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NOTATION

• R: set of real numbers.

• C : set of complex numbers.

• N: set of natural numbers.

• Iαa : Riemann-Liouville fractional Integral.

• Dα
a : Riemann-Liouville fractional derivative.

• C
a D

α: Caputo fractional derivative.

• G
a D

αf(x): Grünwald–Letnikov fractional derivative.

• ℜ(α): real part of a complex number α.

• L1([a, b]): set of functions that are integrable on the interval [a, b].

• Γ(·) : Gamma function.

• β(·, ·) : Beta function.

• Eα(·) : Mittag-Leffler function.

• L{·} : Laplace transform.

• (f ∗ g)(t) : Convolution product.

• sinh(·), cosh(·) : Hyperbolic functions.
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INTRODUCTION

M athematical modeling is an indispensable tool in the modern era, playing a crucial role

in understanding and analyzing real-world phenomena across fields such as physics, chemistry,

engineering, and biomedical sciences [7] [2]. Despite the common perception that medicine and

biology are distant from mathematics, mathematical modeling has provided critical insights

into many complex biomedical phenomena, including drug transport within the body, disease

spread, and tissue responses to physical stimuli.

Biomedical modeling is a vital branch of mathematical modeling that focuses on developing

accurate representations of biological and physiological processes. One of the earliest examples

is Daniel Bernoulli’s model on smallpox transmission (1760) [2], which was used to evaluate

the effectiveness of vaccination and the benefits of immunization, marking an early application

of mathematics in medicine.

As knowledge advanced and systems exhibiting nonlinear behaviors and memory-dependent

properties emerged, the need for more accurate and flexible mathematical tools became evident

[1] [5] [10]. Among the most significant developments in this direction is fractional calculus.

This field is a natural extension of classical calculus, offering a more suitable framework to

analyze systems with memory effects or cumulative dynamics.

The origin of fractional calculus dates back to the 17th century [14] [8] when Leibniz intro-

duced a notation for the n-th order derivative of a function:

dnf(x)

dxn

In 1695, de L’Hôpital asked the famous question: “What would the result be if n =
1

2
?” Leibniz

replied, “This is an apparent paradox from which one day useful consequences will be drawn.”

This remark is considered the first seed of fractional calculus.

These ideas were further developed beginning in 1730 with Euler, followed by contributions

from Lagrange (1772), Fourier, Riemann, Liouville, Grünwald, and others. For a detailed

historical progression, To explore the historical evolution of fractional models, refer to [18] [10]
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[8].

Leibniz’s prediction has been realized in recent decades, as fractional calculus has witnessed

significant growth due to its ability to model systems that cannot be accurately represented

using classical differential equations, such as anomalous diffusion, viscoelasticity, and pharma-

cokinetics. Among the pioneers who highlighted biomedical applications of this field is Bruce

J. West, particularly through his work titled “Fractional Calculus View of Complexity: To-

morrow’s Science” [19], which presented fractional models that describe biological processes

more realistically.

In most subsequent studies, fractional differential equations have shown superior perfor-

mance compared to classical models in terms of fitting experimental data and predicting the

behavior of biomedical systems [4] [11] [16].

This thesis aims to provide a comprehensive overview of modeling biomedical phenomena

using fractional differential equations, highlighting the advantages of these models over tradi-

tional ones. The work is structured into three main chapters:

• Chapter 1: Covers the theoretical foundations of fractional calculus, including key defi-

nitions and types of fractional derivatives, and introduces fractional differential equations

and solution methods.

• Chapter 2: Presents two biomedical models: one describing transdermal drug diffusion

using fractional partial differential equations, and another studying predator-prey dynam-

ics in the presence of an infectious disease using fractional ordinary differential equations,

along with mathematical analysis and comparison with classical models.

• Chapter 3: Focuses on numerical simulations using MATLAB, solving the two models

numerically and analyzing results through comparison between fractional and classical

models.

Finally, the thesis concludes with a general conclusion that summarizes the main findings and

discusses future research directions.
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CHAPTER 1

FUNDAMENTALS OF FRACTIONAL

CALCULUS

This chapter focuses on the mathematical foundations of fractional calculus, starting with the

basic definitions of fractional derivatives and integrals, followed by their properties and key

differences from traditional calculus, and concluding with numerical and analytical methods

for solving equations involving non-integer order derivatives.

1.1 Fractional Derivatives and Integrals

1.1.1 Riemann-Liouville Fractional Integrals and Fractional Deriva-

tives

1.1.1.1 Riemann-Liouville Fractional Integrals

Let f be a continuous function on the interval [a,b] . An indefinite integral of f is given by the

expression:

I1af(x) =

∫ x

a

f(t) dt, (1.1)

And for a second indefinite integral, can be expressed as:

I2af(x) =

∫ x

a

I1af(s) ds =

∫ x

a

(∫ s

a

f(t) dt

)
ds. (1.2)

In general, for any positive integer n, the n-fold integral is defined recursively as:

Ina f(x) =

∫ x

a

∫ tn−1

a

· · ·
∫ t2

a

∫ t1

a︸ ︷︷ ︸
n times

f(t0) dt0 dt1 · · · dtn−1. (1.3)

3



CHAPTER 1. FUNDAMENTALS OF FRACTIONAL CALCULUS

Ina f(x) =
1

(n− 1)!

∫ x

a

(x− s)n−1f(s) ds. (1.4)

Using the Gamma function, which generalizes factorials to real and complex orders, the frac-

tional integral of order α ∈ C with ℜ(α) > 0 is defined as:

Iαa f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt, (1.5)

.

Definition 1.1.1 Let f : [a, b] → R be a function in L1([a, b]). For any order α > 0, the

left-sided Riemann–Liouville fractional integral of f is defined by:

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt. (1.6)

Similarly, the right-sided Riemann–Liouville fractional integral is defined by:

Iαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t) dt. (1.7)

Remark 1.1.1 In most applications, we use the left-sided Riemann–Liouville fractional inte-

gral. However, similar properties hold for the right-sided version as well.

Property 1.1.1 Let f ∈ L1([a, b]), and let ℜ(α) > 0, ℜ(β) > 0, and n ∈ N. Then the

following properties hold:

i) Iαa+
(
Iβa+f

)
(x) = Iβa+ (Iαa+f) (x) = Iα+β

a+ f(x),

ii) lim
α→0+

Iαa+f(x) = f(x),

iii)
d

dx
(Iαa+f) (x) = Iα−1

a+ f(x), for ℜ(α) > 1.

For detailed proofs, see [9] and [18].

Example 1.1.1 We compute the Riemann–Liouville fractional integral of the function f(x) =

xn.

Iα0 x
n =

1

Γ(α)

∫ x

0

(x− t)α−1tn dt,

To evaluate this integral, we apply the change of variables y =
t

x
, under this substitution

dt = x dy, and the limits change from t = 0 and t = x to y = 0 and y = 1, respectively. The

4
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integral becomes:

Iα0 x
n =

1

Γ(α)

∫ x

0

(x− t)α−1tn dt

=
1

Γ(α)

∫ 1

0

(x− xy)α−1(xy)n · x dy

=
xn+α

Γ(α)

∫ 1

0

(1− y)α−1yn dy

=
xn+α

Γ(α)
B(α, n+ 1)

=
xn+α

Γ(α)
· Γ(α)Γ(n+ 1)

Γ(α + n+ 1)

=
Γ(n+ 1)

Γ(α + n+ 1)
xn+α.

1.1.1.2 Riemann–Liouville Fractional Derivatives

Definition 1.1.2 Let f ∈ L1([a, b]), and let n ∈ N such that n − 1 < α < n. The left-sided

and right-sided Riemann–Liouville fractional derivatives of order α are defined by:

(Dα
a+f)(x) =

dn

dxn

(
In−α
a+ f

)
(x), (Left-sided derivative) (1.8)

(Dα
b−f)(x) =

(
− dn

dxn

)(
In−α
b− f

)
(x). (Right-sided derivative) (1.9)

Example 1.1.2 Let f(x) = xm with m > −1, and g(x) = C, where C is a constant. For

0 < α < 1, the Riemann–Liouville fractional derivatives are given by:

(Dαf)(x) =
Γ(m+ 1)

Γ(m− α + 1)
xm−α,

(Dαg)(x) =
C

Γ(1− α)
x−α, (D1/2g)(x) =

C√
πx

.

This result shows that the Riemann–Liouville fractional derivative of a constant function is not

zero, but rather produces a function that is undefined at x = 0.

Property 1.1.2 Let f ∈ L1([a, b]), with ℜ(α) > 0, ℜ(β) > 0, and let n ∈ N. The following

properties of the Riemann–Liouville fractional derivative hold:

(i) Dα
a+(I

α
a+f)(x) = f(x),

(ii) Dβ
a+(I

α
a+f)(x) = Iα−β

a+ f(x),

(iii) Dn
a+(D

α
a+f)(x) = Dα+n

a+ f(x),

5
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(iv) D−α
a+ (Dα

a+f)(x) = f(x)−
n∑

i=1

[
Dα−i

a+ f(x)
∣∣
x=a

· (x− a)α−i

Γ(α− i+ 1)

]
,

(v) D−α
a+ (Dβ

a+f)(x) = Dβ−α
a+ f(x)−

n∑
i=1

[
Dβ−i

a+ f(x)
∣∣
x=a

· (x− a)α−i

Γ(α− i+ 1)

]
,

(vi) Dα
a+(D

n
a+f)(x) = Dα+n

a+ f(x)−
n−1∑
i=0

f (i)(a) · (x− a)i−α−n

Γ(i− α− n+ 1)
,

(vii) Dα
a+(D

β
a+f)(x) = Dα+β

a+ f(x)−
n∑

i=1

[
Dβ−i

a+ f(x)
∣∣
x=a

· (x− a)−α−i

Γ(1− α− i)

]
.

The detailed proofs of these identities can be found in [9], [18], and [1].

1.1.1.3 Laplace Transform of Riemann–Liouville Fractional Derivative

The general formula for the Laplace transform of the n-th derivative of a function is defined by

[1]:

L
{
f (n)(x)

}
(s) = snL{f(x)} (s)−

n−1∑
k=0

sn−k−1f (k)(0). (1.10)

• The Laplace transform of the Riemann–Liouville fractional integral is simple and clear

[9]. We have:

Iαf(x) =
1

Γ(α)

∫ x

0

(x− ξ)α−1f(ξ) dξ =
1

Γ(α)
xα−1 ∗ f(x), (1.11)

where ∗ denotes the convolution operator.

Applying the Laplace transform to the convolution of
1

Γ(α)
xα−1 and f(x), we obtain:

L{Iαf(x)} (s) = 1

sα
L{f(x)} (s). (1.12)

• The Laplace transform of the Riemann–Liouville fractional derivative is given by:

L{Dαf(x)} (s) = sαL{f(x)} (s)−
n−1∑
k=0

sk
(
Dα−k−1f(x)

∣∣
x=0

)
, (1.13)

where n− 1 < α < n.

This formula is derived by applying the Laplace transform to the expression of the Rie-

mann–Liouville derivative:

Dαf(x) =
dn

dxn

(
In−αf(x)

)
,

and using the result from equation (1.12) followed by the classical derivative rule (1.10).

6
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1.1.2 Caputo Fractional Derivatives

1.1.2.1 Definition and Basic Properties

Definition 1.1.3 The fractional derivative of a function f(x) in the Caputo sense, is defined

as follows, assuming that f(x) has n continuous and bounded derivatives:

CDα
a+f(x) = (In−α

a f (n)(x)) =
1

Γ(n− α)

∫ x

a

(x− t)n−α−1f (n)(t) dt,

( the left-sided Caputo fractional Derivative). α ∈ [n− 1, n[.

CDα
b−f(x) = (−1)n(In−α

b f (n)(x)) =
(−1)n

Γ(n− α)

∫ b

x

(t− x)n−α−1f (n)(t) dt.

( the right-sided Caputo fractional Derivative).

(1.14)

Theorem 1.1.1 (proof [9]) Let f be an absolutely continuous function with n-times differen-

tiable on a given domain.

Dα
a+f(x) =

CDα
a+f(x) +

n−1∑
j=0

(x− a)j−α

Γ(j − α + 1)
f (j)(a+),

Dα
b−f(x) =

CDα
b−f(x) +

n−1∑
j=0

(−1)j(b− x)j−α

Γ(j − α + 1)
f (j)(b−).

Property 1.1.3 Let α, β ∈ R+ with α ≥ β, and let f ∈ Cn+1 be a sufficiently smooth

function. Then, the following properties hold:

i) CDα
a I

α
a f(x) = f(x).

ii) lim
α→n−

CDα
a f(x) = f (n)(x).

iii) CDα
a f(x) = Dα

a f(x) if and only if Djf(a) = 0 ∀j ∈ {0, 1, . . . , n− 1}.

iv) Iαa
CDα

a f(x) = f(x) +
n−1∑
k=1

f (k)(a)

k!
(x− a)k.

The detailed proofs of these identities can be found in [1].

1.1.2.2 Laplace Transform of the Caputo Fractional Derivative

The Laplace transform of the Caputo fractional derivative is given by:

L
{
CDα

xf(x)
}
(s) = sαL{f(x)}(s)−

n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n. (1.15)

7
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proof 1.1.1 Taking the Laplace transform of Caputo fractional derivative:

L
{
CDα

xf(x)
}
(s) = L

{
1

Γ(n− α)

∫ x

0

(x− t)n−α−1f (n)(t) dt

}
= L

{(
xn−α−1

Γ(n− α)

)
∗ f (n)(x)

}
(Definition of convolution)

= L
{

xn−α−1

Γ(n− α)

}
· L
{
f (n)(x)

}
(Convolution theorem)

= sα−n ·

(
snL{f(x)} −

n−1∑
k=0

sn−k−1f (k)(0)

)

where L
{

xn−α−1

Γ(n− α)

}
= sα−n

L
{
CDα

xf(x)
}
(s) = sαL{f(x)} −

n−1∑
k=0

sα−k−1f (k)(0).

For a detailed proof, see [18].

1.1.3 Grünwald–Letnikov Fractional Derivatives and Integrals

The Grünwald-Letnikov fractional derivative is based on finite differences instead of integrals.

It is used to compute fractional derivatives numerically, making it suitable for computational

applications and discrete systems.

1.1.3.1 Definition and Basic Properties

Let f(x) be a continuous function. The first-order derivative of f(x) is defined according to

the standard definition as:
d

dx
f(x) = lim

h→0

f(x)− f(x− h)

h
(1.16)

We can construct higher order derivatives directly by higher order backward Difference of a

function f(x) of order n ∈ N0 of the form :

dn

dxn
f(x) = lim

h→0

1

hn

n∑
k=0

(−1)k
(
n

k

)
f(x− kh), (1.17)

To move from the classical derivative to the fractional derivative, we change the variable n ∈ N0

by the real or the complex number α where α > 0 or ℜ(α) > 0 .

GDα
xf(x) = lim

h→0

1

hα

∞∑
k=0

(−1)k
(
α

k

)
f(x− kh), α > 0 (1.18)

8
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where (
α

k

)
=

α(α− 1)(α− 2) . . . (α− k + 1)

k!
. (1.19)

[α
k
]
=

α(α + 1)(α + 2) . . . (α + k − 1)

k!
. (1.20)(

−α

k

)
=

−α(−α− 1)(−α− 2) . . . (−α− k + 1)

k!
= (−1)k

[α
k
]
.( According to [14]) (1.21)

Thus, the Grünwald-Letnikov fractional derivative is defined by the following expression:

G
a D

α
xf(x) = lim

h→0

1

hα

n∑
k=0

(−1)k
(
α

k

)
f(x− kh), α ∈ R+. (1.22)

In order to define the Grünwald-Letnikov integral, a negative (α) must be used over (1.18). We

find the following:

G
a D

−α
x f(x) = lim

h→0

1

hα

n∑
k=0

(−1)k
(
−α

k

)
f(x− kh). (1.23)

So the expression for the integral Grünwald-Letnikov is:

G
a D

−α
x f(x) = lim

h→0

1

hα

n∑
k=0

[α
k
]
f(x− kh) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt. (1.24)

If the function f(x) has (m + 1) continuous derivative, then

G
a D

−α
x f(x) =

m∑
k=0

f (k)(t− a)α+k

Γ(α + k + 1)
+

1

Γ(α + k + 1)

∫ x

a

(x− t)α+mf (m+1) dt, (1.25)

and

G
a D

α
xf(x) =

m∑
k=0

f (k)(t− a)k−α

Γ(k − α + 1)
+

1

Γ(k − α + 1)

∫ x

a

(x− t)m−αf (m+1) dt.( According to [14])

(1.26)

Remark 1.1.2 The appearance of integration in the two equations(1.22,1.24) was a result of

applying the Riemann sum

∫ b

a

f(x) dx = lim
n→∞

n−1∑
k=0

f(xk)∆xk.

.

Property 1.1.4 [18]For any ℜ(α) ∈ R, ℜ(β) < 0, and n ∈ N

i )
dn

dxn
(GDα

xf(x)) =
GDα+n

x f(x),

9
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ii )GDα
x (

dn

dxn
f(x)) =

dn

dxn
(GDα

xf(x))−
n−1∑
k=0

f (k)(a)(t− a)k−α−n

Γ(k − α− n+ 1)
,

iii ) G
a D

α
x (

G
a D

β
xf(x)) =

G
a D

α+β
x f(x)).

1.1.3.2 Laplace Transform of the Grünwald-Letnikov Fractional Derivative

Suppose that f has a Laplace transform L{f(s)} and a = 0, we have for 0 ≤ α < 1:

GDα
xf(x) =

f(0)x−α

Γ(1− α)
+

1

Γ(1− α)

∫ x

0

(x− t)−αf ′(t) dt, (1.27)

then

L{GDα
xf(x); s} =

f(0)

s1−α
+

1

s1−α
(sL{f(x)} − f(0)) = sαL{f(x)}. (1.28)

For a detailed proof, see [5]

1.1.4 Comparison of Fractional Derivatives

Property Riemann-Liouville
Derivative

Caputo Derivative Grünwald
Derivative

Mathematical
Definition

Based on historical
integral.

Based on integer
derivatives of
functions.

Based on numerical
approximation using
finite differences.

Initial
Conditions

Based on the
behavior of the
function over time.

Traditional initial
conditions like f(0).

Numerical initial
conditions, may
depend on the
difference between
values.

Applications Theoretical in
mathematics and
fractional calculus.

Practical in physics
and engineering
(dynamic systems).

Numerical in
simulations and
solving fractional
differential equations.

Complexity More complex from a
theoretical
perspective.

More practical and
suited for specific
applications.

Simpler from a
numerical
perspective, but less
accurate.

Table 1.1: Comparison of Riemann-Liouville, Caputo, and Grünwald Derivatives

1.2 Ordinary Fractional Differential Equations

1.2.1 Linear Fractional Differential Equations

Definition 1.2.1 Linear fractional differential equations are equations in which the derivatives

of the unknown function y(x) are of fractional order, and the equation is linear with respect to

10
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these derivatives. The equation does not contain any nonlinear functions of the unknown or its

derivatives. The general form of a linear fractional differential equation is :

a0D
αy(x) + a1D

α−1y(x) + · · ·+ any(x) = f(x). (1.29)

Where:

• Dα represents the fractional derivative of order α,

• a0, a1, . . . , an Constants or Functions that Vary with Time,

• f(x) is a given function.

Remark 1.2.1 The equation is considered **homogeneous** if the given function f(x) = 0.

If f(x) ̸= 0, then the equation is considered **non-homogeneous**.

1.2.2 Nonlinear Fractional Differential Equations

Definition 1.2.2 The nonlinear fractional differential equation is an equation that contains

fractional derivatives of the unknown function and is nonlinear due to the presence of nonlin-

ear functions of the unknown or its derivatives. The general form of the nonlinear fractional

differential equation.

a0D
αy(x) + a1D

α−1y(x) + · · ·+ any(x) + g(y(x), Dβy(x)) = f(x). (1.30)

Where:

• Dαy(x) represents the fractional derivative of order α.

• a0, a1, . . . , an are constants or functions that may vary with time.

• g(y(x), Dβy(x)) is a nonlinear function involving the unknown function y(x) or its deriva-

tives.

• f(x) is a given function.

Example 1.2.1

D
3
2y(x) +

1

2
D

5
2y(x) + ln y(x) = 0. (1.31)

This is a homogeneous nonlinear fractional differential equation because the logarithmic function

is nonlinear, and the second term of the equation equals zero.

11
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1.2.3 Cauchy Problem for Differential Equations of Fractional Order

Definition 1.2.3 [9] The Cauchy problem is defined by an equation of fractional order and an

initial condition as follows:

(IPV )

{
Dα

xy = f(x, y), ∀x ∈ [0,T], with n− 1 < α < n, n ∈ N
(Dα−k

x y)(0) = bk, k = 1, . . . , n.
(1.32)

Where bk are the initial values given at x = 0. The Riemann-Liouville derivative is undefined

when x = 0, so the initial condition is written as follows:(Dα−k
x y)(0) = lim

x→0
(Dα−k

x y)(x) .

The Caputo derivative does not have this drawback.

The Caputo derivative is the best choice when working with initial conditions because it is well

defined when x = 0.

Lemma 1.2.1 ([10]) Let 0 < α < 1, and let f : [0, T ] → R be a continuous function. A

function y is a solution to the Cauchy problem{
Dα

xy(x) = f(x, y(x)), ∀x ∈ [0, T ],

(Dα−k
x y)(0) = bk, k = 1, . . . , n− 1, where n− 1 < α < n, n ∈ N,

(1.33)

if and only if it is a solution to the Volterra integral equation

y(x) =
n∑

k=1

bkx
α−k

Γ(α− k + 1)
+

1

Γ(α)

∫ x

0

(x− t)α−1f(t, y(t)) dt. (1.34)

In particular, when 0 < α < 1, the equation reduces to:

y(x) = b0 +
1

Γ(α)

∫ x

0

(x− t)α−1f(t, y(t)) dt. (1.35)

1.2.4 Methods for Solving Ordinary Fractional Differential Equa-

tions:

1.2.4.1 Analytical Methods (Laplace Transform Method)

Solving fractional differential equations using the Laplace transform is an effective method

for dealing with equations involving derivatives of fractional order. This approach relies on

transforming the differential equation into an algebraic equation in the frequency domain using

the Laplace transform, and then returning to the original domain using the inverse transform.

Example 1.2.2 The equation we are working with is:

D0.75y(x) = 0, y(0) = y0. (1.36)

12
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We take the Laplace transform of both sides, using the Laplace transform of the Caputo deriva-

tive:

L{D0.75y(x)} = s0.75L{y(x)} − s−0.25y(0).

The equation becomes:

L{y(x)} =
y(0)

s1
.

Now, we apply the inverse Laplace transform to get the solution in the time domain x (Based

on the table in the annex).

y(x) = y(0).

Theorem 1.2.1 (proof [10]) Let n− 1 < α ≤ n (n ∈ N) and λ ∈ R. Then the functions

yj(x) = xα−jEα,α+1−j(λx
α) (j = 1, 2, . . . , n), (1.37)

produce the fundamental system of solutions to the following equation:

m∑
k=1

bk
(
Dαk

0+y
)
(x)+b0y(x) = 0 for x > 0, 0 < α1 <, . . . , < αm, n−1 < αm ≤ n, m, n ∈ N

(1.38)

Example 1.2.3

D
3
2y(x) = 0. (1.39)

we have 1 < α =
3

2
≤ 2 and b = λ, Thus, we need to calculate two solutions y1and y2.

y1 = x
1
2E 3

2
, 3
2
(bx

3
2 ), forj = 1. (1.40)

y2 = x− 1
2E 3

2
, 1
2
(bx

3
2 ), forj = 2. (1.41)

1.2.4.2 Numerical Methods (Finite Difference Method)

The finite difference method is a numerical technique used to solve fractional or classical differ-

ential equations. It transforms the differential equations into a system of algebraic equations,

where the derivatives are replaced by finite differences (i.e., the differences between the function

values at adjacent points in time or space).

• Types of Finite Differences:

We use the first two terms of the Taylor series at the point xj + h, near the point xj, to

obtain the forward difference, which is defined as:

y′(xj) ≈
y(xj + h)− y(xj)

h
. (1.42)

13
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By replacing h with −h, we obtain the backward difference:

y′(xj) ≈
y(xj)− y(xj − h)

h
. (1.43)

The third type is the central difference, which is usually more accurate than the forward or

backward differences. It is obtained by adding equations (1.42) and (1.43) and is defined

as:

y′(xj) ≈
y(xj + h)− y(xj − h)

2h
. (1.44)

• Solution Steps:

– Discretization of the domain: The continuous domain is divided into a grid or

mesh.

– Approximation of the fractional derivatives: Use Grünwald-Letnikov or Ca-

puto definitions to approximate the fractional derivatives.

– Solving the system of equations: Solve the resulting algebraic system using

numerical solvers such as Gaussian elimination or LU decomposition.

Example 1.2.4 Solve the homogeneous fractional differential equation:

D
7
2y(x) + py(x) = 0, where p is a constant. (1.45)

with initial conditions: y(0) = 1, y′(0) = 0.

• Discretizing the domain:

We divide the domain [0, L] into N points, where:

L = 1, N = 10, 0 ≤ x ≤ 1,

xn = nh, xn−k = (n− k)h, where h =
L

N
= 0.1

Thus, we obtain the points:

x0, x1, x2, . . . , x10.

• Approximating the fractional derivative using finite differences:

We use the Grünwald-Letnikov approximation for the fractional derivative, given by:

D
7
2
x y(xn) ≈

1

h7/2

n∑
k=0

(−1)k
(
7/2

k

)
y(xn − kh).

We denote the Grünwald weights by wk, where:

wk = (−1)k
(
7/2

k

)
= (−1)k

Γ(9/2)

Γ(k + 1)Γ(9/2− k)
. (1.46)
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We compute the Grünwald weights:

w0, w1, w2, w3, . . .

Substituting equation (1.46) into the fractional differential equation, we get:

yn = − 1

ph7/2

n∑
k=1

wkyn−k. (1.47)

Based on the recurrence formula (1.47), we compute the values of yn from x0 to x10. We

can solve the resulting system using numerical methods such as Gaussian elimination or

LU decomposition to find the values of y1, y2, . . . , y10.

1.3 Fractional Partial Differential Equations

A general fractional partial differential equation can be represented as:

Dα
t u(x, t) = L(u(x, t)), (1.48)

where:

• Dα
t is the fractional derivative with respect to time of order α.

• L(x, t) is a differential operator.

1.3.1 Examples of Fractional Partial Differential Equations

Many well known fractional partial differential equations exist, such as the fractional diffusion

equation, fractional wave equation, heat equation, fractional Laplace equation, and others.

Below, we present two examples.

• Fractional Diffusion Equation

The general form of a fractional diffusion equation is:

Dα
t u(x, t) = kDβ

xu(x, t). (1.49)

where:

– Dα
t is the fractional derivative in time t of order α, with 0 < α ≤ 1.

– Dβ
x is the fractional derivative in space x of order β, with 0 < β ≤ 2.

– k is a constant that relates the space and time derivatives, often interpreted as a

diffusion coefficient.
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It is used to model non-traditional diffusion processes[10], such as diffusion in heteroge-

neous media, like water flow in rocks or molecule transport in biological tissues.

• Fractional Wave Equation

In fractional wave equations, fractional temporal or spatial derivatives are used. The

general form is written as follows:

Dα
t u(x, t) = c2Dβ

xu(x, t), 0 < α, β ≤ 2 0 < x < l, t > 0 (1.50)

where:

– Dα
t u(x, t) is the fractional temporal derivative of order α.

– Dβ
xu(x, t) is the fractional spatial derivative of order β.

– c is the speed of the wave.

Fractional wave equations are used in many fields that require modeling waves in non-

traditional media, such as dispersive media, systems with memory[10], and waves in

biological tissues.

1.3.2 Initial and Boundary Conditions

• Initial Condition The initial condition specifies the state of the system at time t = 0.

It is typically given as:

u(x, 0) = f(x), 0 ≤ x ≤ l. (1.51)

• Boundary Conditions Boundary conditions control the values that the solution must

satisfy at the spatial domain boundaries. There are different types of boundary conditions:

– Dirichlet Condition Specifies the value of u at the boundaries:

u(0, t) = 0, u(l, t) = 0.

– Neumann Condition Specifies the derivative of u at the boundaries:

∂u

∂x

∣∣∣
x=0

= 0.

– Robin Condition A combination of Dirichlet and Neumann conditions:

au+ b
∂u

∂x
= g(t).

These conditions play a crucial role in solving partial differential equations, ensuring

well-posedness and uniqueness of solutions.
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the fractional partial differential equations can be solved using several of the same methods

mentioned earlier for solving fractional-order differential equations. These methods include the

Laplace transform and Fourier transform, as well as solutions using the Mittag-Leffler function

in analytical approaches. Additionally, numerical solutions can be obtained using the finite

difference method. (For exploring the solution methods [1]).
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CHAPTER 2

FRACTIONAL BIOMEDICAL MODELS

2.1 Overview of Mathematical Modeling

Mathematical modeling is the process of representing a real-world phenomenon, influenced by

various factors, into a mathematical relationship. It is a fundamental tool used in a wide range

of fields (such as physics, engineering, and biology). This representation is usually expressed

through equations or functions. Mathematical modeling helps simplify complex systems, mak-

ing it easier to understand and analyze their behavior, predict their results, and optimize their

performance using available information. Modeling follows a systematic process that involves

organized steps [13][17], beginning with the following:

• Identifying and understanding the real-world Phenomenon.

• Selecting important factors and variables, and excluding less relevant details.

• Formulating mathematical equations:

– Differential Equations: If the system is dynamic and time-dependent.

– Algebraic Equations: If the system is static.

– Probabilistic Equations: If there is uncertainty or randomness in the phenomenon.

• Finding analytical or numerical solutions

• Validating the model by comparing its results with real data or scientific

experiments.

• Using the model for prediction or analyzing the impact of varying factors.
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Example 2.1.1 Simple Mathematical Modeling of a Physical Phenomenon – Ohm’s Law

V = I ·R.

Variables:

• V : Voltage (in volts).

• I: Electric current (in amperes).

• R: Resistance (in ohms).

This model represents a simple linear relationship between the three variables. It can be used

to predict the behavior of the electrical system under certain conditions.

Mathematical modeling is an important tool in many sciences, including biomedical science,

as it helps in studying biomedical processes more accurately and understanding the interac-

tions between different factors in the biomedical system. Mathematical modeling in biomedical

initially relied on ordinary differential equations (ODEs). However, as science advanced, the

limitations of classical ODEs which assume local and memory less dynamics became apparent

for complex biomedical systems. Many phenomena, such as drug diffusion or tumor growth

often exhibit delayed responses, or non-homogeneous temporal behaviors. Fractional calcu-

lus addresses these challenges by introducing non-integer derivatives, enabling more accurate

modeling of memory effects and non-local interactions

Among these models that have evolved in biomedical, we can mention:

• The disease spread model.

• The blood flow model within blood vessels.

• The tissue and cancer tumor growth model.

In this thesis, we will focus on the following two models:

• Drug diffusion model across the skin.

• A Predator–Prey Model with Infectious Disease in the Prey Population.
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2.2 Drug Diffusion Model Across the Skin

2.2.1 Biological Overview

Transdermal drug delivery is an advanced technique that offers an effective and safe alternative

to traditional methods such as oral pills and injections. This method relies on the gradual

absorption of the drug through the skin until it reaches the bloodstream, helping to maintain

a stable drug concentration and reduce side effects.

However, the penetration of drugs through human skin is a complex and intricate process

due to multiple layers that act as barriers to drug entry. The first barrier is the stratum

corneum, the outermost layer composed of dead cells surrounded by a lipid matrix, making it

a strong barrier that prevents most drugs from passing through, especially hydrophilic ones.

Beneath it lies the epidermis, a living layer without blood vessels that plays a role in regulating

the passage of drug compounds, particularly lipophilic ones. Finally, the dermis is the deepest

layer, containing blood vessels responsible for drug absorption and transport into systemic

circulation [7].

This technique is used to deliver a variety of drugs, such as nicotine patches to aid in

smoking cessation and morphine patches for chronic pain relief. The success of transdermal

drug absorption depends on the drug’s physicochemical properties, such as its lipid solubility

and molecular size, as well as the interaction of its components with the different skin layers

[15].

See Fig 2.1, which illustrates the main structural components of human skin [4].

Figure 2.1: Illustration of the layers of human skin
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2.2.2 The Classical Model

The classical model of drug diffusion through the skin can be mathematically represented using

Fick’s second law [4], which is expressed as follows:

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, (2.1)

where:

• c(x, t) is the concentration of the drug at position x and time t.

• D is the constant diffusion coefficient.

• x is the distance across the skin layers.

This model assumes linear diffusion without considering memory effects or nonlinear influences.

The model is expressed in Figure 2.2, where the skin is considered as a homogeneous layer with a

thickness h, located between the donor and the receiver, and it satisfies the following conditions:

c(0, t) = c0, c(h, t) = 0, ∀t ∈ R∗
+. (boundary conditions.) (2.2)

c(x, 0) = 0, for 0 ≤ x ≤ h. (initial condition.) (2.3)

Figure 2.2: Drug transport in a homogeneous skin layer: schematic view
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We solve the classical model (2.1) using the method of separation of variables [3] to obtain

the following concentration expression:

c(x, t) = c0

(
1− x

h
− 2

π

∞∑
n=1

1

n
sin
(nπx

h

)
exp

(
−n2π2t

td

))
, (2.4)

where td =
h2

D
is the characteristic time of diffusion.

The drug concentration obtained by solving the model contributes to determining the drug

flux value j(t) and the total dissolved quantity q(t), based on Fick’s first law, as shown in the

following equations:

j(t) = −D
∂c(x, t)

∂x

∣∣∣∣
x=h

= Dc0

(
1

h
− 2π

h2

∞∑
n=1

(−1)n exp

(
−n2π2t

td

))
. (2.5)

q(t) = A

∫ t

0

j(s)ds = Ac0h

(
t

td
− 1

6
− 2

π2

∞∑
n=1

1

n2
exp

(
−n2π2t

td

))
. (2.6)

Where, A is the area across the section of the layer through which the drug is transferred.

The equations are transformed into the Laplace domain to simplify the complex differential

equations involving time.

C(x, s) = L[c(x, t)], J(x, s) = L[j(x, t)], Q(x, s) = L[q(x, t)].

C(x, s) =
c0 sinh

(√
std
(
1− x

h

))
s sinh

(√
std
) .

From this solution, the flux J(x, s) and the total quantity of solute Q(x, s) [3], can be expressed

as :

J(x, s) = D
∂C(x, s)

∂x

∣∣∣∣
x=h

= D
c0
√
std

sh sinh
√
std

.

Q(x, s) =
AJ(x, s)

s
=

ADc0
s2h

√
std
p

sinh

(√
std
p

)
.

This transformation facilitates numerical handling and improves the accuracy of the results

when calculating the drug flux and the total amount of drug, in order to avoid the accumulation

of errors.

This model provides a good starting point for understanding the general principles of drug

transport through the skin. It is one of the simplest mathematical models used to study drug

diffusion across the skin. However, this model is an oversimplification as it does not consider

the skin’s multilayered structure. To overcome the limitations imposed by this model, the
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skin can be considered as a multilayered structure, where it is divided into three main layers:

the stratum corneum, the epidermis, and the dermis. A specific diffusion coefficient (Di) and

partition coefficient (ki) are assigned to each layer, allowing for a more accurate description of

the transport process across the skin. The flux across each layer can be expressed as:

Ji = −Di
∂c

∂x
,

where:

• Ji is the flux in the i-th layer.

• Di is the diffusion coefficient for that layer.

•
∂c

∂x
is the concentration gradient in the layer.

For a more detailed description of the latter model [3].

2.2.3 The Fractional-Order Model

Although the classical model that divides the skin into layers represents an improvement over

the initial model, it still relies on linear assumptions that may be insufficient in certain cases.

In such situations, fractional models based on fractional differential equations (as discussed

in Chapter One) can be used to describe drug transport through the skin, Because they take

into account nonlinear phenomena and complex interactions between drug molecules and skin

tissues.

We assume the presence of a homogeneous layer with thickness h, through which the drug

spreads with concentration c(x, t), which varies with time t and spatial location x ∈ [0, h]. The

traditional time derivative is replaced by the Caputo fractional derivative of order α ∈ (0, 1)

[4], yielding the following fractional diffusion equation:

CDα
t c(x, t) = D

∂2c(x, t)

∂x2
, 0 < x < h, t > 0, (2.7)

where:

• CDα
t the Caputo fractional derivative of order α.

• D is the diffusion coefficient.

• c(x, t) is the concentration of the drug at position x and time t.

The same initial and boundary conditions as in the classical model (see Eqs (2.1), (2.2), and

(2.3)) are applied to complete the fractional model.
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To solve the model represented by the fractional differential equations, we will use one of

the methods discussed in Chapter 1. In this case, the Laplace transform will be employed,

as it is considered one of the powerful analytical tools for solving complex fractional diffusion

equations.

We apply the Laplace transform to the equation (2.7), using the standard property of the

Caputo fractional derivative (1.15):

L
{
CDα

t c(x, t)
}
= sαL{c(x, t)} − sα−1c(x, 0). (2.8)

Since the initial condition is c(x, 0) = 0, the equation becomes:

sαL{c(x, t)} = D
∂2L{c(x, t)}

∂x2
. (2.9)

This is a second-order linear homogeneous differential equation with constant coefficients:

∂2L{c(x, t)}
∂x2

− sα

D
L{c(x, t)} = 0. (2.10)

The general solution is of the form:

L{c(x, t)} = A(s)eλx +B(s)e−λx, (2.11)

where λ =

√
sα

D
. At x = 0, we have:

L{c(0, t)} =
c0
s

⇒ B(s) + A(s) =
c0
s
. (2.12)

At x = h, the condition is:

L{c(h, t)} = 0 ⇒ A(s)eλh +B(s)e−λh = 0. (2.13)

From this, we deduce:

A(s) = −B(s)e−2λh. (2.14)

By substituting A(s) and B(s) and simplifies, we get:

L{c(x, t)} = B(s)
(
eλ(x−h) − e−λ(x+h)

)
.

The hyperbolic sine function sinh(x) can be expressed in terms of the exponential function

as follows:

sinh(x) =
ex − e−x

2
. (2.15)

Therefore, the solution becomes:
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L{c(x, t)} =
c0
s
·
sinh

(√
sα

D
(h− x)

)
sinh

(√
sα

D
h
) . (2.16)

The inverse Laplace transform of this expression leads to an exact solution in the time domain,

which resembles the classical solution but replaces the exponential function with the Mittag-

Leffler function [4]:

c(x, t) = c0

(
1− x

h

)
− 2c0

π

∞∑
n=1

1

n
sin
(nπx

h

)
Eα

(
−n2π2D

h2
tα
)
. (2.17)

This solution generalizes the classical diffusion result (recovered when α = 1), and captures

memory effects and anomalous transport behavior observed in complex or biological media.

2.2.4 Comparison between the classical model and the fractional

model

• Memory Property and Lag Time Representation

Classical: Does not account for past temporal effects and requires the explicit inclusion

of lag time.

Fractional: Incorporates the memory property, where the current state depends on the

entire past history, and the lag time emerges naturally [7].

• Diffusion Pattern

Classical: Describes normal (Gaussian) diffusion, where the spreading distance increases

with the square root of time.

Fractional: Describes anomalous (non-Gaussian) diffusion, often exhibiting subdiffusive

behavior that can generate non-Gaussian curves accurately reflecting the experimental

behavior of the drug [3] [4].

• Accuracy of Biological Representation

Classical: Assumes ideal and instantaneous diffusion behavior, which may not accurately

reflect the complex physiological reality.

Fractional: Represents the non instantaneous interactions between the drug and skin

tissues [15], capturing the complex temporal nature of absorption.
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2.3 A Predator–Prey Model with Infectious Disease in

the Prey Population

2.3.1 Biological Overview

The predator-prey relationship is one of the most extensively studied biological interactions.

When an element of epidemic infection is introduced into this relationship particularly among

members of the prey population the population dynamics become more complex. When prey are

infected with a contagious disease, the population typically splits into two categories: healthy

(susceptible) prey and infected prey. It is often assumed that transmission occurs through

direct contact or via the environment. This change in the composition of the prey population

is reflected in:

1.Prey Population

• Decrease in Prey Population: The spread of a lethal disease among prey can lead to

a rapid decline in their numbers.

• Behavioral Changes: Some diseases weaken the prey or slow their movement, making

them easier to catch.

• Natural Selection: Over time, only prey with stronger immune resistance may survive,

leading to changes in the genetic makeup of the population.

2.Predators Population

• Food Scarcity: The decline in prey populations due to disease may result in starvation

among predators, or force them to switch to alternative prey species.

• Risk of Infection Transmission: Some diseases can be transmitted from prey to

predators, posing a health threat to the predators .

• Change in Hunting Strategy: Predators may prefer to hunt infected prey due to ease

of capture.
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Figure 2.3: A simplified model of predator–prey interaction with disease

2.3.2 The Classical Model

To formulate the classical model (using classical differential equations), the following assump-

tions [6] must be considered:

• The prey is divided into two categories: infected prey I(t) and healthy prey S(t) become

infected upon contact with infected prey.

• The healthy prey grows according to a logistic model characterized by an intrinsic growth

rate r and an environmental carrying capacity k, which represents the maximum popula-

tion size that the environment can sustain.

• The infected prey die due to the disease (their recovery is not taken into account).

• The predators Y (t) do not rely entirely on these prey.

• All prey, both susceptible and infected, serve as food for the predators, but it is easier for

the predators to catch the infected prey.

Based on the previous assumptions, we formulate the following model [6]:

dS

dt
= r1S

(
1− S + I

k1

)
− λSI − p1S

2Y

1 + S + θI
,

dI

dt
= λSI − p2I

2Y

1 + S + θI
− γI,

dY

dt
= r2Y

(
1− Y

k2 + S +mI

)
+ σ1

(
p1S

2Y

1 + S + θI

)
− σ2

(
p2I

2Y

1 + S + θI

)
,

(2.18)

S(0) ≥ 0, I(0) ≥ 0, Y (0) ≥ 0. (initial conditions) (2.19)
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where

• r1, r2: Per capita growth rate of the prey and predators,respectively.

• k1, k2:The maximum capacity of the environment to support the number of prey and

predators,respectively.

• p1, p2: Maximum rates of consumption of susceptible and infected prey,respectively.

• θ: Predator’s rate of preference for the infected.

• λ : The rate of infection spread from infected prey to susceptible prey.

• γ: Per capita mortality rate of infected prey due to the disease.

• m : The rate of the environment’s ability to support predators due to their consumption

of infected prey.

• σ1, σ2 : The rate of predator’s response to the type of prey consumed (infected or healthy).

Interpretation of the Model Terms

1- Equation of the Healthy Prey (S)

dS

dt
= r1S

(
1− S + I

k1

)
︸ ︷︷ ︸
Logistic growth of S

− λSI︸︷︷︸
Infection transmission

− p1S
2Y

1 + S + θI︸ ︷︷ ︸
Y-to-S predation rate

. (2.20)

2- Equation of the Infected Prey (I)

dI

dt
= λSI︸︷︷︸

Infection transmission

− p2I
2Y

1 + S + θI︸ ︷︷ ︸
Y-to-I predation rate

− γI︸︷︷︸
Infected prey mortality

. (2.21)

3- Equation of the Predators (Y)

dY

dt
= r2Y

(
1− Y

k2 + S +mI

)
︸ ︷︷ ︸

Logistic growth of Y

+ σ1

(
p1S

2Y

1 + S + θI

)
︸ ︷︷ ︸

The positive effects of predation on S

− σ2

(
p2I

2Y

1 + S + θI

)
︸ ︷︷ ︸

The negative effects of predation on I

.

(2.22)

Existence and Uniqueness of the Solution

To establish the existence and uniqueness of a solution to the system of differential equations

(2.18) with the initial conditions (2.19), we invoke the classical Picard–Lindelöf theorem. This

theorem requires the following two conditions to be satisfied:
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• Continuity of the right-hand side functions: The functions
dS

dt
,
dI

dt
, and

dY

dt
are con-

tinuous in their domain. Since all expressions are composed of polynomials and rational

functions with non-zero denominators in the biologically meaningful domain, continuity

is ensured.

• Lipschitz continuity in the state variables S, I, and Y : The partial derivatives of

the right-hand side functions with respect to S, I, and Y are bounded in any closed and

bounded subset of the domain

D = {(S, I, Y ) ∈ R3 | S ≥ 0, I ≥ 0, Y ≥ 0},

which is the biologically relevant region.

Therefore, by the Picard–Lindelöf theorem, the system (2.18) admits a unique local solution

in a neighborhood of the initial time within the domain D.

Reference [16] provides a detailed analysis of the existence and uniqueness proof for an equiv-

alent model.

The tight nonlinear coupling of variables in the system impedes analytical tractability, as

the equations cannot be decoupled. The presence of multiplicative interaction terms (e.g.SI,

I2Y ) renders explicit solutions infeasible, necessitating numerical, which are presented in Chap-

ter 3.

2.3.3 The Fractional-Order Model

Traditional computation is less effective in describing complex environmental phenomena. Note

that all the models mentioned above are in the form of a system of first-order differential

equations, meaning that the growth rate of each population group depends only on the current

state. In reality, the growth rate also depends on all past states (known as memory effects).

To incorporate such effects, researchers apply a system of fractional differential equations [16],

where the order of the derivative indicates the memory rate, as follows:

CDα
t S(t) = rα1S

(
1− S + I

k1

)
− λαSI − pα1S

2Y

1 + S + θI
,

CDα
t I(t) = λαSI − pα2 I

2Y

1 + S + θI
− γαI,

CDα
t Y (t) = rα2Y

(
1− Y

k2 + S +mI

)
+ σ1

pα1S
2Y

1 + S + θI
− σ2

pα2 I
2Y

1 + S + θI
.

(2.23)

where α ∈ [0, 1].

Since time is associated with the order of the fractional derivative α , it is necessary to adjust

all time dependent parameters to be consistent with this change. To maintain dimensional
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consistency in the equations, the time dependent parameters are rescaled by raising them to

the power of α.

To study the existence and uniqueness of the system (2.23), we define the region Ω × [0, T ],

where

Ω =
{
(S, I, Y ) ∈ R3

∣∣ max{|S|, |I|, |Y |} ≤ M
}
, T < ∞,

and M is sufficiently large.

Theorem 2.3.1 For each X0 = (S0I0Y0) ∈ Ω, there exist sa unique solution X(t) of the Caputo

fractional differential system (2.23) with the initial condition X0 ∈ Ω, which is defined for all

t ≥ 0.

Detailed proof in the reference [11].

2.3.4 Comparison between the classical model and the fractional

model

• Infection transmission: The classical model uses a simple term to represent infection

transmission, namely λSI, and assumes instantaneous and homogeneous interaction be-

tween individuals. This representation does not account for factors such as exposure

duration or the evolution of immune response [6]. In contrast, fractional models allow for

the representation of this time dependent cumulative behavior.

• Time delay: When a healthy prey comes into contact with an infected one, transmission

does not necessarily occur immediately there may be an incubation period before symp-

toms appear. Similarly, a predator does not benefit directly from consuming prey; rather,

the effects on its survival and reproduction manifest after a delay. This time delay is chal-

lenging to represent in classical models [2], whereas the fractional model automatically

captures it through the structure of its derivatives.

• Complex predator-prey interactions: The classical model cannot represent the grad-

ual shift from preying on healthy prey to targeting infected prey (due to their weakened

state and easier capture). In contrast, fractional models are inherently suited to this

transition.

• Disease-induced mortality rate : The classical model assumes that the mortality

rate of infected prey is represented by a constant term γI, applied instantaneously and

uniformly to all infected individuals [11]. In contrast, the fractional-order model accounts

for the duration of infection and is capable of incorporating the cumulative effect of the

infection period into the system dynamics.
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APPLICATIONS

To compare the behavior of the classical and fractional-order models discussed in the previous

chapter and verify the flexibility of fractional models in representing complex biomedical phe-

nomena, we conduct numerical simulations using the finite difference method for both classical

and fractional models.

3.1 First Model (Diffusion of 4-Cyanophenol through

Human Skin )

To evaluate the accuracy of fractional order models compared to classical models of transdermal

drug diffusion, we rely on experimental data reported by Pirot et al (1997).

3.1.1 Experiment

A saturated aqueous solution of 4-cyanophenol was applied onto a patch, which was then placed

on the skin surface for 15 minutes. After exposure, the stratum corneum (the outer layer of

the skin) was gradually removed using 20 adhesive strips, each corresponding to a specific

depth within the skin. The concentration of 4-cyanophenol in each stripped layer was quantita-

tively measured using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spec-

troscopy, a non-destructive and sensitive technique for detecting chemical compounds within

biological tissues. The results of this experiment are shown as discrete points in Fig 3.1, and

serve as a reference for comparing the accuracy of classical and fractional diffusion models.
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The conditions applied in the experiment are:
C(0, t) = KCveh, t > 0.

C(h, t) = 0, t > 0.

C(x, 0) = 0, 0 ≤ x ≤ L.

where

• cveh : the concentration of 4-cyanophenol solution in the vehicle.

• K: Distribution coefficient between the stratum corneum and the vehicle.

For the Fickian model( classical model), we represent the well-known solution (2.4 )using the

following inputs:

• cveh = 196mmol L−1.

• t = 900 second.

• D = 9.90× 10−5 s−1.

• K = 7.4.

These values were chosen in accordance with typical experimental conditions [3]. Based on

these parameters, we plotted the continuous curve in Fig 3.1, which represents the solution

concentration as a function of the relative position.

As for the dashed curve in Fig 3.1, it represents the solution concentration values from the

fractional model (2.17) using a simplified approximation of the Mittag-Leffler function with the

fractional order set to α = 0.9.

Eα(−x) ≈ exp

(
− xα

Γ(1 + α)

)
. (3.1)

This is done to accelerate numerical computations and simplify the model analysis.

This approximation provides acceptable results for moderate values of x and is widely used in

numerical applications of fractional models.

3.1.2 Results and Discussion

Fig 3.1 It can be observed that the classical model (the continuous curve ) almost does not

intersect any experimental data points and decreases more rapidly, which causes it to deviate

from the experimental data, especially in the middle of the domain.

In contrast, the fractional model (the dashed curve) intersects the experimental data at five

points and follows their general trend, demonstrating a higher ability to represent the slow
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diffusion of the compound within the skin.

This reflects the presence of microscopic barriers in the skin, anomalous diffusion, and memory

effects.

Figure 3.1: Comparison between experimental data and model simulations

Figure 3.2: Effect of varying the fractional order α on drug concentration in the skin
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To study the effect of the fractional derivative on drug diffusion within the skin, several

different values of the fractional order α=[1.0 0.9 0.7 0.5 0.3] were used.

Fig 3.2 above shows that lower values of α (such as 0.3 and 0.5) lead to a decrease in the

compound concentration in the deeper layers of the skin, indicating a slowdown in the diffusion

of the substance within the tissue. This behavior reflects the nature of anomalous diffusion,

where molecules do not move freely as in the classical model, but instead their movement is

constrained by memory effects and temporal accumulation.

The flexibility in choosing α allows researchers to adjust the model to match different skin

conditions, such as dry, or lipid-rich skin, thus enabling the creation of a customized model

for a specific biological case. This concept can also be extended to represent temporal changes

in skin properties, such as those caused by aging or disease, through the dynamic adjustment

of the α value over time or with changing physiological states. Finally, in situations where

experimental data is limited or unavailable, α can be used as a tunable parameter, adjusted

based on known material or environmental properties. This provides the researcher with a

predictive and flexible tool to accurately describe diffusion behavior within the skin.

3.2 Second Model (Interactions between Tilapia Fish

and Pelicans

3.2.1 Numerical Solution

For the numerical study of Model ( 2.18), we approximate the derivative using forward differ-

ences, which are defined by the following expression:

dy

dt

∣∣∣∣
t=tn

≈ yn+1 − yn
∆t

. (3.2)

Let yn and yn+1 denote the values of y at discrete time points tn and tn+1 = tn+∆t, respectively,

where ∆t is the time step size (discretization interval).

By substituting the forward finite difference approximation, we obtain:

Sn+1 = Sn +∆t

[
r1Sn

(
1− Sn + In

k1

)
− λSnIn −

p1S
2
nYn

1 + Sn + θIn

]
,

In+1 = In +∆t

[
λSnIn −

p2I
2
nYn

1 + Sn + θIn
− γIn

]
,

Yn+1 = Yn +∆t

[
r2Yn

(
1− Yn

k2 + Sn +mIn

)
+

σ1p1S
2
nYn

1 + Sn + θIn
− σ2p2I

2
nYn

1 + Sn + θIn

]
.

(3.3)
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In the fractional case, the Caputo derivative is approximated by the L1 method at tn

CDα
t f(tn) ≈

1

Γ(2− α)

n−1∑
j=0

1

∆tα
[f(tj+1)− f(tj)]

[
(n− j)1−α − (n− j − 1)1−α

]
.

For each of S(t), I(t), and Y(t), we approximate their derivatives using the previously mentioned

L1 method, thus obtaining a discretized system:

1

Γ(2− α)

n−1∑
j=0

Sj+1 − Sj

∆tα
wn−j = rα1Sn

(
1− Sn + In

k1

)
− λαSnIn −

pα1S
2
nYn

1 + Sn + θIn
,

1

Γ(2− α)

n−1∑
j=0

Ij+1 − Ij
∆tα

wn−j = λαSnIn −
pα2 I

2
nYn

1 + Sn + θIn
− γαIn,

1

Γ(2− α)

n−1∑
j=0

Yj+1 − Yj

∆tα
wn−j = rα2Yn

(
1− Yn

k2 + Sn +mIn

)
+ σ1

pα1S
2
nYn

1 + Sn + θIn
− σ2

pα2 I
2
nYn

1 + Sn + θIn
,

(3.4)

where the weights are given by:

wn−j = (n− j)1−α − (n− j − 1)1−α.

The resulting nonlinear system is solved numerically employing the Newton-Raphson method.

We selected parameter values based on ecological studies of tilapia and pelicans in the Salton

Sea,as reported in reference [6].(See tables below )

To display the results of the fractional model behavior and the classical model, we solve both

Parameter Value

r1 1.8

r2 0.0015

k1 50

k2 20

p1 0.05

p2 0.05

σ1 0.35

σ2 0.15

γ 0.24

θ 6

m 0.25

λ 0.06

Table 3.1: Parameter Values Used in the Model

systems (3.3) and (3.4) in MATLAB using the previous variable values and initial conditions

((S,I,Y)=(10,3.5,1.5)).
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3.2.2 Results and Discussion

Figure 3.3: Comparison of traditional and fractional models

Figure 3.3 illustrates the behavioral dynamics of susceptible prey, infected prey, and predators

under both classical (integer-order) and fractional-order derivatives,where we observe:

• Panel A: In the classical model, the number of healthy prey decreases sharply due to

the immediate interaction with infection and predation, with persistent oscillations until

reaching a stable state. In contrast, in the fractional model, the change in the number

of healthy individuals occurs more slowly and smoothly, resulting from the temporal

accumulation of infection and predation history, such as the virus incubation periods and

the behavioral adaptation of prey by avoiding areas where the disease is widespread.

• Panel B: The classical model shows an initial exponential increase in the number of

infected prey, indicating rapid disease transmission, followed by a sudden collapse in the

population due to predation pressure and infection-induced mortality, with persistent

oscillatory behavior. In contrast, the fractional model exhibits a much slower disease

spread, thanks to memory effects through resulting from the development of immune

responses and the avoidance of disease-spread areas and infected prey, based on cumulative

experience.

• Panel C: In the initial time period, the number of predators increases in both models due

to the abundant availability of both healthy and infected prey. In the classical model,

a rapid decrease in predator numbers occurs because it depends solely on the current

state of the system. In contrast, in the fractional model, the predator numbers decrease

more slowly due to the memory effect, which takes into account periods of nutritional

sufficiency and cumulative past influences.
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Figure 3.4: Effect of fractional derivative order on the dynamics of prey and predator popula-
tions

Fig 3.4 illustrates the effect of varying the fractional derivative order α on the behavior of a

predator-prey system with an infectious disease among the prey. It is observed that as the value

of α approaches zero, the oscillations in the system’s dynamic variables decrease, resulting in

a slower and smoother response. This behavior is attributed to the increasing memory effect

inherent in the fractional derivative, which leads to a reduction in the infection spread rate.

Additionally, a lower α value reduces the predators ability to prey on infected prey, thereby

limiting the decline in predator population.

Adjusting the fractional derivative order is considered an effective and essential tool for

understanding the characteristics of the biological system and interpreting its dynamic behavior,

as well as for predicting its future evolution. By calibrating α based on realistic experimental

data, it becomes possible to predict the system’s behavior over time with greater accuracy, in

addition to inferring information about missing time intervals or incomplete experimental data.

Thus, the fractional model contributes to improving the analysis of biological phenomena and

providing more precise insights into their development.
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This thesis aims to highlight the motivations that led mathematicians to resort to fractional

differential equations in modeling biomedical phenomena, as an alternative to classical differ-

ential equations, by pointing out the limitations of the latter in representing complex systems

in this field.

In the first chapter, the definitions of fractional derivatives and fractional differential equa-

tions were addressed, along with a review of analytical and numerical methods used to solve

them. The second chapter focused on the application of fractional equations to two biomed-

ical modeling cases: drug diffusion through the skin, and the predator-prey interaction with

infection among the prey, with a comparison between each fractional model and its classical

counterpart.The third chapter dealt with numerical simulations using MATLAB to analyze the

behavior of the solutions and to identify the differences between the two models: the fractional

and the classical.

Based on this study, it can be concluded that fractional differential equations are a powerful

and effective tool in biomedical modeling, as they provide higher accuracy and better agreement

with real-world data. In addition, they are capable of representing memory effects, time delays,

and non-Gaussian behavior, giving them greater predictive power in complex systems.

This thesis marked a turning point in my understanding of the integration between mathe-

matics and biomedical sciences, and confirmed that fractional calculus is not just an abstract

mathematical concept, but a valuable tool for a deeper understanding of biomedical phenom-

ena.

Despite the challenges I faced due to the novelty of the subject for me, these obstacles pushed

me to develop my research and analytical skills. I hope this work will be a first step toward

more advanced research projects in fractional biomedical modeling, whether by improving cur-

rent models or developing new ones for other systems in the field.
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Appendix A: Auxiliary Mathematical Definitions

• Γ(x) :Generalizing the factor to complex numbers is called gamma function . It is

defined for ℜ(x) > 0 by Euler’s integral:

Γ(x) =

∫ ∞

0

tx−1e−t dt.

It satisfies the recurrence relation:

Γ(x+ 1) = xΓ(x) Γ(n) = (n− 1)! n ∈ N∗.

• β(x, y): The Beta function, denoted as β(x, y), is defined by the following integral:

β(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt

for x, y > 0. It is symmetric, meaning β(x, y) = β(y, x) , and is related to the Gamma

function by the identity:

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

• Eα,β(x): The Mittag-Leffler function is defined as:

Eα,β(x) =
∞∑
n=0

xn

Γ(αn+ β)
α > 0 β ∈ C.

where:

– x is the argument of the function,

– Γ(x) is the Gamma function.

E1,1(x) =
∞∑
n=0

xn

n!
= ex

(This is just the standard exponential function.)

• (f ∗ g)(x): The convolution between f(x) and g(x), (f ∗ g)(x)=
∫ ∞

−∞
f(t)g(x− t) dt.

• L{f(x)} (s):The Laplace transform of a function f(x),L{f(x)}(s) =
∫ ∞

0

e−sxf(x) dx.

Table of Inverse Laplace Transforms for Basic Functions:
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Laplace Transform L{f(x)} Inverse Laplace Transform f(x)
1

s
1

1

s2
x

1

sn
xn−1

(n− 1)!
1

s+ a
e−ax

1

s2 + a2
1

a
sin(ax)

1

s2 + a2
1

a
cos(ax)

1

s2 − a2
1

2a
sinh(ax)

1

s2 − a2
1

2a
cosh(ax)

1

s
e−bx 1

s+ b
1

s2 + α2

1

α
sin(αx)

1

s2 − α2

1

α
sinh(αx)

Table 2: Common Laplace Transforms and their Inverses

42



Appendix B: MATLAB Codes

B.1 MATLAB Code for Drug Diffusion through Skin: Classical and

Fractional Models

% ----- Experimental data -----

x_data = [ ...

0.0994, 0.1670, 0.2346, 0.3439, 0.3877, ...

0.4751, 0.5189, 0.5885, 0.6322, 0.6938, ...

0.9245, 1.0020];

C_data = [ ...

1.0465, 0.9126, 0.9740, 0.6447, 0.3126, ...

0.1702, 0.2205, 0.1591, 0.1367, 0.2288, ...

0.0837, -0.0028];

% ----- Parameters -----

C_veh = 0.196;

K = 7.4;

t = 900;

alpha = 0.9;

D_eff = 9e-05;

N = 100;

h = 1;

xL = linspace(0, 1, 200);

% ----- Mittag-Leffler function approximation -----

approx_ML = @(z,alpha ) exp(-z.^alpha / gamma(1 + alpha));

% ----- Fractional model using Mittag-Leffler approximation -----

C_frac = zeros(size(xL));

for i = 1:length(xL)

sum_series = 0;

for n = 1:N

lambda_n = n * pi;

z = D_eff * (lambda_n^2) * t^alpha;

ML_approx = approx_ML(z, alpha);

term = (2 / (n * pi)) * sin(lambda_n * xL(i)) * ML_approx;

sum_series = sum_series + term;

end

C_frac(i) = K * C_veh * (1 - xL(i) - sum_series);

end
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% ----- Classical model for comparison -----

C_classic = zeros(size(xL));

D_classic = 9e-5;

for i = 1:length(xL)

sum_series = 0;

for n = 1:N

term = (2 / (n * pi)) * sin(n * pi * xL(i)) * exp(-D_classic * n^2 * pi^2 * t);

sum_series = sum_series + term;

end

C_classic(i) = K * C_veh * (1 - xL(i) - sum_series);

end

% ----- Plotting -----

figure;

hold on;

plot(x_data, C_data, ’bo’, ’MarkerFaceColor’, ’b’, ’DisplayName’, ’Experimental␣data

’);

plot(xL, C_classic, ’r-’, ’LineWidth’, 2, ’DisplayName’, ’Classical␣model’);

plot(xL, C_frac, ’g--’, ’LineWidth’, 2, ’DisplayName’, [’Fractional␣model␣’]);

xlabel(’x/L’);

ylabel(’CP␣Concentration␣(mol/L)’);

legend(’Location’, ’northeast’);

xlim([0 1.2]); % Limit x-axis from 0 to 1

ylim([-0.1 1.2]); % Limit y-axis from 0 to 1.2

grid on;

B.2 MATLAB Code for Solving Classical and Fractional Predator–Prey

Model with Infectious Disease

% Basic parameters from the table

r1 = 1.8;

r2 = 0.0015;

k1 = 50;

k2 = 20;

p1 = 0.05;

p2 = 0.05;

sigma1 = 0.35;

sigma2 = 0.15;

gamma_val = 0.24;

theta = 6;
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m = 0.25;

lambda = 0.06;

% Initial conditions

S0 = 10;

I0 = 3.5;

Y0 = 1.5;

% Simulation time settings

t_start = 0;

t_end = 100;

dt = 0.1;

N = round((t_end - t_start)/dt);

t = linspace(t_start, t_end, N+1);

% Solve classical model (alpha=1)

alpha_trad = 1;

[S_trad, I_trad, Y_trad] = solve_model(alpha_trad, r1, r2, k1, k2, p1, p2, ...

sigma1, sigma2, gamma_val, ...

theta, m, lambda, S0, I0, Y0, t, dt);

% Solve fractional model (alpha=0.9)

alpha_frac = 0.9;

[S_frac, I_frac, Y_frac] = solve_model(alpha_frac, r1, r2, k1, k2, p1, p2, ...

sigma1, sigma2, gamma_val, ...

theta, m, lambda, S0, I0, Y0, t, dt);

% Display comparison results with modified plot function

plot_comparison(t, S_trad, I_trad, Y_trad, S_frac, I_frac, Y_frac);

function [S, I, Y] = solve_model(alpha, r1, r2, k1, k2, p1, p2, ...

sigma1, sigma2, gamma_val, ...

theta, m, lambda, S0, I0, Y0, t, dt)

% Modify parameters according to fractional order

if alpha < 1

r1_a = r1^alpha;

r2_a = r2^alpha;

p1_a = p1^alpha;

p2_a = p2^alpha;

gamma_a = gamma_val^alpha;

lambda_a = lambda^alpha;

else

r1_a = r1;
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r2_a = r2;

p1_a = p1;

p2_a = p2;

gamma_a = gamma_val;

lambda_a = lambda;

end

% Time-independent parameters remain unchanged

k1_a = k1;

k2_a = k2;

sigma1_a = sigma1;

sigma2_a = sigma2;

theta_a = theta;

m_a = m;

% Initialize arrays

N = length(t)-1;

S = zeros(1, N+1);

I = zeros(1, N+1);

Y = zeros(1, N+1);

S(1) = S0;

I(1) = I0;

Y(1) = Y0;

if alpha < 1

weights = zeros(1, N+1);

weights(1) = 1;

for j = 1:N

weights(j+1) = (1 - (1+alpha)/j)*weights(j);

end

for n = 1:N

denom = 1 + S(n) + theta_a * I(n);

dS = r1_a * S(n) * (1 - (S(n) + I(n))/k1_a) ...

- lambda_a * S(n) * I(n) ...

- p1_a * S(n)^2 * Y(n) / denom;

dI = lambda_a * S(n) * I(n) ...

- p2_a * I(n)^2 * Y(n) / denom ...

- gamma_a * I(n);
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dY = r2_a * Y(n) * (1 - Y(n)/(k2_a + S(n) + m_a * I(n))) ...

+ sigma1_a * p1_a * S(n)^2 * Y(n) / denom ...

- sigma2_a * p2_a * I(n)^2 * Y(n) / denom;

sum_S = sum(weights(2:n+1).*(S(n:-1:1) - S0));

sum_I = sum(weights(2:n+1).*(I(n:-1:1) - I0));

sum_Y = sum(weights(2:n+1).*(Y(n:-1:1) - Y0));

S(n+1) = S0 + (dt^alpha * dS - sum_S)/weights(1);

I(n+1) = I0 + (dt^alpha * dI - sum_I)/weights(1);

Y(n+1) = Y0 + (dt^alpha * dY - sum_Y)/weights(1);

S(n+1) = max(S(n+1), 0);

I(n+1) = max(I(n+1), 0);

Y(n+1) = max(Y(n+1), 0);

end

else

% Classical solution using Euler’s method

for n = 1:N

denom = 1 + S(n) + theta * I(n);

dS = r1 * S(n) * (1 - (S(n) + I(n))/k1) ...

- lambda * S(n) * I(n) ...

- p1 * S(n)^2 * Y(n) / denom;

dI = lambda * S(n) * I(n) ...

- p2 * I(n)^2 * Y(n) / denom ...

- gamma_val * I(n);

dY = r2 * Y(n) * (1 - Y(n)/(k2 + S(n) + m * I(n))) ...

+ sigma1 * p1 * S(n)^2 * Y(n) / denom ...

- sigma2 * p2 * I(n)^2 * Y(n) / denom;

S(n+1) = S(n) + dt * dS;

I(n+1) = I(n) + dt * dI;

Y(n+1) = Y(n) + dt * dY;

S(n+1) = max(S(n+1), 0);

I(n+1) = max(I(n+1), 0);

Y(n+1) = max(Y(n+1), 0);
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end

end

end

% Modified plot_comparison function

function plot_comparison(t, S_trad, I_trad, Y_trad, S_frac, I_frac, Y_frac)

figure(’Name’, ’sa’, ...

’NumberTitle’, ’off’, ’Position’, [100, 100, 1000, 800]);

% Healthy prey S

subplot(3,1,1);

plot(t, S_trad, ’b-’, ’LineWidth’, 1.5, ’DisplayName’, ’classical␣(\alpha=1)’);

hold on;

plot(t, S_frac, ’b--’, ’LineWidth’, 1.5, ’DisplayName’, ’Fractional␣(\alpha=0.9)’);

ylabel({’A’, ’Population’});

xlabel(’Time’);

legend(’Location’, ’best’);

grid on;

hold off;

% Infected prey I

subplot(3,1,2);

plot(t, I_trad, ’r-’, ’LineWidth’, 1.5, ’DisplayName’, ’classical␣(\alpha=1)’);

hold on;

plot(t, I_frac, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’Fractional␣(\alpha=0.9)’);

ylabel({’B’, ’Population’});

xlabel(’Time’);

legend(’Location’, ’northeast’);

grid on;

hold off;

% Predators Y

subplot(3,1,3);

plot(t, Y_trad, ’g-’, ’LineWidth’, 1.5, ’DisplayName’, ’classical␣(\alpha=1)’);

hold on;

plot(t, Y_frac, ’g--’, ’LineWidth’, 1.5, ’DisplayName’, ’Fractional␣(\alpha=0.9)’);

xlabel(’Time’);

ylabel({’C’, ’Population’});

legend(’Location’, ’northeast’);

grid on;

hold off;

end
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اिऻڪٌۘ
ෛຳݱ؇فݧ ଩ଃറണ೺ มฆܳا ل۰ اࠍ੆٭ި اܳޚٴ٭۰ اܳޙިا۱ݠ ۰༥ڍஓ஁ ሒᇭ اܳـܝ๤ཏل۰ اܳٺڰ؇ݪܹ٭۰ اৎ৊أ؇د৖৑ت دور اৎ৊ڍாணة ۱ڍه ૭૜ٺأݠض
اܳٺڰ؇ݪܹ٭۰ اৎ৊أ؇د৖৑ت ༡ܭ وޗݠق اܳـܝ๤ཏي اࠍ੆ފ؇ب أݿ؇ݿ٭؇ت ًأݠض ਊಾڎأ .๴ངاܳ؞؇و ଫଃ༚ واܳފߺࠊك اᄳᄟاாணة
༟ڎدل۰ Ⴄ၍؇ො੼ة රජ؆࿓اء اᄴᄟراݿ۰ ෛູٺࡤࡲ واܳـܝ๤ཏل۰. اఈ႙ၽܳݿ٭ܝ٭۰ ؇݄ዛውًݱ٭؞ ඔ൹ިܳިۏ٭ਃಸ ඔ൹༥ިذஓ஁ ّگڎم ቕ቉ اܳـܝ๤ཏل۰،
اܳٷޙ؇م. د਍ಱ؇݁٭ܝ٭۰ আॻ༟ اܳـܝ๤ཏل۰ اৎ৊ލٺگ۰ ۰ਊಾر ଫଃّ؞٭ ଫଃٔ؊ّ ොູܹ٭ܭ ؕ݁ ݁؇ఈఃّب، ༇ံ؇َߓߵ ً؇ݿٺ༱ڎام ஓ஁ިذج ႟၍ ܳފߺࠊك

.ଫଊأ܋ وواڢأ٭۰ ஓ୾ݠو۰َ اৎ৊أگڎة ل۰ اࠍ੆٭ި ا৙৑َޙ۰݄ ஓ஄ټ٭ܭ ሒᇭ اܳـܝ๤ཏل۰ اࡺ࢕ࢦ؇ذج ّڰިق ༇຀؇اܳٷٺ ّޙ۳ݠ
اᄳᄟاாணة. ଫଃٔ؊ّ ل۰، اࠍ੆٭ި اܳޚٴ٭۰ ۰༥اࡺ࢕ࢦڍ ،ިّިًႤၽܳ ل۰ ๤ཏاܳـܝ اৎ৊ލٺگ۰ اܳـܝ๤ཏل۰، اܳٺڰ؇ݪܹ٭۰ اৎ৊أ؇د৖৑ت اिऻء׫ոؼמ١: اڤոஈ࿦࿮ت

Abstract

This thesis examines the role of fractional differential equations in modeling biomedical
phenomena characterized by memory properties and non-Gaussian behavior. It begins
with an overview of the fundamentals of fractional calculus and methods for solving frac-
tional differential equations, then presents two biological models in both their classical
and fractional forms. The study concludes with numerical simulations of each model's
behavior using MATLAB, analyzing the impact of varying the fractional derivative order
on the system dynamics. The results demonstrate the superiority of fractional models in
representing complex biomedical systems with greater flexibility and realism.
Keywords: Fractional differential equations, Caputo fractional derivative, biomedical
modeling, memory effect.

Résumé

Ce mémoire examine le rôle des équations différentielles fractionnaires dans la modéli-
sation des phénomènes biomédicaux caractérisés par des propriétés de mémoire et un
comportement non gaussien. Il commence par une présentation des fondamentaux du
calcul fractionnaire et des méthodes de résolution des équations différentielles fraction-
naires, puis présente deux modèles biologiques sous leurs formes classique et fraction-
naire. L’étude se conclut par des simulations numériques du comportement de chaque
modèle à l’aide de MATLAB, analysant l’impact de la variation de l’ordre de la dérivée
fractionnaire sur la dynamique du système. Les résultats démontrent la supériorité des
modèles fractionnaires dans la représentation des systèmes biomédicaux complexes avec
une plus grande flexibilité et réalisme.
Mots-clés : Équations différentielles fractionnaires, dérivée fractionnaire de Caputo,
modélisation biomédicale, effet de mémoire.
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