The LN kernel demonstrated superior estimation performance in large samples

(n � 200).

* TheGAM kernel shows excellent performance for small samples (n 2 f25; 100g).

* The RIG kernel demonstrates instability across all sample sizes.

Bandwidth Observations:

* ĥucv > h� in most cases, except for the RIG kernel when n = 25:

* The MCMC method usually provides a bandwidth value between h�and ĥucv.

* ĥbays tends to be closer to h� for the GAM and GA kernels, while for the LN

and RIG kernels, it shows higher variation especially with smaller sample

sizes.

* MCMC shows more �uctuation compared to h� and ĥucv, particularly with the

LN and RIG kernels for small n (n = 25).

n Best Kernel Best M ethod Notes

25 GAM Bayesian Lowest dISEBays = 0:00644:

100 GAM Bayesian dISEBays = 0:00127:

200 LN UCV dISEUCV = 0:00089:

400 LN Both dISEUCV = 0:00064 and dISEBays = 0:00065, resp ectively.

Table 3.2: Summary of Best Performers in case of the Gamma model.

Final Recommendations :
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* For small sample sizes (� 100), the GAM kernel is excellent, especially with

the ĥbay to improve accuracy of the estimation .

* As the sample size increases, the LN kernel started to outperform others, par-

ticularly with adaptive methods (UCV and Bayes).

* The RIG kernel provides weak and unstable results.

* Selecting the suitable method for the smoothing parameter: is crucial UCV

performs best when n � 200.

Log-normal Model

n K h� ĥucv ĥbays MISE� ISE� dISEUCV dISEBays
25

GA

GAM

RIG

LN

0:26815

0:85061

0:85061

0:04121

0:19986

0:86152

0:80429

0:66543

0:26846

0:87467

0:49406

0:26853

0:01135

0:00841

0:00638

0:00523

0:01512

0:02342

0:02211

0:10208

0:01914

0:02305

0:02378

0:01303

0:01511

0:02262

0:03934

0:01854

100

GA

GAM

RIG

LN

0:15416

0:48855

0:48855

0:02367

0:32833

0:51834

0:49186

0:36201

0:26993

0:49622

0:47767

0:28614

0:00374

0:00277

0:00210

0:00144

0:00702

0:01064

0:00982

0:03697

0:00477

0:01021

0:00976

0:00752

0:00539

0:01052

0:01002

0:00782

200

GA

GAM

RIG

LN

0:11672

0:37025

0:37025

0:01794

0:42826

0:99994

0:95349

0:36989

0:19209

0:29946

0:39921

0:20535

0:00215

0:00159

0:00121

0:00083

0:00195

0:00357

0:00346

0:02277

0:00094

0:00274

0:00180

0:00202

0:00153

0:00422

0:00326

0:00216

400

GA

GAM

RIG

LN

0:08846

0:28060

0:28060

0:01359

0:37166

0:93130

0:30843

0:31264

0:20966

0:04512

0:34369

0:32236

0:00123

0:00092

0:00069

0:00048

0:00104

0:00207

0:00203

0:01363

0:00070

0:00183

0:00068

0:00050

0:00078

0:01490

0:00111

0:00050

Table 3.3: Simulation results for the selection of the smoothing parameter by

UCV and Bays, case of the Log-normal model with parameter (2,1)

Reading table (3.3) allows us to notice that:

when n = 25 :

- The GA kernel with ĥbays yields the lowest ISE � 0:01511.
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- The LN kernel provides the best dISEUCV = 0:01303.
- Bayesian estimates ĥbays align closely with h� for the GA and GAM kernels, but

show instability for the LN andRIG kernels indicating unreliable smoothing

for small samples.

when n = 100 :

- The GA kernel with ĥbaysachieves the lowest ISE = 0:00539.

- BothUCV and Bayesian methods show improvement, with Bayesian smoothing

performing better, especially for the GA and GAM kernels.

when n 2 f200; 400g :

For n = 200 :

- The GA kernel with ĥucv yields the lowest ISE (0:00094).

- The LN kernel begins to outperform others as n increases.

For n = 400 :

- The LN kernel achieves the lowest ISE (0:00050) with both UCV and Bayesian

methods, demonstrating excellent stability. Although theMISE for the LN

kernel is very small (0:00048), the low ISE indicating high accuracy and

stability in this sample.

- The GA kernel shows balanced performance but it is not the best for large

samples.

- The GAM and RIG kernels remain unstable.
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Key Observations:

* In most cases, the Bayesian estimated bandwidth ĥbays is close to the optimal

h� , particularly for the GA and GAM kernels. However, for the RIG and

especially the LN kernels, greater deviations are observed, notably in small

n.

* UCV bandwidth ĥucv is generally greater than h� except for the GA and RIG

kernels when n = 25, due to the higher sensitivity of UCV to �uctuations

in small samples.

* The GA kernel with ĥbays o¤ers the best performance for n 2 f25; 100g, while at

n = 200, the GA kernel with ĥucv gives the best result.when n = 400;the LN

kernel (with UCV or Bayes) achieves the highest accuracy.

How does performance change with increasing sample size?

When n increases to 400, the results shift:

* LN kernel outperforms all others, especially in terms of ISE using UCV and

Bayes. Although the MISE for the LN kernel is relatively very small

(0:00048), the low ISE indicates good stability and accuracy for this sample.

* GAM , RIG remains unstable, often yielding the worst results.

* GA exhibits balanced performance, but it is not the best option for large

samples.

* TheMCMC method usually provides a bandwidth value between h� and ĥucv ,

but it tends to exhibit more �uctuations,particularly with the LN and RIG

kernels when n = 25 due to the instability of the posterior distribution in

small samples and the inherent asymmetry of these kernels.
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Associated Figures:

Gamma Kernel (Figure 3.5):

- Closely matches the true density for small n, aligning with its low ISE values.

- Slight over-smoothing for larger n (e.g., n = 400) where LN outperforms.

Modi�ed Gamma (Figure 3.6):

- High variability, especially for n = 25 (spiky estimates).

- Poor �t due to unstable bandwidths (e.g., ĥbays = 0:87467 at n = 25).

RIG Kernel (Figure 3.7):

- Similar to GAM; erratic for small n but improves slightly for n = 400.

- Struggles with tail behavior (underestimates peaks).

Lognormal Kernel (Figure 3.8):

- Best �t for large n, with smooth, accurate curves.

- Near-perfect alignment with f2 at n = 400 (lowest ISE ).

n Best Kernel Best M ethod Lowest ISE

25 GA Bayesian
�
ĥbays

�
0:01511

100 GA Bayesian
�
ĥbays

�
0:00539

200 GA UCV
�
ĥucv

�
0:00094

400 LN with sim ilar p erformance 0:00050, excellent stab ility.

UCV/Bayesian (tie)

Table 3.4: Summary of Best Performers in case of the Log-normal model.

Final Recommendations :

34



CHAPTER 3.SIMULATION AND NUMERICAL RESULTS

- Small samples(n = 25) :the GA kernel provides the best performance, especially

with ĥbays:

- Medium samples (n 2 f100; 200g) :the GA kernel remains strong, but as the

size grows, the LN kernel becomes more distinguished, particularly with

UCV and Bayesian methods.

- Large samples (n = 400): the LN kernel is the best, with UCV and Bayesian

providing excellent performance and higher accuracy.

- Avoid: GAM and RIG for small samples due to instability.

- UCV method: More stable and reliable for larger sample sizes, showing greater

consistency across di¤erent kernel types.

- Bayesian method: E¤ective for small to medium sample sizes, but its perform-

ance can be sensitive to the choice of kernel function.
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Weibull Model

n K h� ĥucv ĥbays MISE� ISE� dISEUCV dISEBays
25

GA

GAM

RIG

LN

0:12307

0:18704

0:18704

0:02455

0:13561

0:11521

0:11574

0:32685

0:05486

0:21580

0:19312

0:34857

0:03484

0:03729

0:02826

0:03023

0:02149

0:08686

0:08830

0:37785

0:01900

0:17257

0:17333

0:00423

0:04393

0:07141

0:08435

0:00387

100

GA

GAM

RIG

LN

0:07069

0:10743

0:10743

0:01410

0:08702

0:29081

0:27281

0:33924

0:06204

0:22734

0:19909

0:42038

0:01149

0:01230

0:00932

0:00997

0:02834

0:06137

0:06140

0:21136

0:02485

0:03177

0:03466

0:00362

0:03042

0:03921

0:04162

0:00674

200

GA

GAM

RIG

LN

0:05357

0:08141

0:08141

0:01069

0:08656

0:26366

0:03573

0:26489

0:04777

0:19700

0:31666

0:32024

0:00660

0:00706

0:00573

0:00334

0:04467

0:06900

0:06904

0:14955

0:03726

0:04510

0:10553

0:00245

0:04616

0:05322

0:04963

0:00433

400

GA

GAM

RIG

LN

0:04060

0:06170

0:06170

0:00810

0:05247

0:21143

0:12928

0:15267

0:03992

0:19394

0:17496

0:22322

0:00379

0:00406

0:00308

0:00329

0:06005

0:08117

0:08084

0:08022

0:05621

0:06416

0:07201

0:00303

0:06028

0:06635

0:06873

0:00230

Table 3.5: Simulation results for the selection of the smoothing parameter by

UCV and Bays, case of the Weibull model

The simulation results for the Weibull model are summarized in Table 3.5. Key

�ndings are as follows:

Sample size n = 25:

- GA Kernel: Achieves the lowest ISE� = 0:02149. The Bayesian method yieldsdISEBays = 0:04393, making it highly reliable for small samples.
- LN Kernel: performs well using the UCV and Bayesian methods with very low

values dISEUCV = 0:00423 and dISEBays = 0:00387,but struggles with high
ISE� = 0:37785, showing sensitivity to bandwidth selection.

- GAM and RIG Kernels: shows weak performance with small n, exhibiting large

�uctuations and high ISE values with (e.g., dISEUCV = 0:17257 for GAM),
but good with Bayesian method yields (e.g.,dISEBays = 0:07141):

36



CHAPTER 3.SIMULATION AND NUMERICAL RESULTS

Medium Sample Size n = 100 :

- The LN kernel with UCV provides the best results, with the lowest dISEUCV =
0:00362. This kernel outperforms the GA kernel in medium-sized samples.

- Bayesian method is still competitive for small samples but shows slightly higher

variability in results.

Large Sample Size n 2 f200;400g :

- LN Kernel: Outperforms all others with dISEUCV as low as 0:00245 for n = 200
and dISEBays = 0:00230 for n = 400, demonstrating high accuracy and

stability.

- GA :performs reasonably well , but doesn�t achieve the lowest errors compared

to LN .

- GAM and RIG Kernels: Continue to show instability and higher variability.

- The Bayesian method achieves the most stable results for GA.

Key Observations:

* In most cases, the Bayesian bandwidth ĥbays is close to the optimal h� for theGA

kernel, although high variability is observed in small samples, particularly

for the LN and GAM kernels.

* For the GA kernel, ĥbay aligns closely with h�, while the LN and GAM kernels

exhibit greater variability, especially in small samples.

* The GA kernel with ĥbays shows very good performance at n = 25;
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the LN kernel gives the best result when n 2 f100; 200; 400g ; (with UCV or

Bayes) achieves the highest accuracy and best stability.

Associated Figures

The �gures illustrate the estimated density curves (using GA, GAM , and RIG

kernels) superimposed on the true Weibull density ( f3). Key insights:

Gamma Kernel (Figure 3.9):

- Closely matches the true density for small n, aligning with its low ISE values

in Table 3.6.

- Smoothness depends on ĥbays or ĥucv; Bayesian estimates may show tighter �ts.

Modi�ed Gamma (Figure 3.10):

- Higher variability, especially for small n, consistent with its large ISE� values.

- Potential over-smoothing or under-�tting due to unstable ĥbays.

RIG Kernel (Figure 3.11):

- Similar to GAM , with �uctuations and poorer �ts for small n.

- Slight improvement for larger n but still less stable than GA or LN .

Conclusion:

- The Bayesian approach is highly competitive, especially for small to medium

samples.
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- The GA kernel deliver the best results, depending on sample size and method

but he GAM and RIG kernels exhibit instability.

- The UCV method is the most stable and accurate in bandwidth estimation,

particularly for large n.

Comprehensive comparison of all models:

Asp ect UCV Method Bayesian M ethod

Small n = 25 High variab ility, p oor approxim ation provides greater stab ility,lowers ISE,

esp ecia lly for complex kernels (LN , RIG) m aking it m ore reliab le in such situations.

M oderate Can b e e¤ective w ith larger n, Robust smooth ing, generally closer to h�

n 2 f100; 200g improvem ent but still sensitive to kernel choice o¤ering stronger smooth ing .

Large n = 400 Good smooth ing, sm all ISE, still s lightly Excellent p erformance, m in im al

worse than Bayesian errors, stab le across kernels.

K ernel e¤ect LN and RIG requ ire carefu l tun ing ,m ay exhib it GA and GAM Provide h igh stab ility,reliab ility

p erformance �uctuations,less reliab le w ith small n. w ith all h selection m ethods, across a ll n:

Table 3.7: General Observations Across All Models.

Figure 3.1: Modi�ed Gamma Kernel Estimators of a Gamma Density (f1).
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Figure 3.2: Log-Normal Kernel Estimators of a Gamma Density (f1).

Figure 3.3: RIG Kernel Estimators of a Gamma Density (f1).
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Figure 3.4: Gamma Kernel Estimators of a Log-Normal Density (f2).

Figure 3.5: Modi�ed Gamma Kernel Estimators of a Log-Normal Density (f2).
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Figure 3.6: RIG Kernel Estimators of a Log-Normal Density (f2).

Figure 3.7: LN Kernel Estimators of a Log-Normal Density (f2).
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Figure 3.8: Gamma Kernel Estimators of a Weibull Density (f3).

Figure 3.9: RIG Kernel Estimators of a Weibull Density (f3).
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Figure 3.10: ISE vs Sample Size by Method and Kernel (Gamma Model).

Figure 3.11: ISE vs. Sample Size by Method (Log-normal Model).

Figure 3.12: ISE vs. Sample Size by Method and Kernel (Weibull Model).

44



Conclusion

This study focused on comparing classical methods, such as the Plug-in

and Cross-Validation approaches, with Bayesian methods for bandwidth

selection. The results indicated that classical methods face practical challenges,

such as the need for unavailable information or di¢ cult-to-verify assumptions, in

addition to instability when applied to small samples. In contrast, the Bayesian

approach provides a �exible framework that accounts for uncertainty; however,

it requires advanced computational resources, such as MCMC techniques, which

may pose limitations in some practical scenarios.based on these �ndings, the study

recommends a hybrid strategy: classical methods can be e¤ectively employed in

stable situations where the underlying assumptions hold, while the Bayesian ap-

proach is more suitable in complex cases or when data is limited. Furthermore, it

is recommended to develop new tools and techniques to improve computational ef-

�ciency and reduce the cost associated with Bayesian methods, thereby enhancing

estimation accuracy across a wider range of practical applications.
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ڲڪٌۘ
༇຀؇اܳٷٺ ݁ٺ݄؇ᄭᄥٔ.أޖ۳ݠت ଫଃ༚ ل۰ أَި ً؇ݿٺ༱ڎام اܳٺٷأࡗࡲ ݁أ؇݁ܭ اۊٺ٭؇ر ሒᇭ ل۰ واܳٴ؇ߌ߳ اఈ႙ၽܳݿ٭ܝ٭۰ اܳޚݠافݑ أداء ਐಸگ٭ࡗࡲ ᆇᅪٷ؇ اᄴᄟراݿ۰، ۱ڍه ሒᇭ
ّگٷ٭؇ت আॻ༟ اৎ৊أٺ݄ڎة ༠؇ݬ۰ ل۰، اܳٴ؇ߌ߳ اܳޚݠافݑ ّگڎم ྘ྲྀٷ݄؇ اܳݱ؞ଫଃة، اܳأ٭ٷ؇ت ؕ݁ اᄴᄟڢ۰ ሒᇭ ݪأژ ݆݁ ሒᇃ؇ّأ اఈ႙ၽܳݿ٭ܝ٭۰ اܳޚݠافݑ أن
ّڰިڢب اৎ৊ڎروݿ۰، ل۰ ިَ৙৑ا ඔ൹ً و݆݁ .ଫଊأ܋ ۰ਃಸ؇ۋފ ݁ިارد ሌᇿإ اۋٺ٭؇ۏ۳؇ رܾؗ اৎ৊ٺިݿޚ۰، ሌᇿإ اܳݱ؞ଫଃة اܳأ٭ٷ؇ت ሒᇭ أڣݯܭ ༇຀؇ਐ಻ MCMC،
ل۰ ً؇ߌ߳ ۊިارز݁٭؇ت ّޚިߌߵ ؕ݁ ༠؇ݬ۰ ᆇᅦܹ٭۰، ਲ਼ਦال؇ ොຬگݑ أن ஓ୷ܝ݆ ඔ൹لگٺ اܳޚݠ ඔ൹ً ؕ৵৩ৠا أن ሌᇿإ اᄴᄟراݿ۰ ଫଃ૰૜اܳٺگڎߌߵ.و أداء ሒᇭ ؇݁؇༚ َިاة

܋ڰ؇ءة. ଫ଒أ܋
اܳٺۜگݑ Ⴄ၍رܳި، ॷड़रި݁ ޗݠق اܳٴ؇ߌ߳ي، اዛዊܳھ اܳٺٷأࡗࡲ، ݁أ؇݁ܭ اۊٺ٭؇ر ،ᄭᄥٔ؇݄ٺৎ৊ا ଫଃ༚ ل۰ ިَ৙৑ا اৎ৊أగఒ޶، ଫଃ༚ اൠശܳ؇ڣ۰ ّگڎߌߵ اिऻء׫ոؼמ١: اڤոஈ࿦࿮ت

ا৕৑دراج. لگ۰ ޗݠ اৎ৊ٺگ؇ޗؕ،

Résumé
Dans cette étude, nous avons évalué les performances des méthodes classiques et bayésiennes pour la

sélection de la largeur de bande à l’aide de noyaux asymétriques. Les résultats ont montré que les mé-

thodes classiques présentent une faible précision avec de petits échantillons, tandis que les méthodes

bayésiennes, en particulier celles basées sur les techniques MCMC, ont donné de meilleurs résultats

pour des tailles d’échantillons petites à moyennes, malgré des besoins plus importants en ressources de

calcul. Parmi les noyaux étudiés, le noyau Gamma a démontré la meilleure performance en estimation.

L’étude suggère que la combinaison des approches classique et bayésienne pourrait offrir des avantages

pratiques, notamment avec le développement d’algorithmes bayésiens plus efficaces.

Mots-clés : Estimation de densité non paramétrique, noyaux asymétriques, sélection de bande passante,

approche bayésienne,méthodes de Monte Carlo, validation croisée, méthode plug-in.

Abstract
In this study, we evaluated the performance of classical and Bayesian methods for selecting the band-

width using asymmetric kernels.The results showed that classical methods suffer from low accuracy with

small samples, while Bayesian methods, especially those based on MCMC techniques, provided better

results for small to medium sample sizes, despite requiring greater computational resources.Among the

kernels studied,the Gamma kernel demonstrated the best estimation performance. The study suggests

that combining classical and Bayesian approaches could offer practical advantages, particularly with the

development of more efficient Bayesian algorithms.

Keywords: Nonparametric density estimation, asymmetric kernels, bandwidth selection, Bayesian ap-

proach,Monte Carlo methods, cross-validation, plug-in method.
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