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R: set of real numbers.

C : set of complex numbers.

N: set of natural numbers.

I7: Riemann-Liouville fractional Integral.

D7 : Riemann-Liouville fractional derivative.

“D: Caputo fractional derivative.

“D? f(x): Griinwald-Letnikov fractional derivative.

R(a): real part of a complex number «.

L'([a, b]): set of functions that are integrable on the interval [a, b].

['(-) : Gamma function.

B(-,-) : Beta function.

E,(-) : Mittag-Leffler function.
L{-} : Laplace transform.

(f *g)(t) : Convolution product.

sinh(+), cosh(-) : Hyperbolic functions.
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INTRODUCTION

%hema’cical modeling is an indispensable tool in the modern era, playing a crucial role
in understanding and analyzing real-world phenomena across fields such as physics, chemistry,
engineering, and biomedical sciences [7] [2]. Despite the common perception that medicine and
biology are distant from mathematics, mathematical modeling has provided critical insights
into many complex biomedical phenomena, including drug transport within the body, disease
spread, and tissue responses to physical stimuli.

Biomedical modeling is a vital branch of mathematical modeling that focuses on developing
accurate representations of biological and physiological processes. One of the earliest examples
is Daniel Bernoulli’s model on smallpox transmission (1760) [2], which was used to evaluate
the effectiveness of vaccination and the benefits of immunization, marking an early application
of mathematics in medicine.

As knowledge advanced and systems exhibiting nonlinear behaviors and memory-dependent
properties emerged, the need for more accurate and flexible mathematical tools became evident
[1] [5] [10]. Among the most significant developments in this direction is fractional calculus.
This field is a natural extension of classical calculus, offering a more suitable framework to
analyze systems with memory effects or cumulative dynamics.

The origin of fractional calculus dates back to the 17" century [14] [¢] when Leibniz intro-

duced a notation for the n-th order derivative of a function:

d" f(x)

dz™

In 1695, de L'Hopital asked the famous question: “What would the result be if n = %?” Leibniz
replied, “This is an apparent paradox from which one day useful consequences will be drawn.”
This remark is considered the first seed of fractional calculus.

These ideas were further developed beginning in 1730 with Euler, followed by contributions
from Lagrange (1772), Fourier, Riemann, Liouville, Griinwald, and others. For a detailed

historical progression, To explore the historical evolution of fractional models, refer to [18] [10]
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Leibniz’s prediction has been realized in recent decades, as fractional calculus has witnessed
significant growth due to its ability to model systems that cannot be accurately represented
using classical differential equations, such as anomalous diffusion, viscoelasticity, and pharma-
cokinetics. Among the pioneers who highlighted biomedical applications of this field is Bruce
J. West, particularly through his work titled “Fractional Calculus View of Complexity: To-
morrow’s Science” [19], which presented fractional models that describe biological processes
more realistically.

In most subsequent studies, fractional differential equations have shown superior perfor-
mance compared to classical models in terms of fitting experimental data and predicting the
behavior of biomedical systems [1] [L1] [16].

This thesis aims to provide a comprehensive overview of modeling biomedical phenomena
using fractional differential equations, highlighting the advantages of these models over tradi-

tional ones. The work is structured into three main chapters:

e Chapter 1: Covers the theoretical foundations of fractional calculus, including key defi-
nitions and types of fractional derivatives, and introduces fractional differential equations

and solution methods.

e Chapter 2: Presents two biomedical models: one describing transdermal drug diffusion
using fractional partial differential equations, and another studying predator-prey dynam-
ics in the presence of an infectious disease using fractional ordinary differential equations,

along with mathematical analysis and comparison with classical models.

e Chapter 3: Focuses on numerical simulations using MATLAB, solving the two models
numerically and analyzing results through comparison between fractional and classical

models.

Finally, the thesis concludes with a general conclusion that summarizes the main findings and

discusses future research directions.



CHAPTER 1

|
FUNDAMENTALS OF FRACTIONAL

CALCULUS

This chapter focuses on the mathematical foundations of fractional calculus, starting with the
basic definitions of fractional derivatives and integrals, followed by their properties and key
differences from traditional calculus, and concluding with numerical and analytical methods

for solving equations involving non-integer order derivatives.

1.1 Fractional Derivatives and Integrals

1.1.1 Riemann-Liouville Fractional Integrals and Fractional Deriva-

tives
1.1.1.1 Riemann-Liouville Fractional Integrals

Let f be a continuous function on the interval [a,b] . An indefinite integral of f is given by the

expression:
i = [ o (11)

And for a second indefinite integral, can be expressed as:

Iff(x):/azljf(s)ds:/: (/:f(t)dt) ds. (12)

In general, for any positive integer n, the n-fold integral is defined recursively as:

" f(z) :/j /t/t /:1 F(to) dto dty -+~ dby 1. (1.3)

n times
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1 x
@) = = / (2 — 5" f(s) ds. (1.4)
Using the Gamma function, which generalizes factorials to real and complex orders, the frac-

tional integral of order v € C with R(«) > 0 is defined as:

Ef@)ZFéﬁ/w@—¢V1f@dt (15)

Definition 1.1.1 Let f : [a,b] — R be a function in L*([a,b]). For any order a > 0, the
left-sided Riemann—Liouville fractional integral of f is defined by:

1 xX
I = — — )t : 1.
21w = gy [ @0 (1.6
Similarly, the right-sided Riemann—Liouville fractional integral is defined by:
I )
O A A LOL2 (1.7

Remark 1.1.1 In most applications, we use the left-sided Riemann—Liouville fractional inte-

gral. However, similar properties hold for the right-sided version as well.

Property 1.1.1 Let f € L'([a,b]), and let R(a) > 0, R(B) > 0, and n € N. Then the
following properties hold:

i) 15 (1) () = 1. (1) (@) = 177 f (@),
i) Tim 12 () = [(a),
i) (18 1) (1) = 157 (@), for R(a) > 1

For detailed proofs, see [9] and [15].

Example 1.1.1 We compute the Riemann—Liouville fractional integral of the function f(x) =

z".

1 T
IS = —— — ) dt
ol F<05)/0 (‘T ) )

To evaluate this integral, we apply the change of variables y = —, under this substitution

8|

dt = x dy, and the limits change fromt =0 and t = x to y = 0 and y = 1, respectively. The
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integral becomes:

1 x
I§a" = —— — ) dt
sa" = g | @)

1 ! a—1 n
= [ e
= F(a>/0 (1—y)* "y dy
= F(a)B(a,n+1)

_ ozt T(@)I'(n+1)
" T(a) T(a+n+1)
I'(n+1)

Fa+n+1)

n—+o

1.1.1.2 Riemann—Liouville Fractional Derivatives

Definition 1.1.2 Let f € L'([a,b]), and let n € N such that n — 1 < a < n. The left-sided

and right-sided Riemann-Liouville fractional derivatives of order o are defined by:

(D& f)(x) = % (I"f) (z), (Left-sided derivative) (1.8)
(D)= f)(x) = (—%) (I7=°f) (z). (Right-sided derivative) (1.9)

Example 1.1.2 Let f(x) = 2™ with m > —1, and g(x) = C, where C is a constant. For

0 < a < 1, the Riemann—Liouville fractional derivatives are given by:

(Do) = o
(D%)(x) = ﬁxﬂ (Dl/zg)@) _ \/%

This result shows that the Riemann—Liouville fractional derivative of a constant function is not

zero, but rather produces a function that is undefined at x = 0.

Property 1.1.2 Let f € L'([a,b]), with R(a) > 0, R(B) > 0, and let n € N. The following

properties of the Riemann—Liouville fractional derivative hold:
(i) Dg+ (L35 f)(x) = f(x),
(if) DL (I3 f)(x) = 1770 f(x),

(i) Dy (Dgv f)(x) = D" f (=),
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(iv) D2 (D2, -3 [P,

=1

(v) DD f)(w) = DI fa) = 3 [Df? F@)m ﬁ}

n

() D3 (D} f)(o) = D) = 3 190) - s

il) D3 (D}, f)(a) = D) = 3 | D F - 0.

i=1

The detailed proofs of these identities can be found in [9], [15], and [1].

1.1.1.3 Laplace Transform of Riemann—Liouville Fractional Derivative

The general formula for the Laplace transform of the n-th derivative of a function is defined by

[1]:

n—1
L{f (@)} (s) = s"L{f (@)} (s5) = Y 8" F 1 FH(0). (1.10)
k=0
e The Laplace transform of the Riemann—Liouville fractional integral is simple and clear
[9]. We have:
@) = o [ =97 de = et (111)
(@) Jo () ’ '

where x denotes the convolution operator.

1
Applying the Laplace transform to the convolution of ! and f(z), we obtain:

I'«)
LA (@)} (5) = L AT (@) (5). (112)

e The Laplace transform of the Riemann—Liouville fractional derivative is given by:

—_

LD f(x)} (s) = s"LAS(2)} (s) = p_ " (DT f(2)] ) - (1.13)

0

3

i

where n — 1 < a < n.
This formula is derived by applying the Laplace transform to the expression of the Rie-

mann—Liouville derivative:

Def(a) = o (I (@)

and using the result from equation (1.12) followed by the classical derivative rule (1.10).

6
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1.1.2 Caputo Fractional Derivatives
1.1.2.1 Definition and Basic Properties

Definition 1.1.3 The fractional derivative of a function f(x) in the Caputo sense, is defined

as follows, assuming that f(z) has n continuous and bounded derivatives:

1 x
D fw) = (176 = o [ =0
( the left-sided Caputo fractional Derivative). a€ln—1,n[
C na n(n—a £(n) (_1)n ’ n—a—1 p(n)
DY f(@) = (" () = s [y O

( the right-sided Caputo fractional Derivative).
(1.14)

Theorem 1.1.1 (proof [J]) Let f be an absolutely continuous function with n-times differen-

tiable on a given domain.

;_-

n—

D2 f(@) = “D2, (@) + FJ_QHM "),

HO

S m

(1P (b~ )=
I'j—a+1)

Dy f(x) = “Dy_f(z) + fOw).

=0

<.

Property 1.1.3 Let o, € RY with a > B, and let f € C™ be a sufficiently smooth
function. Then, the following properties hold:
i) CDGIZ f(x) = f(x).
i) lim “D%f(z) = f™(x).
a—n—

i) “DOf(x) = DOf(x) if and only if Df(a) =0 Vj€{0,1,...,n—1}.

n—1 (k) a
in) 15°DE (@) = f) + 3 T D — ayt
k=1 )

The detailed proofs of these identities can be found in [1].

1.1.2.2 Laplace Transform of the Caputo Fractional Derivative

The Laplace transform of the Caputo fractional derivative is given by:

—_

n—

L{Df()} (s) = s*L{f(2)}(s) — s2FLER0), n—1<a<n. (1.15)

0

il
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proof 1.1.1 Taking the Laplace transform of Caputo fractional derivative:

i@} o = et [0 )

n—uo

=L { <F92:;—j;)> s f) (q:)} (Definition of convolution)

L {Fm(;—il)} L {f z)}  (Convolution theorem)

_ g (s"ﬁ{f(x)} - Sn‘k‘lf(k)(0)>

wnfafl n
wheﬂz[:{f?ﬁijaj} =S

n—1
L{ODEf ()} (5) = s"L{f (@)} = 3877 FO(0).
k=0
For a detailed proof, see [15].

1.1.3 Grunwald—Letnikov Fractional Derivatives and Integrals

The Griinwald-Letnikov fractional derivative is based on finite differences instead of integrals.
It is used to compute fractional derivatives numerically, making it suitable for computational

applications and discrete systems.

1.1.3.1 Definition and Basic Properties

Let f(x) be a continuous function. The first-order derivative of f(z) is defined according to

the standard definition as:

d%f(x) TN Al A Gt (1.16)

h—0 h
We can construct higher order derivatives directly by higher order backward Difference of a

function f(z) of order n € Ny of the form :

) = hmiz(—1)k(z>f(a;—kh), (1.17)

To move from the classical derivative to the fractional derivative, we change the variable n € Ny

by the real or the complex number o where o > 0 or R(a) >0 .

h—0 he
k=0

“Dof(x —hm—i () (x—kh), a>0 (1.18)
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where
(Z) SR R LYY (1.19)
i) - ofa+1)(a+ 2}3!- (ot k—1) (1.20)

(_k‘a) = —o(za—D(ze _k'Q) o (za—k+ ) = (1) [a .( According to [14]) (1.21)

Thus, the Griinwald-Letnikov fractional derivative is defined by the following expression:

n

Do f(x) = lim hia > (=1 (Z‘)f(:c —kh), aeR,. (1.22)

In order to define the Griilnwald-Letnikov integral, a negative () must be used over (1.18). We
find the following:

n

S0z o) = imy o S (-0 () o - k. (1.23)

So the expression for the integral Griinwald-Letnikov is:

n

0D, f(r) = Jim - ; k] sz — k) = ﬁ /j(a: — 1) f (1) dt. (1.24)

If the function f(z) has (m + 1) continuous derivative, then

_a>a+k+ 1
MNa+k+1) TI(a+k+1

) /x(x — tyetm it g (1.25)

. m f(k)(t_ )k—a 1 T o ol .
CDYf(x) =) F(k—aa+ 1) +F(""‘a+1)/a (z — )™= fm ) dt.( According to [14])

(1.26)

Remark 1.1.2 The appearance of integration in the two equations(1.22,1.2/) was a result of

applying the Riemann sum

b n—1
@ k=0

Property 1.1.4 [/5/For any R(a) € R, R(B) <0, andn € N

o

dz™

(“Dgf(x)) = DI f(x),



CHAPTER 1. FUNDAMENTALS OF FRACTIONAL CALCULUS

n—1

n n (k) a —qa k—a—n
i D (o) = e (CDs ) - Y L =

wi ) D3 (DL f(w)) = Dt f(x)).

1.1.3.2 Laplace Transform of the Griinwald-Letnikov Fractional Derivative

Suppose that f has a Laplace transform £{f(s)} and a = 0, we have for 0 < a < 1:

“Def(x) = I‘f((f)f:) + Tl 1_ 2] /Ox(a: — )" f'(t) dt, (1.27)
then
£(eefaysy = L0 4 L seip@) - 1(0) = (7)), (1.28)

For a detailed proof, see [7]

1.1.4 Comparison of Fractional Derivatives

Property Riemann-Liouville | Caputo Derivative | Griinwald
Derivative Derivative
Mathematical | Based on historical Based on integer Based on numerical
Definition integral. derivatives of approximation using
functions. finite differences.
Initial Based on the Traditional initial Numerical initial
Conditions behavior of the conditions like f(0). conditions, may
function over time. depend on the
difference between
values.
Applications Theoretical in Practical in physics Numerical in
mathematics and and engineering simulations and
fractional calculus. (dynamic systems). solving fractional
differential equations.
Complexity More complex from a | More practical and Simpler from a
theoretical suited for specific numerical
perspective. applications. perspective, but less
accurate.

Table 1.1: Comparison of Riemann-Liouville, Caputo, and Griinwald Derivatives

1.2

Ordinary Fractional Differential Equations

1.2.1 Linear Fractional Differential Equations

Definition 1.2.1 Linear fractional differential equations are equations in which the derivatives

of the unknown function y(x) are of fractional order, and the equation is linear with respect to

10
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these derivatives. The equation does not contain any nonlinear functions of the unknown or its

derivatives. The general form of a linear fractional differential equation is :
aoDy(z) + a1 D* ty(x) + - - + any(z) = f(2). (1.29)

Where:
e D represents the fractional derivative of order a,
® ag,aq,...,a, Constants or Functions that Vary with Time,
e f(x) is a given function.
Remark 1.2.1 The equation is considered **homogeneous™* if the given function f(x) = 0.

If f(x) # 0, then the equation is considered **non-homogeneous™*.

1.2.2 Nonlinear Fractional Differential Equations

Definition 1.2.2 The nonlinear fractional differential equation is an equation that contains
fractional derivatives of the unknown function and is nonlinear due to the presence of nonlin-
ear functions of the unknown or its derivatives. The general form of the nonlinear fractional

differential equation.
agDy(x) + a1 D* Hy(x) + - + any(x) + g(y(2), Dy(x)) = f(x). (1.30)

Where:
o D%(x) represents the fractional derivative of order c.
® ay,ay,...,a, are constants or functions that may vary with time.

e g(y(x), DPy(x)) is a nonlinear function involving the unknown function y(x) or its deriva-

tives.
o f(x) is a given function.

Example 1.2.1
1
Diy(x) + EDgy(a:) +Iny(x) = 0. (1.31)

This is a homogeneous nonlinear fractional differential equation because the logarithmic function

18 nonlinear, and the second term of the equation equals zero.

11
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1.2.3 Cauchy Problem for Differential Equations of Fractional Order

Definition 1.2.3 [9] The Cauchy problem is defined by an equation of fractional order and an

wiatial condition as follows:

D%y = f(x,y), Va€/[0,T], with n—1<a<n,neN

(D2 *y)(0) = by, k=1,....n

Where by, are the initial values given at x = 0. The Riemann-Liouville derivative is undefined
when x = 0, so the initial condition is written as follows:(D *y)(0) = lirr(l)(fo’ky)(x) :
z—

The Caputo derivative does not have this drawback.

The Caputo derivative is the best choice when working with initial conditions because it is well
defined when = = 0.

Lemma 1.2.1 ([10]) Let 0 < a < 1, and let f : [0,T] — R be a continuous function. A

function y is a solution to the Cauchy problem

{ Diy(x) = f(z,y(x)), Vzx€[0,T], (1.33)

(D27F4)(0) = by, k=1,....n—1, wheren—1<a<n, n €N,
if and only if it is a solution to the Volterra integral equation

y(z) = ; - (ab’“_w:+ 5+ F(10() /Ow(x — ) Lty (8) dt. (1.34)

In particular, when 0 < a < 1, the equation reduces to:

1 e -
y(x) = by + m/o (x =) f(t,y(t))dt. (1.35)

1.2.4 Methods for Solving Ordinary Fractional Differential Equa-
tions:
1.2.4.1 Analytical Methods (Laplace Transform Method)

Solving fractional differential equations using the Laplace transform is an effective method
for dealing with equations involving derivatives of fractional order. This approach relies on
transforming the differential equation into an algebraic equation in the frequency domain using

the Laplace transform, and then returning to the original domain using the inverse transform.

Example 1.2.2 The equation we are working with is:

D*Py(x) =0, y(0) = yo. (1.36)

12
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We take the Laplace transform of both sides, using the Laplace transform of the Caputo deriva-
tive:

LLD*Py(x)} = " L{y(x)} — s *Py(0).

The equation becomes:
L)y = 1.
Now, we apply the inverse Laplace transform to get the solution in the time domain x (Based

on the table in the annez).

Theorem 1.2.1 (proof [10]) Let n —1 < a <n (n € N) and A € R. Then the functions
yi(r) =2 By 0 j(A2®) (j=1,2,...,n), (1.37)

produce the fundamental system of solutions to the following equation:

Zbk (Doky) (2)+boy(z) =0 for >0, 0<a;<,...,<pm, n—-1<a,<n, mmneN
k=1

(1.38)
Example 1.2.3
Diy(x) = 0. (1.39)
3
we have 1 < o = 5 <2 and b=\, Thus, we need to calculate two solutions y,and ys.
Yy = x%E%’%(bx%), forj =1. (1.40)
Ys = x_%E% %(bx%), forj =2. (1.41)

)

1.2.4.2 Numerical Methods (Finite Difference Method)

The finite difference method is a numerical technique used to solve fractional or classical differ-
ential equations. It transforms the differential equations into a system of algebraic equations,
where the derivatives are replaced by finite differences (i.e., the differences between the function

values at adjacent points in time or space).

e Types of Finite Differences:
We use the first two terms of the Taylor series at the point z; + h, near the point z;, to
obtain the forward difference, which is defined as:

y'(z;) = y(@; + hf)L — y(:vj). (1.42)

13
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By replacing h with —h, we obtain the backward difference:

y(r;) —y(x; — h)
h

Y (z;) = : (1.43)
The third type is the central difference, which is usually more accurate than the forward or
backward differences. It is obtained by adding equations (1.42) and (1.43) and is defined

as.
y(x; +h) —y(z; —h)
2h

Y (zj) ~ : (1.44)

e Solution Steps:

— Discretization of the domain: The continuous domain is divided into a grid or

mesh.

— Approximation of the fractional derivatives: Use Griinwald-Letnikov or Ca-

puto definitions to approximate the fractional derivatives.

— Solving the system of equations: Solve the resulting algebraic system using

numerical solvers such as Gaussian elimination or LU decomposition.

Example 1.2.4 Solve the homogeneous fractional differential equation:
D%y(x) + py(x) =0, where p is a constant. (1.45)

with initial conditions: y(0) =1, y'(0) = 0.
e Discretizing the domain:
We divide the domain [0, L] into N points, where:

L=1, N=10, 0<x<]1,

L
T, =nh, z,=Mm-—k)h, where h= N 0.1
Thus, we obtain the points:

Lo, T1,T2,y...,T10-

e Approximating the fractional derivative using finite differences:
We use the Grinwald-Letnikov approximation for the fractional derivative, given by:

Dvlan) % s -0 (717 oo = k)

We denote the Grinwald weights by wy, where:

_ k(T/2) _ ! I'(9/2)
we = (=1) < K ) =T orez = (1.46)

14
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We compute the Grinwald weights:

Wo, W1, W, W3, . . .

Substituting equation (1.40) into the fractional differential equation, we get:
1 n
Yn = —W ; WYn—k- (1.47)

Based on the recurrence formula (1.47), we compute the values of y, from xzq to x19. We
can solve the resulting system using numerical methods such as Gaussian elimination or

LU decomposition to find the values of y1,ya, ..., Y10-

1.3 Fractional Partial Differential Equations
A general fractional partial differential equation can be represented as:

Dfu(z,t) = L(u(z,t)), (1.48)
where:

e Dy is the fractional derivative with respect to time of order «.

e L(z,t) is a differential operator.

1.3.1 Examples of Fractional Partial Differential Equations

Many well known fractional partial differential equations exist, such as the fractional diffusion
equation, fractional wave equation, heat equation, fractional Laplace equation, and others.

Below, we present two examples.

e Fractional Diffusion Equation

The general form of a fractional diffusion equation is:
Du(z,t) = kDPu(x,t). (1.49)

where:

— Dy is the fractional derivative in time ¢ of order a, with 0 < o < 1.
- Df is the fractional derivative in space z of order 3, with 0 < g < 2.

— k is a constant that relates the space and time derivatives, often interpreted as a

diffusion coeflicient.
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It is used to model non-traditional diffusion processes[10], such as diffusion in heteroge-

neous media, like water flow in rocks or molecule transport in biological tissues.

e Fractional Wave Equation
In fractional wave equations, fractional temporal or spatial derivatives are used. The

general form is written as follows:
Du(z,t) = D%u(z,t), 0<a,f <2 O<z<l, t>0 (1.50)

where:

— Dfu(z,t) is the fractional temporal derivative of order a.
— DPu(x,t) is the fractional spatial derivative of order .

— ¢ is the speed of the wave.

Fractional wave equations are used in many fields that require modeling waves in non-
traditional media, such as dispersive media, systems with memory[l0], and waves in

biological tissues.

1.3.2 Initial and Boundary Conditions

e Initial Condition The initial condition specifies the state of the system at time ¢ = 0.
It is typically given as:
u(z,0) = f(z), 0<z<IL (1.51)

e Boundary Conditions Boundary conditions control the values that the solution must

satisfy at the spatial domain boundaries. There are different types of boundary conditions:

— Dirichlet Condition Specifies the value of u at the boundaries:
u(0,t) =0, wu(l,t)=0.

— Neumann Condition Specifies the derivative of u at the boundaries:

ou

— =0.
(9x x=0
— Robin Condition A combination of Dirichlet and Neumann conditions:

au + b% = g(1).

These conditions play a crucial role in solving partial differential equations, ensuring

well-posedness and uniqueness of solutions.
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the fractional partial differential equations can be solved using several of the same methods
mentioned earlier for solving fractional-order differential equations. These methods include the
Laplace transform and Fourier transform, as well as solutions using the Mittag-Leffler function
in analytical approaches. Additionally, numerical solutions can be obtained using the finite

difference method. (For exploring the solution methods [1]).
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CHAPTER 2

|
FRACTIONAL BIOMEDICAL MODELS

2.1  Overview of Mathematical Modeling

Mathematical modeling is the process of representing a real-world phenomenon, influenced by
various factors, into a mathematical relationship. It is a fundamental tool used in a wide range
of fields (such as physics, engineering, and biology). This representation is usually expressed
through equations or functions. Mathematical modeling helps simplify complex systems, mak-
ing it easier to understand and analyze their behavior, predict their results, and optimize their
performance using available information. Modeling follows a systematic process that involves

organized steps [13][17], beginning with the following:

e Identifying and understanding the real-world Phenomenon.

Selecting important factors and variables, and excluding less relevant details.

Formulating mathematical equations:

— Differential Equations: If the system is dynamic and time-dependent.
— Algebraic Equations: If the system is static.

— Probabilistic Equations: If there is uncertainty or randomness in the phenomenon.

Finding analytical or numerical solutions

Validating the model by comparing its results with real data or scientific

experiments.

Using the model for prediction or analyzing the impact of varying factors.
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Example 2.1.1 Simple Mathematical Modeling of a Physical Phenomenon — Ohm’s Law
V=1I-R.

Variables:

e V: Voltage (in volts).

e [: Electric current (in amperes).
e R: Resistance (in ohms).

This model represents a simple linear relationship between the three variables. It can be used

to predict the behavior of the electrical system under certain conditions.

Mathematical modeling is an important tool in many sciences, including biomedical science,
as it helps in studying biomedical processes more accurately and understanding the interac-
tions between different factors in the biomedical system. Mathematical modeling in biomedical
initially relied on ordinary differential equations (ODEs). However, as science advanced, the
limitations of classical ODEs which assume local and memory less dynamics became apparent
for complex biomedical systems. Many phenomena, such as drug diffusion or tumor growth
often exhibit delayed responses, or non-homogeneous temporal behaviors. Fractional calcu-
lus addresses these challenges by introducing non-integer derivatives, enabling more accurate
modeling of memory effects and non-local interactions

Among these models that have evolved in biomedical, we can mention:
e The disease spread model.

e The blood flow model within blood vessels.

e The tissue and cancer tumor growth model.

In this thesis, we will focus on the following two models:

e Drug diffusion model across the skin.

e A Predator—Prey Model with Infectious Disease in the Prey Population.
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2.2 Drug Diffusion Model Across the Skin

2.2.1 Biological Overview

Transdermal drug delivery is an advanced technique that offers an effective and safe alternative
to traditional methods such as oral pills and injections. This method relies on the gradual
absorption of the drug through the skin until it reaches the bloodstream, helping to maintain
a stable drug concentration and reduce side effects.

However, the penetration of drugs through human skin is a complex and intricate process
due to multiple layers that act as barriers to drug entry. The first barrier is the stratum
corneum, the outermost layer composed of dead cells surrounded by a lipid matrix, making it
a strong barrier that prevents most drugs from passing through, especially hydrophilic ones.
Beneath it lies the epidermis, a living layer without blood vessels that plays a role in regulating
the passage of drug compounds, particularly lipophilic ones. Finally, the dermis is the deepest
layer, containing blood vessels responsible for drug absorption and transport into systemic
circulation [7].

This technique is used to deliver a variety of drugs, such as nicotine patches to aid in
smoking cessation and morphine patches for chronic pain relief. The success of transdermal
drug absorption depends on the drug’s physicochemical properties, such as its lipid solubility
and molecular size, as well as the interaction of its components with the different skin layers

[15].

See Fig 2.1, which illustrates the main structural components of human skin [4].
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Figure 2.1: Illustration of the layers of human skin
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2.2.2 The Classical Model

The classical model of drug diffusion through the skin can be mathematically represented using

Fick’s second law [1], which is expressed as follows:

de(z,t) D&Pc(m, t)

(2.1)

ot or? '’

where:
e c(z,t) is the concentration of the drug at position x and time t¢.
e D is the constant diffusion coefficient.
e 1 is the distance across the skin layers.

This model assumes linear diffusion without considering memory effects or nonlinear influences.
The model is expressed in Figure 2.2, where the skin is considered as a homogeneous layer with a

thickness h, located between the donor and the receiver, and it satisfies the following conditions:

c(0,t) =cy, c(h,t)=0, VteRL. (boundary conditions.) (2.2)
c(x,0) =0, for 0<z<h. (initial condition.) (2.3)
Donor SN Receiver

(Patch) ﬁ (Body)

c(0t)=co  |nitial: c(x,00=0  €ht)=0
for0<x< h

Figure 2.2: Drug transport in a homogeneous skin layer: schematic view
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We solve the classical model (2.1) using the method of separation of variables [3] to obtain

the following concentration expression:
2

T 2«1 . /nmx n?m’t
c(z,t) = co (1_E_;;ESIH<T>GXP (— » )), (2.4)

2
where t; = ) is the characteristic time of diffusion.

The drug concentration obtained by solving the model contributes to determining the drug
flux value j(¢) and the total dissolved quantity ¢(¢), based on Fick’s first law, as shown in the

following equations:

(1) = —Dacg;’ ) =D (% - % S (=1)"exp (_”tz t>> | (2.5)

L t 1 2 1 n2m2t
Q(t) = A/O ](S)dS = ACQh (a — 6 — p - ﬁ exp (_ td )) . (26)

Where, A is the area across the section of the layer through which the drug is transferred.
The equations are transformed into the Laplace domain to simplify the complex differential

equations involving time.
Clx,s) = Lle(x, b)), J(x,s) = LLj(x, 1)), Qlx,s) = Llg(x,1)].

co sinh (\/% (1 — %))
ssinh (y/st) '

From this solution, the flux J(z, s) and the total quantity of solute Q(z, s) [3], can be expressed

C(z,s) =

as :

oC (z, s) cov/stq
— p&\LE _p CvEd
I(@s) or |,._p shsinh /sty

Q(z,s) = AJ(z,5) = Al;cows—tdsinh ( S—td> :
S s%h P P

This transformation facilitates numerical handling and improves the accuracy of the results
when calculating the drug flux and the total amount of drug, in order to avoid the accumulation

of errors.

This model provides a good starting point for understanding the general principles of drug
transport through the skin. It is one of the simplest mathematical models used to study drug
diffusion across the skin. However, this model is an oversimplification as it does not consider

the skin’s multilayered structure. To overcome the limitations imposed by this model, the
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skin can be considered as a multilayered structure, where it is divided into three main layers:
the stratum corneum, the epidermis, and the dermis. A specific diffusion coefficient (D;) and
partition coefficient (k;) are assigned to each layer, allowing for a more accurate description of

the transport process across the skin. The flux across each layer can be expressed as:

where:
e J; is the flux in the i-th layer.

e D; is the diffusion coefficient for that layer.

dc . : L
° E is the concentration gradient in the layer.
x

For a more detailed description of the latter model [3].

2.2.3 The Fractional-Order Model

Although the classical model that divides the skin into layers represents an improvement over
the initial model, it still relies on linear assumptions that may be insufficient in certain cases.
In such situations, fractional models based on fractional differential equations (as discussed
in Chapter One) can be used to describe drug transport through the skin, Because they take
into account nonlinear phenomena and complex interactions between drug molecules and skin
tissues.
We assume the presence of a homogeneous layer with thickness h, through which the drug
spreads with concentration ¢(x,t), which varies with time ¢ and spatial location z € [0, h]. The
traditional time derivative is replaced by the Caputo fractional derivative of order a € (0, 1)
[1], yielding the following fractional diffusion equation:

“Doc(z,t) = D%, O<x<h, t>0, (2.7)

where:
e “D% the Caputo fractional derivative of order a.
e D is the diffusion coefficient.
e ¢(x,t) is the concentration of the drug at position x and time t.

The same initial and boundary conditions as in the classical model (see Egs (2.1), (2.2), and

(2.3)) are applied to complete the fractional model.
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To solve the model represented by the fractional differential equations, we will use one of
the methods discussed in Chapter 1. In this case, the Laplace transform will be employed,
as it is considered one of the powerful analytical tools for solving complex fractional diffusion
equations.

We apply the Laplace transform to the equation (2.7), using the standard property of the

Caputo fractional derivative (1.15):
LA{“Dpc(x,t)} = s*L{c(z,t)} — s* "c(x,0). (2.8)

Since the initial condition is ¢(x,0) = 0, the equation becomes:

O?L{c(z,t)}
0x? '

This is a second-order linear homogeneous differential equation with constant coefficients:

s*L{c(x,t)} = D (2.9)

PL{c(x,t)} s~
The general solution is of the form:
L{c(x,t)} = A(s)e™ + B(s)e ™, (2.11)
where \ = \/%. At x = 0, we have:
L{c(0,t)} = % =  B(s)+A(s) = % (2.12)
At x = h, the condition is:
L{c(h,)} =0 = A(s)e™ + B(s)e™ =0. (2.13)
From this, we deduce:
A(s) = —B(s)e . (2.14)

By substituting A(s) and B(s) and simplifies, we get:
E{C(m,t)} = B(s) (ek(xfh) _ efA(a:Jrh)) .

The hyperbolic sine function sinh(x) can be expressed in terms of the exponential function

as follows:

(2.15)

Therefore, the solution becomes:
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sinh <\/%(h — x))
. (2.16)
sinh (\/%54)

The inverse Laplace transform of this expression leads to an exact solution in the time domain,

L{c(x,t)} = C—SO .

which resembles the classical solution but replaces the exponential function with the Mittag-

Leffler function [4]:

c(x,t) = ¢ (1 — %) - % i % sin (%) E, (—nQ}ttho‘) : (2.17)
1

n—

This solution generalizes the classical diffusion result (recovered when a = 1), and captures

memory effects and anomalous transport behavior observed in complex or biological media.

2.2.4 Comparison between the classical model and the fractional

model

e Memory Property and Lag Time Representation

Classical: Does not account for past temporal effects and requires the explicit inclusion

of lag time.

Fractional: Incorporates the memory property, where the current state depends on the
entire past history, and the lag time emerges naturally [7].
e Diffusion Pattern

Classical: Describes normal (Gaussian) diffusion, where the spreading distance increases

with the square root of time.

Fractional: Describes anomalous (non-Gaussian) diffusion, often exhibiting subdiffusive
behavior that can generate non-Gaussian curves accurately reflecting the experimental
behavior of the drug [3] [4].

e Accuracy of Biological Representation

Classical: Assumes ideal and instantaneous diffusion behavior, which may not accurately

reflect the complex physiological reality.

Fractional: Represents the non instantaneous interactions between the drug and skin

tissues [15], capturing the complex temporal nature of absorption.
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2.3 A Predator—Prey Model with Infectious Disease in
the Prey Population

2.3.1 Biological Overview

The predator-prey relationship is one of the most extensively studied biological interactions.
When an element of epidemic infection is introduced into this relationship particularly among
members of the prey population the population dynamics become more complex. When prey are
infected with a contagious disease, the population typically splits into two categories: healthy
(susceptible) prey and infected prey. It is often assumed that transmission occurs through
direct contact or via the environment. This change in the composition of the prey population

is reflected in:

1.Prey Population

e Decrease in Prey Population: The spread of a lethal disease among prey can lead to

a rapid decline in their numbers.

e Behavioral Changes: Some diseases weaken the prey or slow their movement, making

them easier to catch.

e Natural Selection: Over time, only prey with stronger immune resistance may survive,

leading to changes in the genetic makeup of the population.
2.Predators Population

e Food Scarcity: The decline in prey populations due to disease may result in starvation

among predators, or force them to switch to alternative prey species.

e Risk of Infection Transmission: Some diseases can be transmitted from prey to

predators, posing a health threat to the predators .

e Change in Hunting Strategy: Predators may prefer to hunt infected prey due to ease

of capture.
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~ Infection

Susceptibleg
prey \

Infected
prey

DEATH

L

Results in a“reduction in
predator numbers

Figure 2.3: A simplified model of predator—prey interaction with disease

2.3.2 The Classical Model

To formulate the classical model (using classical differential equations), the following assump-

tions [6] must be considered:

e The prey is divided into two categories: infected prey I(t) and healthy prey S(t) become

infected upon contact with infected prey.

e The healthy prey grows according to a logistic model characterized by an intrinsic growth
rate r and an environmental carrying capacity k, which represents the maximum popula-

tion size that the environment can sustain.
e The infected prey die due to the disease (their recovery is not taken into account).
e The predators Y (¢) do not rely entirely on these prey.

e All prey, both susceptible and infected, serve as food for the predators, but it is easier for

the predators to catch the infected prey.

Based on the previous assumptions, we formulate the following model [6]:

(dS S+1 p1S?Y
— =nS(1- —A\ST— 1~
dt & ( ky ) 1+S+6I
dI pI?Y
el <) S S 2.18
a M Ty (218)
dY . v(1— Y 4 p152Y B p2]2Y
e b+ S+ml)  T\1+s5+061) \1+5+01)
S(0) >0, I(0)>0, Y(0)>0. (initial conditions) (2.19)
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where
e 11,75: Per capita growth rate of the prey and predators,respectively.

k1, ko:The maximum capacity of the environment to support the number of prey and

predators,respectively.

p1, p2: Maximum rates of consumption of susceptible and infected prey,respectively.

0: Predator’s rate of preference for the infected.
e )\ : The rate of infection spread from infected prey to susceptible prey.
e 7: Per capita mortality rate of infected prey due to the disease.

m : The rate of the environment’s ability to support predators due to their consumption

of infected prey.

01,09 : The rate of predator’s response to the type of prey consumed (infected or healthy).

Interpretation of the Model Terms

1- Equation of the Healthy Prey (S)

as S+1 p1S?Y
—=rS|1- — AST - — . 2.20
at < kl) <= 1+S+61 (2:20)
—~ _~  Infection transmission N——
Logistic growth of S Y-to-S predation rate
2- Equation of the Infected Prey (I)
dI poI?Y
— = AST - ——— = I . 2.21
dt <= 1+S5+0I ’ (2.21)
Infection transmission Infected prey mortality
Y-to-1 predation rate
3- Equation of the Predators (Y)
dYy Y D1 SQY D2 ]2Y
— =Y (l-—— | + or| ———+ — oy | ————
dt ko +S+ml 1+5+01I 1+5+01I
Logistic g:",owth of Y The positive effect\sr of predation on S The negative effec‘tg of predation on I

(2.22)

Existence and Uniqueness of the Solution

To establish the existence and uniqueness of a solution to the system of differential equations
(2.18) with the initial conditions (2.19), we invoke the classical Picard-Lindel6f theorem. This

theorem requires the following two conditions to be satisfied:
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as dlI ay
e Continuity of the right-hand side functions: The functions FTRTE and ” are con-
tinuous in their domain. Since all expressions are composed of polynomials and rational
functions with non-zero denominators in the biologically meaningful domain, continuity

is ensured.

e Lipschitz continuity in the state variables S, I, and Y: The partial derivatives of
the right-hand side functions with respect to S, I, and Y are bounded in any closed and

bounded subset of the domain
D={(S,LY)ER*|S>0 1>0,Y >0},

which is the biologically relevant region.

Therefore, by the Picard-Lindeldf theorem, the system (2.18) admits a unique local solution
in a neighborhood of the initial time within the domain D.
Reference [16] provides a detailed analysis of the existence and uniqueness proof for an equiv-

alent model.

The tight nonlinear coupling of variables in the system impedes analytical tractability, as
the equations cannot be decoupled. The presence of multiplicative interaction terms (e.g.S1,
I?Y) renders explicit solutions infeasible, necessitating numerical, which are presented in Chap-
ter 3.

2.3.3 The Fractional-Order Model

Traditional computation is less effective in describing complex environmental phenomena. Note
that all the models mentioned above are in the form of a system of first-order differential
equations, meaning that the growth rate of each population group depends only on the current
state. In reality, the growth rate also depends on all past states (known as memory effects).
To incorporate such effects, researchers apply a system of fractional differential equations [10],

where the order of the derivative indicates the memory rate, as follows:

( I 0 g2y
Cpes(t) = res <1 _ 5 ) _yegr— PS

14+ S+60
o 12Y
CDOI(t) = MST— P2 ep (2.23)
PeS2Y psI2Y
S SR [ S S S N
ks + S +ml 1+S+60I 1+S+o1

1

‘DY) =r3Y (1 —

\

where a € [0, 1].
Since time is associated with the order of the fractional derivative «v , it is necessary to adjust

all time dependent parameters to be consistent with this change. To maintain dimensional
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consistency in the equations, the time dependent parameters are rescaled by raising them to
the power of a.

To study the existence and uniqueness of the system (2.23), we define the region 2 x [0, 77,
where

Q={(S, 1Y) e R® | max{|S|,|I],|Y]} <M}, T <o,
and M is sufficiently large.

Theorem 2.3.1 For each Xo = (SoloYo) € 2, there ezist sa unique solution X(t) of the Caputo
fractional differential system (2.23) with the initial condition Xy € ), which is defined for all
t>0.

Detailed proof in the reference [11].

2.3.4 Comparison between the classical model and the fractional

model

e Infection transmission: The classical model uses a simple term to represent infection
transmission, namely ASI, and assumes instantaneous and homogeneous interaction be-
tween individuals. This representation does not account for factors such as exposure
duration or the evolution of immune response [6]. In contrast, fractional models allow for

the representation of this time dependent cumulative behavior.

e Time delay: When a healthy prey comes into contact with an infected one, transmission
does not necessarily occur immediately there may be an incubation period before symp-
toms appear. Similarly, a predator does not benefit directly from consuming prey; rather,
the effects on its survival and reproduction manifest after a delay. This time delay is chal-
lenging to represent in classical models [2], whereas the fractional model automatically

captures it through the structure of its derivatives.

e Complex predator-prey interactions: The classical model cannot represent the grad-
ual shift from preying on healthy prey to targeting infected prey (due to their weakened
state and easier capture). In contrast, fractional models are inherently suited to this

transition.

e Disease-induced mortality rate : The classical model assumes that the mortality
rate of infected prey is represented by a constant term I, applied instantaneously and
uniformly to all infected individuals [L1]. In contrast, the fractional-order model accounts
for the duration of infection and is capable of incorporating the cumulative effect of the

infection period into the system dynamics.
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|
APPLICATIONS

To compare the behavior of the classical and fractional-order models discussed in the previous
chapter and verify the flexibility of fractional models in representing complex biomedical phe-
nomena, we conduct numerical simulations using the finite difference method for both classical

and fractional models.

3.1 First Model (Diffusion of 4-Cyanophenol through
Human Skin )

To evaluate the accuracy of fractional order models compared to classical models of transdermal

drug diffusion, we rely on experimental data reported by Pirot et al (1997).

3.1.1 Experiment

A saturated aqueous solution of 4-cyanophenol was applied onto a patch, which was then placed
on the skin surface for 15 minutes. After exposure, the stratum corneum (the outer layer of
the skin) was gradually removed using 20 adhesive strips, each corresponding to a specific
depth within the skin. The concentration of 4-cyanophenol in each stripped layer was quantita-
tively measured using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spec-
troscopy, a non-destructive and sensitive technique for detecting chemical compounds within
biological tissues. The results of this experiment are shown as discrete points in Fig 3.1, and

serve as a reference for comparing the accuracy of classical and fractional diffusion models.
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CHAPTER 3. APPLICATIONS

The conditions applied in the experiment are:

C(O,t) = KCveh, t > 0.
C(h,t) =0, t>0.
C(z,0) =0, 0<z< L

where
® ¢, : the concentration of 4-cyanophenol solution in the vehicle.
e K: Distribution coefficient between the stratum corneum and the vehicle.

For the Fickian model( classical model), we represent the well-known solution (2.4 )using the

following inputs:
® Cyop, = 196 mmol L.
e t =900 second.
e D=990x10"s"".
o K =T74.

These values were chosen in accordance with typical experimental conditions [3]. Based on
these parameters, we plotted the continuous curve in Fig 3.1, which represents the solution
concentration as a function of the relative position.

As for the dashed curve in Fig 3.1, it represents the solution concentration values from the
fractional model (2.17) using a simplified approximation of the Mittag-Leffler function with the

fractional order set to oo = 0.9.

Z.OL
E(—r)~exp|——=—"—]. 3.1
o~ ew (<) (3.)
This is done to accelerate numerical computations and simplify the model analysis.

This approximation provides acceptable results for moderate values of x and is widely used in

numerical applications of fractional models.

3.1.2 Results and Discussion

Fig 3.1 It can be observed that the classical model (the continuous curve ) almost does not
intersect any experimental data points and decreases more rapidly, which causes it to deviate
from the experimental data, especially in the middle of the domain.

In contrast, the fractional model (the dashed curve) intersects the experimental data at five

points and follows their general trend, demonstrating a higher ability to represent the slow
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diffusion of the compound within the skin.
This reflects the presence of microscopic barriers in the skin, anomalous diffusion, and memory

effects.

A\ ® Experimental data
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Figure 3.2: Effect of varying the fractional order o on drug concentration in the skin
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To study the effect of the fractional derivative on drug diffusion within the skin, several
different values of the fractional order a=[1.0 0.9 0.7 0.5 0.3] were used.

Fig 3.2 above shows that lower values of « (such as 0.3 and 0.5) lead to a decrease in the
compound concentration in the deeper layers of the skin, indicating a slowdown in the diffusion
of the substance within the tissue. This behavior reflects the nature of anomalous diffusion,
where molecules do not move freely as in the classical model, but instead their movement is

constrained by memory effects and temporal accumulation.

The flexibility in choosing « allows researchers to adjust the model to match different skin
conditions, such as dry, or lipid-rich skin, thus enabling the creation of a customized model
for a specific biological case. This concept can also be extended to represent temporal changes
in skin properties, such as those caused by aging or disease, through the dynamic adjustment
of the a value over time or with changing physiological states. Finally, in situations where
experimental data is limited or unavailable, a can be used as a tunable parameter, adjusted
based on known material or environmental properties. This provides the researcher with a

predictive and flexible tool to accurately describe diffusion behavior within the skin.

3.2 Second Model (Interactions between Tilapia Fish

and Pelicans

3.2.1 Numerical Solution

For the numerical study of Model ( 2.18), we approximate the derivative using forward differ-

ences, which are defined by the following expression:

dy

Yn+1 — Yn
~ . 3.2
7 (32)

At

t=tn

Let y,, and y,, 1 denote the values of y at discrete time points t,, and t,, 1 = t,, +At, respectively,
where At is the time step size (discretization interval).

By substituting the forward finite difference approximation, we obtain:

( [ Sn + In plS2Yn
Sh =S, +At|rS,[1- —AS, I, — ———|,
+ * . ( Ky ) 1+ S, + 01,
p2[2Yn
I, =1,+At|\S, I, — —"2nn o1 3.3
+1 A ALy = e T T } (3:3)
I Yn alplszyn UQpQIQYn
Y, =Y, +At|rY,[1— n _ n ‘
| Yt A ( k2+Sn+mIn>+1+Sn+61n 1+ S, +0I,
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In the fractional case, the Caputo derivative is approximated by the L1 method at ¢,

D1 0) = oy 2 Utaed) = S0 (=30 = (= =177,

Jj=

For each of S(t), I(t), and Y(t), we approximate their derivatives using the previously mentioned

L1 method, thus obtaining a discretized system:

( n—1
1 Sj+1 — Sj Sn + ]n p?SZYn
n—j — aSn 1— - AOZSnIn - —n’
r(2—oé)jZ N AR kr 1+ S, +0I,
n—1
1 Ij+1 - Ij p%]QYn
n—j = A SpI, — — = aIn;
r(z—a); Ata nd 1+8,+01, '
n—1
1 Y}Jrl - Y; Yn p?SQYn ngQYn
i =15Y, [ 1 — _flvntR —”7
F(Q—a)z N A ko + S +ml ) T TS, 101, “*1+S,+ 61,
L =
(3.4)

where the weights are given by:
Wnj = (n—j) "= (n—j— 1)

The resulting nonlinear system is solved numerically employing the Newton-Raphson method.
We selected parameter values based on ecological studies of tilapia and pelicans in the Salton
Sea,as reported in reference [0].(See tables below )

To display the results of the fractional model behavior and the classical model, we solve both

Parameter Value

1 1.8
To 0.0015
k1 50
ko 20
P1 0.05
Do 0.05
o1 0.35
09 0.15
v 0.24
0 6
m 0.25
A 0.06

Table 3.1: Parameter Values Used in the Model

systems (3.3) and (3.4) in MATLAB using the previous variable values and initial conditions
((S,.1Y)=(10,3.5,1.5)).
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3.2.2 Results and Discussion
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Figure 3.3: Comparison of traditional and fractional models

Figure 3.3 illustrates the behavioral dynamics of susceptible prey, infected prey, and predators

under both classical (integer-order) and fractional-order derivatives,where we observe:

e Panel A: In the classical model, the number of healthy prey decreases sharply due to
the immediate interaction with infection and predation, with persistent oscillations until
reaching a stable state. In contrast, in the fractional model, the change in the number
of healthy individuals occurs more slowly and smoothly, resulting from the temporal
accumulation of infection and predation history, such as the virus incubation periods and

the behavioral adaptation of prey by avoiding areas where the disease is widespread.

e Panel B: The classical model shows an initial exponential increase in the number of
infected prey, indicating rapid disease transmission, followed by a sudden collapse in the
population due to predation pressure and infection-induced mortality, with persistent
oscillatory behavior. In contrast, the fractional model exhibits a much slower disease
spread, thanks to memory effects through resulting from the development of immune
responses and the avoidance of disease-spread areas and infected prey, based on cumulative

experience.

e Panel C: In the initial time period, the number of predators increases in both models due
to the abundant availability of both healthy and infected prey. In the classical model,
a rapid decrease in predator numbers occurs because it depends solely on the current
state of the system. In contrast, in the fractional model, the predator numbers decrease
more slowly due to the memory effect, which takes into account periods of nutritional

sufficiency and cumulative past influences.
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Figure 3.4: Effect of fractional derivative order on the dynamics of prey and predator popula-
tions

Fig 3.4 illustrates the effect of varying the fractional derivative order v on the behavior of a
predator-prey system with an infectious disease among the prey. It is observed that as the value
of a approaches zero, the oscillations in the system’s dynamic variables decrease, resulting in
a slower and smoother response. This behavior is attributed to the increasing memory effect
inherent in the fractional derivative, which leads to a reduction in the infection spread rate.
Additionally, a lower « value reduces the predators ability to prey on infected prey, thereby
limiting the decline in predator population.

Adjusting the fractional derivative order is considered an effective and essential tool for
understanding the characteristics of the biological system and interpreting its dynamic behavior,
as well as for predicting its future evolution. By calibrating o based on realistic experimental
data, it becomes possible to predict the system’s behavior over time with greater accuracy, in
addition to inferring information about missing time intervals or incomplete experimental data.
Thus, the fractional model contributes to improving the analysis of biological phenomena and

providing more precise insights into their development.
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CONCLUSIONS

L%hesis aims to highlight the motivations that led mathematicians to resort to fractional
differential equations in modeling biomedical phenomena, as an alternative to classical differ-
ential equations, by pointing out the limitations of the latter in representing complex systems
in this field.

In the first chapter, the definitions of fractional derivatives and fractional differential equa-
tions were addressed, along with a review of analytical and numerical methods used to solve
them. The second chapter focused on the application of fractional equations to two biomed-
ical modeling cases: drug diffusion through the skin, and the predator-prey interaction with
infection among the prey, with a comparison between each fractional model and its classical
counterpart.The third chapter dealt with numerical simulations using MATLAB to analyze the
behavior of the solutions and to identify the differences between the two models: the fractional
and the classical.

Based on this study, it can be concluded that fractional differential equations are a powerful
and effective tool in biomedical modeling, as they provide higher accuracy and better agreement
with real-world data. In addition, they are capable of representing memory effects, time delays,
and non-Gaussian behavior, giving them greater predictive power in complex systems.

This thesis marked a turning point in my understanding of the integration between mathe-
matics and biomedical sciences, and confirmed that fractional calculus is not just an abstract
mathematical concept, but a valuable tool for a deeper understanding of biomedical phenom-
ena.

Despite the challenges I faced due to the novelty of the subject for me, these obstacles pushed
me to develop my research and analytical skills. I hope this work will be a first step toward
more advanced research projects in fractional biomedical modeling, whether by improving cur-

rent models or developing new ones for other systems in the field.
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Appendix A: Auxiliary Mathematical Definitions

e I'(z) :Generalizing the factor to complex numbers is called gamma function . It is
defined for R(z) > 0 by Euler’s integral:

F(:U):/ t" et dt.
0

It satisfies the recurrence relation:

F(z+1) =2l(2) I'(n)=(n—-1)! neN".
e [(z,y): The Beta function, denoted as 3(z,y), is defined by the following integral:

Blx,y) = / L1 — 0t

for z,y > 0. It is symmetric, meaning f(x,y) = f(y,x) , and is related to the Gamma

function by the identity:
L'(z)C(y)

B(x,y) = Tty

e FE,s(x): The Mittag-Leffler function is defined as:

0 C.
;Fom—l—ﬂ a>0 pe

where:

— x is the argument of the function,

— I'(z) is the Gamma function.

X
By (x) = Z = o

n=0

(This is just the standard exponential function.)

e (fxg)(z): The convolution between f(z) and g(z), (f * g)( / ft)g(x —t)d

e L{f(x)}(s):The Laplace transform of a function f(x),L{f(z)}(s) = /OOO e f(z)dx

Table of Inverse Laplace Transforms for Basic Functions:
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Laplace Transform L{f(z)} | Inverse Laplace Transform f(z)
1
- 1
s
1
3_2 T
1 " I
s (n—1)!
1 —axr
e
sta
T I
e o sin(ax)
1 1
m 15 COS(CLZL’)
W 21—a Sinh(ax)
m —a COSh(CLCE')
- —bx
5 s+b
T .
o o sin(ax)
: ~sinh(a2)
— sinh(ax
s?2 —a? o

Table 2: Common Laplace Transforms and their Inverses
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Appendix B: MATLAB Codes

B.1 MATLAB Code for Drug Diffusion through Skin: Classical and
Fractional Models

B Ezperimental data —--——-—

x_data = [ ...

0.0994, 0.1670, 0.2346, 0.3439, 0.3877,
0.4751, 0.5189, 0.5885, 0.6322, 0.6938,
0.9245, 1.0020];

C_data = [ ...

1.0465, 0.9126, 0.9740, 0.6447, 0.3126,
0.1702, 0.2205, 0.1591, 0.1367, 0.2288,
0.0837, -0.0028];

no————= Parameters ----—-
C_veh = 0.196;

K = 7.4;

t = 900;

alpha = 0.9;

D_eff = 9e-05;

N = 100;

h=1;

xL = linspace(0, 1, 200);

A —=—== Mittag-Leffler function approzimation -----
approx_ML = @(z,alpha ) exp(-z. alpha / gamma(l + alpha));

Ao———— Fractional model using Mittag-Leffler approxrimation —--——-
C_frac = zeros(size(xL));

for i = 1:length(xL)

sum_series = 0;

for n = 1:N

lambda_n = n * pi;

z = D_eff * (lambda_n"2) * t~alpha;

ML_approx = approx_ML(z, alpha);

term = (2 / (n * pi)) * sin(lambda_n * xL(i)) * ML_approx;
sum_series = sum_series + term;

end

C_frac(i) = K * C_veh * (1 - xL(i) - sum_series);

end
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Ao———- Classical model for comparison ———--

C_classic = zeros(size(xL));
D_classic 9e-5;

for i = 1:length(xL)

sum_series = 0;

for n = 1:N

term = (2 / (n * pi)) * sin(n * pi * xL(i)) * exp(-D_classic * n"2 * pi~2 * t);
sum_series = sum_series + term;

end

C_classic(i) = K * C_veh * (1 - xL(i) - sum_series);

end

figure;

hold on;

plot(x_data, C_data, ’bo’, ’MarkerFaceColor’, ’b’, ’DisplayName’, ’Experimental data
)5

plot(xL, C_classic, ’r-’, ’LineWidth’, 2, ’DisplayName’, ’Classical model’);

plot(xL, C_frac, ’g--’, ’LineWidth’, 2, ’DisplayName’, [’Fractional model.’]);

xlabel(’x/L’);

ylabel (’CP_Concentration,(mol/L)’);

legend(’Location’, ’northeast’);

x1im([0 1.2]); % Limit z-azis from 0 to 1
ylim([-0.1 1.2]1); /% Limit y-azis from O to 1.2
grid omn;

B.2 MATLAB Code for Solving Classical and Fractional Predator—Prey

Model with Infectious Disease

/i Basic parameters from the table
rl =1.8;

r2 = 0.0015;

k1 = 50;

k2 = 20;

pl = 0.05;

p2 = 0.05;

sigmal = 0.35;
sigma2 = 0.15;
gamma_val = 0.24;
theta = 6;
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m = 0.25;
lambda = 0.06;

Z Initial conditions

S0 = 10;
I0 = 3.5;
YO = 1.5;

% Simulation time settings
t_start = 0;

t_end = 100;

dt = 0.1;

N = round((t_end - t_start)/dt);

t = linspace(t_start, t_end, N+1);

/4 Solve classical model (alpha=1)

alpha_trad = 1;

[S_trad, I_trad, Y_trad] = solve_model(alpha_trad, rl, r2, ki1, k2, pl, p2,
sigmal, sigma2, gamma_val,

theta, m, lambda, SO, IO, YO, t, dt);

%4 Solve fractional model (alpha=0.9)

alpha_frac = 0.9;

[S_frac, I_frac, Y_frac] = solve_model(alpha_frac, rl, r2, ki1, k2, pl, p2,
sigmal, sigma2, gamma_val,

theta, m, lambda, SO, IO, YO, t, dt);

/4 Display comparison results with modified plot function

plot_comparison(t, S_trad, I_trad, Y_trad, S_frac, I_frac, Y_frac);

function [S, I, Y] = solve_model(alpha, rl, r2, k1, k2, pl, p2,
sigmal, sigma2, gamma_val,

theta, m, lambda, SO, IO, YO, t, dt)

/% Modify parameters according to fractional order

if alpha < 1

rl_a = ri1”alpha;

r2_a = r2"alpha;
pl_a = pl~alpha;
p2_a = p2~alpha;

gamma_a = gamma_val~alpha;
lambda_a = lambda”alpha;
else

rl_a = ri;
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r2_a = r2;

pl_a = pi;

p2_a = p2;

gamma_a = gamma_val;
lambda_a = lambda;

end

/4 Time-independent parameters remain unchanged
k1_a = ki;
k2_a = k2;

sigmal_a

sigmal;
sigma2_a = sigmaZ2;
theta_a = theta;

m_a = m;

/4 Initialize arrays

N = length(t)-1;

S = zeros(1l, N+1);
I = zeros(1l, N+1);
Y = zeros(1l, N+1);
S(1) = S0;

I(1) = I0;

Y(1) = YO;

if alpha < 1

weights = zeros(l, N+1);

weights(1) = 1;

for j = 1:N

weights(j+1) = (1 - (1+alpha)/j)*weights(j);

end
for n = 1:N
denom = 1 + S(n) + theta_a * I(n);

dS =ri_a * S(n) * (1 - (S() + I(m))/kli_a)
- lambda_a * S(n) * I(n)
- pl_a * S(n)"2 * Y(n) / denom;

dI = lambda_a * S(n) * I(n)

- p2_a * I(n)"2 * Y(n) / denom ...

- gamma_a * I(n);
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dY = r2_a * Y(n) * (1 - Y(n)/(k2_a + S(n) + m_a * I(n)))
+ sigmal_a * pl_a * S(n)"2 * Y(n) / denom ...
- sigma2_a * p2_a * I(n)"2 * Y(n) / denom;

sum_S = sum(weights(2:n+1).*(S(n:-1:1) - S0));
sum_I = sum(weights(2:n+1) .*(I(n:-1:1) - I0));
sum_Y = sum(weights(2:n+1) .*(Y(n:-1:1) - YO0));

S(n+1) = SO + (dt"alpha * dS - sum_S)/weights(1);
I(n+1) = I0 + (dt"alpha * dI - sum_I)/weights(1);
Y(n+1) = YO + (dt~alpha * dY - sum_Y)/weights(1);

S(n+1) = max(S(n+1), 0);

I(n+1) = max(I(n+1), 0);

Y(n+1) = max(Y(n+1), 0);

end

else

/4 Classical solution using Euler’s method
for n = 1:N

denom = 1 + S(n) + theta * I(n);

dS =r1l * S(n) * (1 - (S(n) + I(n))/kl)
- lambda * S(n) * I(n)
- pl * S(0)"2 * Y(n) / denom;

dI = lambda * S(n) * I(n)
- p2 * I(n)"2 * Y(n) / denom ...

- gamma_val * I(n);

dy = r2 x Y(n) * (1 - Y(0)/(k2 + S(n) + m * I(n)))
+ sigmal * pl * S(n)"2 * Y(n) / denom ...
- sigma2 * p2 * I(m)"2 * Y(n) / denom;

S(n+1) = S(n) + dt * dS;
I(n+1) = I(n) + dt * dI;
Y(n+1) = Y(n) + dt * 4Y;

S(n+1) = max(S(n+1), 0);

I(n+1) = max(I(n+l), 0);
Y(n+1) = max(Y(n+1l), 0);
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end
end

end

/i Modified plot_comparison function

function plot_comparison(t, S_trad, I_trad, Y_trad, S_frac, I_frac, Y_frac)
figure(’Name’, ’sa’,

’NumberTitle’, ’off’, ’Position’, [100, 100, 1000, 800]);

/ Healthy prey S

subplot(3,1,1);

plot(t, S_trad, ’b-’, ’LineWidth’, 1.5, ’DisplayName’, ’classical,,(\alpha=1)’);
hold on;

plot(t, S_frac, ’b--’, ’LineWidth’, 1.5, ’DisplayName’, ’Fractional, (\alpha=0.9)’);

ylabel({’A’, ’Population’});
xlabel (’Time’);
legend(’Location’, ’best’);
grid on;

hold off;

% Infected prey I

subplot(3,1,2);

plot(t, I_trad, ’r-’, ’LineWidth’, 1.5, ’DisplayName’, ’classical,,(\alpha=1)’);
hold on;

plot(t, I_frac, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’Fractional, (\alpha=0.9)’);
ylabel({’B’, ’Population’});

xlabel (’Time’);

legend(’Location’, ’northeast’);

grid on;

hold off;

/4 Predators Y

subplot(3,1,3);

plot(t, Y_trad, ’g-’, ’LineWidth’, 1.5, ’DisplayName’, ’classical,,(\alpha=1)’);
hold on;

plot(t, Y_frac, ’g--’, ’LineWidth’, 1.5, ’DisplayName’, ’Fractional,;(\alpha=0.9)’);
xlabel (°Time’);

ylabel({’C’, ’Population’});

legend(’Location’, ’northeast’);

grid on;

hold off;

end
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Abstract

This thesis examines the role of fractional differential equations in modeling biomedical
phenomena characterized by memory properties and non-Gaussian behavior. It begins
with an overview of the fundamentals of fractional calculus and methods for solving frac-
tional differential equations, then presents two biological models in both their classical
and fractional forms. The study concludes with numerical simulations of each model's
behavior using MATLAB, analyzing the impact of varying the fractional derivative order
on the system dynamics. The results demonstrate the superiority of fractional models in
representing complex biomedical systems with greater flexibility and realism.
Keywords: Fractional differential equations, Caputo fractional derivative, biomedical
modeling, memory effect.

Résumé

Ce mémoire examine le role des équations différentielles fractionnaires dans la modéli-
sation des phénoménes biomédicaux caractérisés par des propriétés de mémoire et un
comportement non gaussien. Il commence par une présentation des fondamentaux du
calcul fractionnaire et des méthodes de résolution des équations différentielles fraction-
naires, puis présente deux modeles biologiques sous leurs formes classique et fraction-
naire. L’étude se conclut par des simulations numériques du comportement de chaque
modele a I’aide de MATLAB, analysant I’'impact de la variation de I’ordre de la dérivée
fractionnaire sur la dynamique du systéme. Les résultats démontrent la supériorité des
modeles fractionnaires dans la représentation des systemes biomédicaux complexes avec
une plus grande flexibilité et réalisme.

Mots-clés : Equations différentielles fractionnaires, dérivée fractionnaire de Caputo,

modélisation biomédicale, effet de mémoire.
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