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Introduction

Extreme value distributions are gaining increasing importance in various ap-

plied �elds such as engineering, �nance, and environmental sciences, where they

are used to model rare and extreme events. The Frechet distribution is among the

most prominent of these distributions due to its ability to represent heavy-tailed

data.

Estimating the parameters of such distributions is a crucial step to ensure

the accuracy and e¤ectiveness of statistical models. However, traditional methods

such as maximum likelihood, moments, and ordinary least squares may perform

poorly when dealing with small samples or highly extreme data.

In this context, the Weighted Least Squares (WLS) method emerges as a

promising alternative potential to enhance estimation accuracy, especially when

appropriate weights are applied to re�ect the distributional characteristics of the

data. Previous studies have shown that this method may outperform classical

approaches in certain situations.

This thesis is structured into three chapters:

Chapter 1:

This chapter presents the theoretical framework of the study, including the

fundamental concepts, extreme value theory, and tail index estimation. It con-
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Introduction

cludes with an overview of tail index estimation methods, which are essential for

analyzing the extreme behavior of distributions.

Chapter 2:

This chapter covers the mathematical background for applying regression-

based estimation methods, with a particular focus on the weighted least squares

(WLS) method. We begin by reviewing some basic concepts in regression theory,

such as the regression model and the simple linear regression model, then dis-

cuss various weight expressions. The chapter concludes with the derivation and

formulation of the estimators.

Chapter 3:

This chapter focuses on evaluating the performance of the estimators obtained

using the WLS method through a comparative simulation study. The analysis is

based on statistical indicators such as bias and mean squared error (MSE), with

the results presented and discussed to highlight the e¢ ciency of the proposed

approach.
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Chapter 1

Tail index estimation

Tail index estimation is a fundamental concept in extreme value theory

and risk management, used to measure the "heaviness" or "extent" of the tail

in a probability distribution. The tail index determines the behavior of extreme

values, especially in heavy-tailed distributions such as the Pareto, Cauchy, and

Frechet distributions.

This chapter focuses on the study of extreme values and their fundamental

characteristics, with a particular emphasis on estimating the tail index and the

various methods used for its estimation. ther are many refrence books on extreme

value theory (EVT)for example: David et all., 1970, Balakrishnan et all., 1991,

and De Haan et all., 2006.
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Chapter 1: Tail index estimation

1.1 Fundamentals of EVT

De�nition 1.1.1 (Distribution and survival functions):If X is a rv de�ned

on aprobability space (
; F; P ) then, its df F (x) and survival function F (x)(also

called hazard function) are de�ned on R on follows:

F (x) := P (X � x) and F (x) := 1� F (x)

De�nition 1.1.2 (The empirical distribution function ):Let X1; :::; Xn be

a sample of a positive r.v X of size n � 1 . The empirical distribution function

Fn(x) is de�ned as:

Fn :=
1

n

Xn

i=1
IfXi�xg; 8x � 0

where IfXi�xg is the indicator function of the set fXi � xg, Fn(x) is the proportion

of the Xivariables which are less than or equal to x.

De�nition 1.1.3 (The empirical survival function): Let X1; :::; Xn be a

sample of a positive r.v X, of size n � 1. The empirical survival function noted

by Sn, is given by:

Sn := 1� Fn :=
1

n

nX
i=1

IfXi>xg; 8x � 0

Sn is the proportion of observations that exceeds x.

De�nition 1.1.4 (Quantile function):The quantile function of F is general-

ized inverse function of F de�ned by :

Q(s) = F �(s) := inf fx : F (x) � sg

4



Chapter 1: Tail index estimation

for all 0 < s < 1,with the convention that inf(;) =1:

De�nition 1.1.5 (Empirical quantile function):The empirical quantile func-

tion of the sample (X1; ::::::; Xn) is :

Qn(s) = inf fx : Fn(x) � sg = inf
(
x :

1

n

nX
i=1

IfXi>xg � s
)

for all 0 < s <1, where Fn is the empirical distribution function.

1.1.1 Order statistics

De�nition 1.1.6 (Order statistics):Let (X1; :::::; Xn) be n iid random variable

with a common distribution F and density f . We call the order statistics (in-

creasing order) the sequence of random variables (X1; :::::; Xn)which are ordered

by ascending order, either:

X1;n � :::::: � Xn;n

Remark 1.1.1 :For 1 � K � n the variableXk;n is known under the name of the

Kth order statistic or K order statistic.

De�nition 1.1.7 (Extreme order statistics):Two order statistics are particular-

interesting for the study of extreme events, are de�ned respectively by:

� the variable X1;n is the smallest statistic of order (or statistic of the min-

imum):

X1;n := min(X1; :::::; Xn):

5



Chapter 1: Tail index estimation

� the variable Xn;n is the greatest statistic of order (or maximum statistic):

Xn;n := max(X1; :::::; Xn):

De�nition 1.1.8 (Extreme order statistics distributions): The distribu-

tions FX1;nand FXn;nof the extreme order statistics X1;nand Xn;nare respectively

de�ned by:

FX1;n(x) = 1� [1� F (x)]
n

FXn;n(x) = [FX(x)]
n

pdf of X1;nand Xn;nis:

fX1;n (x) = nf(x) [1� F (x)]
n�1

fXn;n (x) = n [F (x)]
n�1
f(x)

De�nition 1.1.9 (Empirical df ) :The empirical df of the sample (X1; :::::; Xn)

is eval-uated using order statistics as follows:

Fn(x) =

8>>>><>>>>:
0 if x � X1;n

i�1
n

if X
i�1;n � x � Xi;n

for 2 � i � n

1 if x � Xn;n

����������
De�nition 1.1.10 (Distribution function of the Kth upper order stat-

istic):for k = 1; ::::; n let FX
K;n
denote the df of X

K;n
, then

FX
k;n
=

k�1X
r=0

�
n

r

�
F
r
(x)F n�r(x)

6



Chapter 1: Tail index estimation

if is continuous; then

FX
K;n
:=

Z x

�1
f
K;n
(z)dF (z);

where,

f
k;n
(x) :=

n!

(k � 1)! (n� k)! [F (x)]
n�k [1� F (x)]k�1

i.e f
k;n
is a density of F

k;n
with respect to F

proof :see e.g Embrechts et al., 1997 page 183.

De�nition 1.1.11 (Upper end point): We denote by xF (resp x�F ) the upper

extreme point (resp. Lower) of the distribution F (i.e. the greatest possible value

for Xk;n which can take the value +1 (resp �1) ) in the sense that:

xF := sup fx : F (x) < 1g � 1 ,and

x�F := inf fx : F (x) > 0g ;

1.1.2 Distribution of extreme values

This section deals the classical Extreme Value Theory (EVT), focusing on

the fundamental result reached by Fisher-Tippett [11] 1928.The theory of extreme

values shows that there are sequences fang and fbng; n 2 N� , with an > 0 and

bn 2 R; as

lim
n!1

P

�
Xn;n � bn

an
� x

�
= lim

n!1
F n (anx+ bn) = H(x) 8x 2 R; (1.1)

7



Chapter 1: Tail index estimation

whereH is a non-degenerate df. Since extreme value df�s are continuous on R,

assumption1.1 is equivalent to the following weak convergence assumption

Xn;n � bn
an

H�! as n!1

Remark 1.1.2 :The sequences fang and fbng, n � 1 are called sequences of nor-

malization, the constants an 2 R�+ and bn 2 R are called constants of normalization

and the random variable 1
an
(Xn;n � bn) is called the normalized maximum

1.1.3 Limit distributions

The following theorem gives a necessary and su¤cient condition for the ex-

istence of limit distribtion for the maximum.

Theorem 1.1.1 (Fisher & Tippett 1928 ):Let (Xn)n�1 be a sequence of i:i:d

random variables with cdf F: If there exist two real sequences fangn�1 > 0 and

fbngn�1 2 R; and a non-degenerate distribution function H such that:

lim
n!1

P

�
Mn � bn
an

� x
�
= H
 (x) ; where Mn = max(X1; ::::; Xn); (1.2)

then H
 (x) must be one of the following three type of distributions:

Frechet ��(x) :=

8><>: 0 if x � 0

exp(�x�
1
� ) if x > 0

������� with � > 0

Weibull 	�(x) :=

8><>: 1 if x � 0

exp
h
�(�x)� 1

�

i
if x < 0

������� with � < 0

Gumbel ��(x) := exp (� exp (�x)) ; for all x 2 R

8



Chapter 1: Tail index estimation

We refer to ��; 	� and �� as the extreme value distributions.

A detailed proof of this theorem is given in Resnick [24](1987).

Proposition 1.1.1 (Density function of extreme values):The density func-

tions of the distribution of standard extreme values and the diferent types of ex-

treme distribution, are as follows:

Frechet : �(x) = �x
���1

exp(�x��) x > 0

Weibull : 	(x) = 
(�x)���1 exp(�(�x)��) x < 0

Gumbel : �(x) = exp [�fx+ exp(�x)g] x 2 R

Figure1.1illustrates the Densities of the standard extreme value distributions. we

chose � = 1 for the Gumbel and the Frechet and the Weibull distribution.

Figure 1.1: Densities of the standard extreme value distributions.
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Chapter 1: Tail index estimation

De�nition 1.1.12 (Generalized extreme values distribution)(GEVD):

The behaviour of �1=
 ;	1=
 and � is completely di¤erent but they can be

combined into a single distribution dependent on a single parameter that controls

the tail thickness of the distribution

Theorem 1.1.2 If the limit (1:2) exists, then:

G
(x) :=

8><>: exp(�(1 + 
x)�
1

 ) if 
 6= 0;

exp(� exp(�x)) if 
 = 0:

�������
where:

� (1 + 
x) > 0:

� G
 (x) :is the cdf of the GEV Distribution.

� 
 : is called the tail index or extreme value index,and it is a fundamental

indicator of the shape of the tail.

Interpretation of the sign of the parameter 
:

1. The case 
 > 0; corresponds to Frechet�s distribution with parameter 1=
 >

0:

2. The case 
 < 0; corresponds to the Weibull�s distribution with parameter

�1=
 < 0:

3. The case 
 = 0; corresponds to Gumbel�s distribution.

10
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De�nition 1.1.13 (The Generalized Pareto Distribution): (GPD); with

parameters 
 2 R; and � > 0; is de�ned by its distribution function, given by:

G
;�(x) =

8><>: 1� (1 + 

�
x)�1=
 if 
 6= 0;

1� exp(�x
�
) if 
 = 0;

�������
or, x � 0 if 
 � 0 and 0 � x � 


�
if 
 < 0:

1.1.4 Domains of attraction

Before de�ning the domain of attraction, we begin by introducing functions

that exhibit di¤erent types of variation.For more information, refer to Bingham

et all., [3] 1987, where many results on regularly varying functions are discussed.

De�nition 1.1.14 (Regularly varying and slowly varying functions):.A

measurable function V :R+ �! R+ is regularly varying at 1 with the index �,

and we denote by V 2 RV� , if :

lim
x�!1

V (tx)

V (t)
= x� t > 0;

A measurable function l : ]a;+1[ �! Ŗ with (t > 0) is said slowly varying at

in�nity, if:

lim
x�!1

l(tx)

l(x)
= 1;

Theorem 1.1.3 (Kramata representation):every slowly varying function (i.e

l 2 RV0);if and only if can be represented as:

L(x) = c(x) exp

�Z x

1

r(x)

t
dt

�
; x > 0;

11
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where c(�); r(�) measurable functions, and

lim
x!1

c(x) = c0 2 ]0;+1[ and lim
t!1

r(t) = 0:

A function V :R+ �! R+ is regularly varying at 1 with the index � if and only

if V has the representation:

V (x) = c(x) exp

�Z x

1

�(t)

t
dt

�
; x > 0;

proof :See Resnick[24], 1987, Corollary 2.1; page 29.

De�nition 1.1.15 (Domains of Attraction):A distribution is said to belong to

the DA of G; denoted F 2 DA (G) ; if the distribution of the normalised maximum

converges to G: In other words, if there exist real constants an > 0 and bn 2 R

such that

lim
n!1

F n(anx+ bn) = G
(x):

The table 1:1 presents the DA for some models.

Domaine of attraction Frechet (
 > 0) Gumbel (
 = 0) Weibull (
 < 0)

Models

Burr
student

Log-gamma
Chi-sequre
Pareto

Gamma
Normale

Exponentielle

uniforme
Beta

Table 1.1: Usual models and their domaine of attractions

12
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1.1.5 Characterizations of the attraction domain

Diferent characterizations of three domain of attraction of Frechet,Weibull

and Gumbel, according to the sign of 
; we can distinguish three domain of

attraction:

Characterization of D (�
) :

if 
 > 0, we say that F belongs to D (�
), and F has an in�nite right end

point (xF = +1). This indicates that falls within the domain of attraction of

heavy-tailed distributions, which have a polynomially decaying survival function.

This result was established by Gnedenko [13](1943), and a simpli�ed proof can be

found in Resnick�s book, [Proposition 1.11].

Theorem 1.1.4 :F 2 D(�
) with parameter 
 > 0; xF = +1 if and only if :

1� F (x) = x�1=
l(x);

where l is a slowly varying function. In this case, a possible choice for the sequences

an and bn are an = F�1(1� 1
n
) and bn = 0:

Characterization of D (	
) :

if 
 < 0 , we say that F 2 D (	
)and that F has a �nite right end point

(xF < +1). This implies that the domain of attraction of survival functions is

restricted to distributions with an upper-bounded support.

The following result (see Gnedenko [13], 1943 and Resnick [24], 1987, [Proposition

1.3]) shows that we can transition from the domain of attraction of the Frechet

distribution to that of the Weibull distribution by a simple change of variable in

the distribution function.

13
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Theorem 1.1.5 :F 2 D(	
) with parameter 
 < 0; if xF = +1 and 1� F �is a

function with regular variations of index �

1� F (x) = xF � x�1 = x�1=
l(x);

where the function l slowly varying of index 1=
 In this case, a possible choice for

the sequences an and bn is

an = xF � F�1(1�
1

n
) and bn = xF

this domain of attraction has been considered by Falk [10],1995, Gardes [12], 2010

to give an endpoint estimator of a distribution.

Characterization of D (�) :

If 
 = 0, we say that F belongs to D (�). In this case, the upper end xF

point can be either �nite or in�nite. This domain includes distributions with light

tails, meaning those that have an exponentially decaying survival function. This

result was notably proven in Resnick[24] , 1987 [Proposition 1.4].

Theorem 1.1.6 :A distribution function F belongs to the Gumbel domain of at-

traction if and only if there exists z < xF <1 such that

�F (x) = c(x) exp

8<:�
1Z
z

1

a(t)
dt

9=; ; z < x < xF
wherec(x)! c > 0 when x! xF and a(:) is a positive and di¤erentiable function

with derivative �a(:) such that limx!xF �a(:)! 0:

The tables 1:2, 1:3 and 1:4 give di¤erent examples of standard distributions in

these three domains of attraction.

14



Chapter 1: Tail index estimation

Distributions �F (x) 

Uniforme[0; 1] 1� x �1
Inverse Burr(�; �; �; x� ) �; �; � > 0

�
�

�+(x�+x)��

��
� 1
�

Table 1.2: Some distributions associated with a negative index.

Distributions �F (x) or density f 


Burr(�; �; �) � > 0; � > 0; � > 0
�

�
��x�

��
1
��

Frechet 1
�
; � > 0 1� exp(�x��) 1

�

Log-gamma � > 0;m > 0 �m

�(m)

1R
x

(log(u))m�1u�(�+1)du 1
�

log-logistic � > 0; � > 0 1
1+��

1
�

Pareto � > 0 x��; x > 0 1
�

Table 1.3: Some distributions associated with a positive index

Distributions �F (x) or density f 


Gamma (m;�) m 2 N; � > 0 f(x) = �m

�(m)

1R
x

um�1 exp(��u)du 0

Gumbel (�; �) � 2 R; � > 0 f(x) = exp(� exp(�x�u
�
)) 0

Logistic �F (x) = 2
1+exp(x)

0

Log nomale � > 0; � > 0 f(x) = 1
2�

1R
x

1
u
exp(� 1

2�2
(log u� u)2)du 0

Weibull � > 0 �F (x) = exp(��u� ) 0

Table 1.4: Some distributions associated with a null index

1.2 Methods of semi-parametric estimation

These are methods that combine �exibility with assumptions; they do not

assume a speci�c form for the entire distribution, but only for the tail (e.g., the

Generalized Pareto Distribution �GPD).

Among the most commonly used semi-parametric estimators for estimating the

15



Chapter 1: Tail index estimation

tail index in heavy-tailed distributions are the Hill and Pickands estimators. These

are classical methods that rely on extreme values.

1.2.1 Hill�s estimator

Hill�s estimator is one of the most widely used estimators for the tail index

of heavy-tailed distributions. Research in this �eld has primarily focused on the

case where the EVI is positive (
 = 1
�
> 0) since most real-world data follows

distributions that belong to the domain of attraction of the Frechet distribution

F 2 D(��):

Hill[14] ,1975 identi�ed that the distribution tail follows a Pareto shape,


̂H = 
̂(H)
K

:=
1

K

KX
j=1

logXn�j+1;n � logXn�K;n

The estimator�s construction was detailed by De Haan et all.,[5], 2006 and Beirlant

et all.,[1] 2016. Alternative estimators include Beirlant et all.,[1], 2016 exponential

regression model and Csörg½o et all., [4], 1985 kernel-based approach.

The asymptotic properties of Hill�s estimator are summarized in the following

theorem.

Theorem 1.2.1 (Asymptotic Properties of 
̂H):Assume that F 2 D(� 1


); 
 > 0;

k !1 and K=n! 0 when n!1:

1. Mason [21],1982 has proven weak consistency :


̂H p�! 
 when n!1;

2. Strong consistency was established by Deheuvels et all. [7],1985 under the

16



Chapter 1: Tail index estimation

condition that :K= log n!1;then


̂H a:s�! 
 when n!1;

and more recently by Necir [22], 2006.

3. Asymptotic normality was established under a suitable extra assumption,

known as the second-order regular variation condition (see De haan and

Stadtmüller [6],1996 and De haan and Ferreira[5],2006), with mean 
 and

variance 
2=k:
p
K

�

̂H � 




�
d�! N (0; 1)

Figure 1.2, show that the Hill estimator against k performs well with both the

Frechet distribution, the sample size is n = 1000 , with parameter 
 = 0:6.

Figure 1.2: Hill estimator for samples of a Frechet distribution ( 
 = 0:6)
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Chapter 1: Tail index estimation

1.2.2 Pickand�s estimator

Pickands estimator is a classical alternative to Hill�s estimator and is primarily

used in analyzing heavy-tailed distributions.

James Pickands proposed his estimator in 1975,[23] to estimate the tail index

in heavy-tailed distributions, based on the order statistics of extreme values.the

Pickand estimator is de�ned by:


̂(p) = 
̂
(p)

K
:= (log 2)�1 log

�
Xn�k;n �Xn�2k;n

X
n�2k;n �Xn�4k;n

�

This estimator was later improved by Dekkers and de Haan (1989)[8] and Drees

(1995)[9].

Theorem 1.2.2 (Asymptotic Properties of 
̂(p)):Assume that F 2 D(H);


 2 R; k !1 and k
n
when n!1:

1. Weak Consistency :


̂(p)
p
�! 
 when n!1:

2. Strong consistency:


̂(p)a:s�! 
 when n!1:

3. Asymptotic normality: under further conditions on k and F;

p
K(
̂

(p)

K
� 
) d�! N (0; �2) when n!1:
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where

�2 :=

2(22
+1 + 1)

(2(2
 � 1) log 2)2

1.2.3 Moment estimator

Another estimator which can be considered as an adaptation of Hill�s estim-

ator, to obtain the consistency for all 
 2 R, has been proposed by Dekkers et

all., [8],1989. This is the moment estimator, given by:


̂M = 
̂(M)
K

:=M1 + 1�
1

2

0B@1�
�
M

(1)

(K)

�2
M (2)

(K)

1CA
�1

;

M
(r)

(K)
:=

1

K

kX
i=0

(logXn�i+1;n � logXn�k;n)
r; r = 1; 2:

Theorem 1.2.3 (Asymptotic Properties of 
̂M):Assume that F 2 D(H); 
 2 R;

k !1 and K=n! 0 when n!1 :

1. weak consistency :


̂M p�! 
 when n!1;

2. Strong consistency:if K=(log n)� !1; when n!1 for certain � > 0, so


̂M a:s�! 
 when n!1;

3. Asymptotic normality:(see Theorem 3.1 and Corollary 3.2 of [8])

p
k(
̂M � 
) d�! N(0; �2) when n!1;
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or

�2 :=

8><>: 1 + 
2 
 � 0;

1� (1� 2
)
�
4� 81�2


1�3
 +
(5�11
)(1�2
)
(1�3
)(1�4
)

�

 < 0;

�������
The normality of this estimator was established by Dekkers et all..,[8] under suit-

able regularity conditions.

1.3 Methods of parametric estimation

These are methods that rely on the assumption that the data follow a speci�c,

known distribution, such as the Pareto or Frechet distribution.

1.3.1 Maximum likelihood estimator

Maximum Likelihood Estimation (MLE) is a statistical method used to es-

timate the extreme value index based on maximum values in a sample. MLE aims

to �nd the optimal parameter values that maximize the likelihood of the observed

data under the extreme value distribution.

Let�s assume we have a sample of maximum values where n is the number of

observation.

1. case when 
 6= 0 : the likelihood function takes the forms :

L = ((0; an; bn);X) = �n log an+(
1



+1)

nX
i=1

log(1+

Xi � bn
an

)�
nX
i=1

(1+

Xi � bn
an

)
�1



2. case when 
 = 0 :the likelihood function takes the forms :

L = ((0; an; bn);X) = �n log an �
nX
i=1

Xi � bn
an

�
nX
i=1

exp(�Xi � bn
an

)
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According to Smith[25] (1985), the maximum likelihood estimator is consistent,

meaning it converges to the true parameter values as n!1 That is:

p
n((
̂; ân; b̂n)� (
; an; bn))! N(0; J�1)

where J is the Fisher information matrix estimated by its empirical version

J(�) = �E
�
@2L(�;X)

@�2

�

L(�;X) is the log-likelihood function associated with the law of the random vari-

able X,� parameterized by a set of parameters �:

1.3.2 Weighted moment estimator

The Weighted Moment Estimator (WME) is a statistical method introduced

by Hosking [15],(1985) is based on the following quantity, called the weighted

moment of order r :

wr := E(X Hr

;�;�(x)); r 2 N:

This quantity exists for 
 < 1 and given by:

wr :=
1

1 + r

�
�� �



(1� �(1� 
)(r + 1)
)

�
:
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where � is Euler�s gamma function. In this case, three weighted moments are

enough to calculate �; � and 
.

8>>>><>>>>:
ŵ0(�) = �� �



(1� �(1� 
));

2ŵ1(�)� ŵ0(�) = �


�(1� 
)(2
 � 1);

3ŵ2(�)�ŵ0(�)
2ŵ1(�)�ŵ0(�) =

3
�1
2
�1 :

����������
Thus by replacing respectively wr, r 2 f0; 1; 2g by its empirical estimator

ŵr;n =
1

n

nX
i=1

X
i;n
(
i� 1
n
)r

The weighted moment estimator (WME) is obtained by solving the system of

three equations

wr = ŵr;n r = 0; 1; 2:

The solution to this equation is the WM estimator 
̂ of 
The other parameters �

and � are estimated respectively by:

�̂ =
(2ŵ1 � ŵ0)
̂

�(1� 
)(2
 � 1)

and

�̂ = ŵ0 +
�̂


̂
(1� �(1� 
̂))

1.3.3 L-moment estimator

The L-moments method is a development of the traditional method of mo-

ments, and are linear combinations of order statistics. This concept was �rst

introduced by Hosking J. R. M.in 1990[16].
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De�nition 1.3.1 :Let X1; X2; ::::; Xnbe a sample of size n from a continuous dis-

tribution FX(x) with the quantile function Q(u) = F�1X (u), and let X1:r � X2:r �

:::::: � Xr;r be the order statistics associated with this sample. For r � 1, the

rthL-moments �r are given by:

�r =
1

r

r�1X
k=0

(�1)k

0B@ r � 1

k

1CAE(Xr�k:r);8r � 1:

such that E(Xr�k:r) presents the expectation of the order statistic.

In particular, for r = 1; 2; 3; 4, we obtain the �rst L-moments which are given by:

The �rst L-moment �1 is used to calculate the mean (measure of position) and is

de�ned by:

�1 = E(X1:1)

The second L-moment �2 is used to calculate (measure of dispersion or scale) and

is given by:

�2 =
1

2
E(X2:2 �X1:2)

The third L-moment �3 to study symmetry (skewness measure) is given by:

�3 =
1

3
E(X3:3 � 2X2:3 +X1:3)

The fourth L-moment, �4, to study kurtosis (kurtosis measure) is de�ned by:

�4 =
1

4
E(X4:4 �X3:4 + 3X2:4 �X1:4)

Representation of L-moment in terms of orthogonal polynomials
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The L-moments can be written in terms of displaced Legendre polynomials P �r

which are de�ned by:

P �r (u) =

rX
k=0

P �r;k u
k =

rX
k=0

(�1)r+k

0B@ r

k

1CA
0B@ r + 1

k

1CAuk

such that r is a positive integer, for r = 0; 1; 2 and 4 we have:

P �0 (u) = 1

P �1 (u) = (2u� 1)

P �2 (u) = (6u
2 � 6u+ 1)

P �3 (u) = (20u
3 � 30u2 + 12u� 1)

Then �ris written as:

�r =

Z 1

0

Q(u)P �r�1(u)du r = 1; 2; :::::

and the �rst L-moment are given as :

�1 =

Z 1

0

Q(u)du

�2 =

Z 1

0

Q(u)(2u� 1)du

�3 =

Z 1

0

Q(u)(6u2 � 6u+ 1)du

�4 =

Z 1

0

Q(u)(20u3 � 30u2 + 12u� 1)du
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Chapter 2

A weighted least-squares

estimation method for Frechet

distribution parameters

E stimating statistical distribution parameters is a fundamental topic in ap-

plied statistics, as these parameters play a crucial role in data analysis and

modeling. However, when regression models are used for this purpose, issues such

as heteroscedasticity may arise, leading to ine¢ cient estimates. To address this

issue, the Weighted Least Squares (WLS) method is often applied, where di¤er-

ent weights are assigned to observations to enhance estimation accuracy.In this

context, the distribution function is transformed into a linear regression model,

enabling the use of WLS for parameter estimation. This approach has gained

wide adoption., such as those by Hossain and Howlader [17] (1996), Zhang et all.,

[28](2007) Lu and Tao [21](2007), Zyl and Schall [29] (2012), Kantar and Arik

[18](2014), Kantar and Yildirim [19](2018), and Khemissi (2022)[20].

In this chapter, we introduce fundamental concepts of linear regression, with a

25



Chapter 2:A weighted least-squares estimation method for Frechet distribution
parameters

speci�c focus on applying WLS to estimate the parameters of the Frechet distri-

bution. We will particularly consider the weighting scheme proposed by Zyl and

Schall [29] to improve the accuracy and e¢ ciency of the estimators.

2.1 Fundamentals of regression

Regression is a statistical method used to model the relationship between a

dependent variable and one or more independent (explanatory) variables. When

this relationship is assumed to be linear, it is called linear regression. If there is

only one independent variable, it is known as simple linear regression, whereas if

multiple independent variables are involved, it is called multiple linear regression.

2.1.1 Simple regression model

Simple linear regression examines the relationship between a dependent vari-

able and a single independent variable.

De�nition 2.1.1 (Simple linear regression model): A simple linear regres-

sion model is de�ned by an equation of the form ,

Yi = a0 + a1xi + "i 8i = 1; n

where:

� yi: the ith observation of the random variable to be explained Y.

� xi:the ith observation of the explanatory variable X:

� a0 and a1:unknown contante called the model parameters.
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� "i :the random error of the model.

� n :the sample size.

In addition, the simple linear regression model de�ned by 2.1.1 can be written in

matrix form:

Y = Xa+ ",

0BBBBBBBBBB@

y1

y2

:

:

yn

1CCCCCCCCCCA
=

0BBBBBBBBBB@

1 x1

1 x2

: :

: :

1 xn

1CCCCCCCCCCA

0B@ a0

a1

1CA+

0BBBBBBBBBB@

"1

"2

:

:

"n

1CCCCCCCCCCA
:

The assumptions related to this model are as follows:

The errors "i are centered, have the same variance, and are uncorrelated:

E("i) = 0 ; E("2i ) = �
2
" <1 ; i = 1; ::::::; n:

The error is independent of X:

cov(";X) = 0:

2.1.2 Least-squares (LS) method

The least squares method is used to determine the best-�tting straight line for

a given dataset. The main idea is to minimize the sum of the squared di¤erences

between the actual values and the predicted values.
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De�nition 2.1.2 :To estimate parameters a0 and a1, by minimizing the sum of

the squares of the diferences between observations and model 2:1:1;Least squares

are given by the following formulas :

â1 =
Sxy
S2x

& â0 = �y � â1�x;

where:

�y =
1

n

nX
i=1

yi ; �x =
1

n

nX
i=1

xi;

Sxy =
1

n� 1

nX
i=1

(xi � �x)(yi � �y);

S2y =
1

n� 1

nX
i=1

(yi � �y)2 ; S2x =
1

n� 1

nX
i=1

(xi � �x)2:

Statistical properties of LS estimates

� These estimators are unbiased estimators :

E(â1) = â1 ; E(â0) = â0

� var(â1) = �2
nP
i=1
(xi��x)2

= �2

nS2x
:

� var(â0) =
�2

nP
i=1

x2i

n
nP
i=1
(xi��x)2

= �2

n
(1 + �x2

S2x
)

� cov(â0; â1) = cov(â1;â0) = � �2�x
nP
i=1
(xi��x)2

= � �x2

nS2x

Remark 2.1.1 :An unbiased estimator of �2" is given by :

S2" =
1

n� 2

nX
i=1

(yi � ŷ)2 =
1

n� 2

nX
i=1

"2i
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2.1.3 Weighted least-squares (WLS) method

The Weighted Least Squares method is an extension of OLS method, used

when the variance of the errors is not constant (heteroscedasticity). In such cases,

assigning di¤erent weights to observations can improve the estimation accuracy.

De�nition 2.1.3 (WLS in Simple Regression):Consider the following model:

Yi = a0 + a1xi + "i

where "i � N(0;�2=wi)for known constants w1; :::::; wn. The weighted least squares

estimates ofa0 and a1 minimize the quantity

Qw(a0; a1) =
nX
i=1

wi(yi � a0 � a1xi)2

De�nition 2.1.4 :To estimate parameters a0and a1,the WLS estimates are then

given as :

â1 =

nP
i=1

wi(yi � �yw)(xi � �xw)
nP
i=1

wi(xi � �xw)2
& â0=�yw � â1�xw:

where �xw and �yw are the weighted means with ;

�xw =

nP
i=1

wixi

nP
i=1

wi

& �yw =

nP
i=1

wiyi

nP
i=1

wi

:
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Statistical properties of WLS estimates

� These estimators are unbiased estimators:

E (â1) = â1; E (â0) = â0:

� var(â1) = �2
nP
i=1

wi(xi��xw)2
:

� var(â0) = [ 1
nP
i=1

wi

+ �x2w
nP
i=1

wi(xi��xw)2
]:

� The weighted error mean square Qw(â0; â1)=(n�2) also gives us an unbiased

estimator of �2:

De�nition 2.1.5 (General WLS Solution):If W is a diagonal matrix with

diagonal elements w1; w2; :::::; wn, the weighted residual sum of squares is given

by:

Qw(�) =
nX
i=1

wi(Yi � xti�)2;

= (Y �X�)tW (Y �X�)

The general solution to this is:

�̂ = (X tWX)�1X tWY
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De�nition 2.1.6 (WLS as a Transformation):In general suppose we have

the linear model

Y = X� + "

wher var(") =W�1�2:LetW 1=2 be a diagonal matrix with diagonal entries equal to
p
wi :Then we have var(W 1=2=") = �2In. Hence we consider the transformation

�Y = W 1=2Y ; �X = W 1=2X and �" = W 1=2"

This gives rise to the usual least squares model

�Y = �X� + �"

using the results from regular least squares we then get the solution

�̂ = (( �X)tX)�1( �X)t �Y

= (X tWX)�1X tWY

hence this is the weighted least squares solution.

Example 2.1.1 :The data taken from Tomassone et all., [27], (1998).

We consider data comprising 10 observations with the explanatory variable

X. The variable Y is generated using the following model :

yi = 3 + 2xi + "i;

where the "i are normally distributed E("i) = 0; var("i) = (0:2xi)2;we present the

data thus generated in the following table :
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xi 1 2 3 4 5 6 7 8 9 10
Yi 4:90 6:55 8:67 12:59 17:38 13:81 14:60 32:46 18:73 20:27

Table 2.1: Values xi and Yi generated by the model studied.

A simple regression study always begins with a plot of the observations (xi; yi); i =

1; 10:

This �rst representation makes it possible to know if the linear model is relevant.

Graphic Representation : in �gure 2.1, we plot Yi and individuals xi:

Figure 2.1: plot Yiand individuals xi
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� The least squares method :

The least squares method provides the following estimated coe¢ cients on the

example, for alli = 1; 10: The regression equation is ,

Ŷi = 3:49 + 2:09xi

The estimated slope of the line :â1 = 2:09:

The estimated y-intercept :â0 = 3:49:

Least squares regression line

We are looking for the line for which the sum of the squares of the vertical

deviations of the points from the line is minimum. On the graph, we have drawn

any line through the data and we represent the errors for some points, �gure2.2

below illustrates the regression line by least squares.

R2 =
SSR

SST
= 0:6294

the regression model explains62; 94% of the total variation
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Figure 2.2: Linear regression line and scatter plot.

� The weighted least squares method :

A weighted regression study, using the values (1=x2) as weights. These

weights are known since they must be proportional to the true variances, the

occurrence equal to(0:2xi)2:

The weighted least squares method provides the following estimated coe¢ cients

on the example :

Ŷi = 2:53 + 2:28xi

R2 =
SSR

SST
= 0:8611

the regression model explains 86:11% of the total variation.
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Remark 2.1.2 :On this basis, the fol lowing comments can be made:

1. All quantities related to the sum of the squares of the dependent variable

are assigned by weights and are not comparable to those obtained by the

least squares regression.

2. The estimated coe¢ cients are relatively close to those of the least squares

regression

2.2 Estimation of Frechet distribution paramet-

ers using regression model

When analyzing phenomena characterized by extreme or rare values, it be-

comes essential to employ statistical distributions capable of accurately repres-

enting such behavior. Among these, extreme value distributions have emerged as

e¤ective tools for modeling data with heavy tails and capturing the behavior of

extreme events. The Frechet distribution (Extreme Value Type II) is one such

distribution commonly used to model extreme events. It is particularly prevalent

in engineering statistics for representing phenomena involving large maximum ob-

servations. This distribution was �rst introduced by the French mathematician

Maurice Frechet in 1927.

2.2.1 Model transformation to linear form

The distribution functions are transformed into a linear regression model to

estimate the parameter of the considered distribution.

We consider two-parameter Frechet distribution with shape parameter �, scale
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parameter �.The probability density function Frechet distribution is,

f(x) =
�

�

�
�

x

��+1
exp

�
�
�
�

x

���
; x > 0; �; � > 0 (2.1)

and The cumulative distribution function is

F (x; �; �) = exp

�
�
�
�

x

���
; x > 0; �; � > 0 (2.2)

The CDF of Frechet distribution 2.2 will be transformed to a linear function :

ln(� ln(F (x; �; �))) = � ln � � � lnx (2.3)

For a sample of size n and x(1) � x(2) � ::::: � x(n), equation 2.3 the regression

model can be rewritten as follows :

ln(� ln(F (x(i)))) = � ln � � � lnx(i) (2.4)

where i the order number .

For estimates of F (x(i)), Bernard and Bosi-Levenbach [2],1953 using the following

methods of estimation summary in , 2.2 where F̂i is some non-parametric estimate

of F (x(i)) :

Method F̂i

Mean Rank
Median Rank
Symmetric CDF

i
n+1
i�0:3
n+0:4
i
n

Table 2.2: Methods of estimation
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comparing the equation 2.4 with

Yi = �1 + �2Xi

we get,

Yi = ln(� ln(F̂ (x(i)))); �1 = � ln �; �2 = ��; Xi = ln x(i):

the regression model with error term occurs as :

Yi = �1 + �2Xi
+ "

i
(2.5)

2.3 Estimators and main results

In this section, we present the methods used to estimate the shape and scall

parameters of the Frechet distribution.

2.3.1 Least-squares estimator

Least squares, or least sum of squares, requires that a straight line be �tted

to a set of data points, such that the sum of the squares of the distance of the

points to the �tted line is minimized.

Suppose that random variables X1; X2; ::::; Xn are independent and identically

distributed from the Frechet distribution. After algebraic manipulation, Equation

2.2 can be linearized as follows :

ln(� lnF (x; �; �)) = � ln � � � lnx
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The estimator of F (x(i)) can be considered to follow the mean rank estimator :

F̂ (x(i)) =
i

n+ 1

where i is the rank of the data point in the sample in ascending order and F̂i is

non-parametric estimate of F (x(i);�): See Bernard[2].

In estimation, the sum of the squares of the errors, which is de�ned below, should

be minimized

min
nX
i=1

"
2

i
=

nX
i=1

(yi � �1 � �2 lnxi)2 (2.6)

Therefore, the estimate the parameter � and � is given by di¤erentiating equation

2.6 partially and equaling to zero we get:

�̂1 =

Pn
i=1 ln(� ln

�
F (x(i))

�
) + �̂

Pn
i=1 lnx(i)

n

�̂2 =
n
Pn

i=1 ln(� ln
�
F (x(i))

�
) ln x(i) �

Pn
i=1 ln(� ln

�
F (x(i))

�
)
Pn

i=1 lnx(i)�
n
�Pn

i=1 lnx(i)
�2 � �Pn

i=1 lnx(i)
�2�

Finally, estimates and of the parameter �̂
LSE

and �̂
LSE

are given as:

�̂
LSE

= �

0@nPn
i=1 ln(� ln

�
F (x(i))

�
) ln x(i) �

Pn
i=1 ln(� ln

�
F (x(i))

�
)
Pn

i=1 lnx(i)�
n
�Pn

i=1 lnx(i)
�2 � �Pn

i=1 lnx(i)
�2�

1A
^
�
LSE

= exp

 Pn
i=1 ln(� ln

�
F (x(i))

�
) + �̂

LSE

Pn
i=1 lnx(i)

n�̂
LSE

!
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2.3.2 Weighted least-squares estimator

One of the main advantages of using regression approach for estimating the

parameters of the Frechet distribution is its simplicity. Given a sample x(1) �

x(2) � :::: � x(n) from a Frechet distribution , we can use the following regression

model:

Yi = �1 + �2Xi
(2.7)

where Yi is derived from the empirical distribution function, and Xi = ln xi. To

estimate the parameters �1and �2, we minimize the weighted sum of squared

errors:

min
nX
i=1

"
2

i
= min

nX
i=1

wi [yi � �1 � �2 lnxi]2 (2.8)

Where wiis the weighted factor , i = 1; 2; ::::; n:

Next to,derived from the inverse of the asymptotic variances of the order statistics.

These weights stabilize the variance, ensuring e¢ cient estimation as proposed by

Zyl (2012) [29], speci�ed in the following formula:

var(�(x(i))) �
mi(1�mi)

(n+ 2)(f(xi))2

�
d�(x(i))

dx(i)

�2
x(i)=xi

i = 1; n (2.9)

Now, Applying this expression for estimation of parameters of frechet distribu-

tions, yield the following results:
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Let �(x(i)) = ln[� lnF (x(i)] and �i = E[�(x(i))]

�(x(i)) = � ln � � � lnx(i)

�(x(i)) + (�i � �i) = � ln � � � lnx(i)

�i = � ln � � � lnx(i) + (�i � �(x(i)))

�i = � ln � � � lnx(i) + ui

Where ui = �i � (� ln � � � lnx(i)) i = 1; n , are the residuals for the regression

and the weights are the inverses of the variances of the residuals.

The approximate variance of ln(� lnF (x(i))) by 2.9,is:

var(ln(� lnF (x(i))) �
mi(1�mi)

(n+ 2)(f(xi))2

�
d ln(� ln(F (x(i)))

dxi

�2
x(i)=xi

� mi

(n+ 2)(mi ln(mi))2(1�mi)
, mi =

i

n+ 1

� (n+ 1� i)
(n+ 2)i(ln

�
i

n+1

�
)2

For this reason, theWLS regression equation is solved by letting :�̂
WLS

= (X tWX)�1X tWY ,

X =

0B@ 1 ::: ::: 1

ln(x(1)) ::: ::: ln(x(i))

1CA
t

Y t =
�
ln(� ln(F̂(1))); :::::::::; ln(� ln(F̂(i)))

�
and

w = diag(w1; w2; :::::::; wn)

wi =
(n+ 2)i(ln

�
i

n+1

�
)2

(n+ 1� i) , i = 1; ::::; n

Therefore, the estimate the parameter � and � is given by di¤erentiating equation

2.8 partially and equaling to zero we get:
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�̂1 =

Pn
i=1wi ln(� ln

�
F (x(i))

�
) + �̂

Pn
i=1wi lnx(i)Pn

i=1wi

�̂2 =

Pn
i=1wi

Pn
i=1wi ln(� ln

�
F (x(i))

�
) ln x(i) �

Pn
i=1wi ln(� ln

�
F (x(i))

�
)
Pn

i=1 lnx(i)�Pn
i=1wi

�Pn
i=1 lnx(i)

�2 � �Pn
i=1 lnx(i)

�2�

Finally, estimates and of the parameter �̂
WLS

and �̂
WLS

are given as:

�̂
WLS

= �

0@Pn
i=1wi

Pn
i=1wi ln(� ln

�
F (x(i))

�
) ln x(i) �

Pn
i=1wi ln(� ln

�
F (x(i))

�
)
Pn

i=1wi lnx(i)�Pn
i=1wi

�Pn
i=1 lnx(i)

�2 � �Pn
i=1 lnx(i)

�2�
1A

^
�
WLS

= exp

0@Pn
i=1wi ln(� ln

�
F̂ (x(i))

�
) + �̂

WLS

Pn
i=1wi lnx(i)

�̂
WLS

Pn
i=1wi

1A
wi � 1=var

�
ln[� lnF (x(i)]

�
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Chapter 3

Simulation study

In this chapter examine the performance of three methods for estimating

the parameters of the Frechet distribution: the least lquares (LS) method, the

weighted least squares (WLS) method, and the maximum likelihood estimation

(MLE) method, using Monte Carlo simulation.

3.1 Performance of the estimators

We conducted a Monte Carlo study using 10000 randomly generated samples

for each scenario, with various sample sizes: 10; 20; 30; 50; 100; 200; 500; 1000; and

2000 for Frechet distribution, and the results are presented in tables:3:1 , 3:2:shape

parameters (� = 0:5 ; 1=0:6) with two scale parameters (� = 1; 2). and tables:

3:3, 3:4: scale parameters (� = 0:5; 1:5) with two shape parameters (� = 1; 2).

The e¢ ciency of the estimation methods was assessed using two statistical

measures:the bias, de�ned as the di¤erence between the expected value of the

estimator and the true parameter value : Bias(�̂) = E (�̂) � �;and the mean

squared error , which combines the variance of the estimator and the root square
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of its bias:RMSE(�̂) =
q
V ar(�̂) + (Bias(�̂))2:

3.2 Results and discussion

According to the Bias criterion:

In the estimation of � , the WLS estimator shows the lowest bias among

the three methods, indicating its superior performance in small samples. The LS

estimator shows a higher bias, re�ecting its sensitivity due to the lack of weighting.

The MLE estimator displays a moderate bias, which may be due to the small

sample size and numerical instability during the optimization process.

As for the estimation of �, a similar pattern is observed: the WLS estim-

ator provides the lowest bias, con�rming its e¢ ciency and stability under small

and large-sample conditions. In contrast, the LS estimator shows a higher bias,

while the MLE also exhibits noticeable bias due to the �xed value of during

optimization and the limited sample size.

In addition, bias decreases with increasing sample size and shape and scall para-

meters cases.

According to the Root Mean Squared Error (RMSE) criterion:

In the estimations of � and �, theWLS estimator achieves the lowest RMSE

than the least square estimation method for each sample size, in addition the

RMSE of the MLE is the smallest. As sample size increases the root mean

square error decreases for each methods and and shape parameter cases, and thus

conclude that there are accurate parameter increments.

43



Chapter 3: Simulation study

n Method
� = 1

Biais RMSE

� = 2

Biais RMSE

10
WLS
LS
MLE

0:37819 0:47505
0:98365 1:65191
0:72451 0:99468

0:38012 0:97727
0:73631 1:16336
0:81430 1:01413

30
WLS
LS
MLE

0:21712 0:27207
0:39307 0:81559
0:63879 0:53201

0:22013 0:27489
0:39566 0:61546
0:39870 0:53424

50
WLS
LS
MLE

0:16877 0:21180
0:29332 0:46678
0:48145 0:39070

0:16876 0:21104
0:29858 0:72975
0:68321 0:39624

100
WLS
LS
MLE

0:11998 0:04442
0:19987 0:26056
0:35045 0:15015

0:11919 0:14910
0:20283 0:85137
0:55058 0:26655

200
WLS
LS
MLE

0:08313 0:03938
0:13699 0:17676
0:38116 0:10428

0:08367 0:79765
0:13363 0:17412
0:53341 0:10489

1000
WLS
LS
MLE

0:03755 0:03684
0:05673 0:07184
0:29610 0:04687

0:03730 0:04914
0:05739 0:07285
0:05591 0:04660

2000
WLS
LS
MLE

0:02649 0:03368
0:03899 0:04919
0:03189 0:03321

0:02658 0:03162
0:03923 0:04964
0:03453 0:03331

Table 3.1: Simulated bias and RMSE when shape parameter(�=0.5)
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n Method
� = 1

Bais RMSE

� = 2

Biais RMSE

10
WLS
LS
MLE

0:31879 0:39864
0:76495 0:955391
0:60984 0:83416

0:94736 0:60411
0:61050 0:83877
0:31883 0:40127

30
WLS
LS
MLE

0:18462 0:23021
0:32575 0:43519
0:21886 0:23137

0:29693 0:30160
0:32812 0:44023
0:18208 0:22926

50
WLS
LS
MLE

0:14000 0:17579
0:35822 0:37431
0:24726 0:32793

0:48361 0:17714
0:25019 0:50616
0:14060 0:33095

100
WLS
LS
MLE

0:07879 0:12341
0:16654 0:21692
0:09854 0:17788

0:94271 0:15959
0:16823 0:22036
0:09941 0:13507

200
WLS
LS
MLE

0:01396 0:08772
0:11402 0:14638
0:07013 0:14079

0:18617 0:08766
0:11388 0:10992
0:06978 0:14682

1000
WLS
LS
MLE

0:04160 0:06006
0:04735 0:06895
0:03102 0:03891

0:03086 0:05916
0:04737 0:06027
0:03119 0:03919

2000
WLS
LS
MLE

0:02239 0:02779
0:03284 0:04144
0:02213 0:02963

0:02412 0:02778
0:03318 0:04168
0:02223 0:03449

Table 3.2: Simulated bias and RMSE when shape parameter(�=1/0.6)
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n Method
� = 1

Bais RMSE

� = 2

Bais RMSE

10
WLS
LS
MLE

0:13939 0:18893
0:42105 0:20475
0:14341 0:19149

0:30157 0:42791
0:45459 0:49921
0:34094 0:58587

30
WLS
LS
MLE

0:07508 0:09064
0:07908 0:10031
0:07637 0:09970

0:15572 0:20511
0:15820 0:21126
0:15932 0:22128

50
WLS
LS
MLE

0:04996 0:06910
0:06256 0:07892
0:05837 0:07542

0:19986 0:14998
0:12307 0:15970
0:12040 0:16144

100
WLS
LS
MLE

0:03999 0:04999
0:04404 0:05523
0:04064 0:05165

0:08299 0:10149
0:08705 0:11086
0:08352 0:10848

200
WLS
LS
MLE

0:02536 0:03514
0:03159 0:03942
0:02887 0:03640

0:55391 0:05134
0:06147 0:07778
0:05725 0:07368

1000
WLS
LS
MLE

0:01135 0:01504
0:01367 0:01712
0:01258 0:01588

0:02251 0:02995
0:02778 0:03472
0:02562 0:03215

2000
WLS
LS
MLE

0:00685 0:01055
0:00977 0:01221
0:00898 0:01126

0:01597 0:02051
0:01932 0:02434
0:01802 0:02265

Table 3.3: Simulated bias and RMSE when scale parameter �=0.5)
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n Method
� = 1

Bais RMSE

� = 2

Bais RMSE

10
WLS
LS
MLE

0:41989 0:32721
0:42300 0:57731
0:43762 0:62281

0:89506 0:87052
0:88965 0:92597
0:90508 0:78606

30
WLS
LS
MLE

0:21726 0:28476
0:23748 0:30029
0:22691 0:29728

0:47100 0:64048
0:48173 0:64701
0:48262 0:67121

50
WLS
LS
MLE

0:16491 0:22049
0:18311 0:23067
0:17179 0:22127

0:36063 0:48502
0:37021 0:48397
0:49952 0:49988

100
WLS
LS
MLE

0:12037 0:49998
0:12900 0:16190
0:14999 0:15239

0:23645 0:31685
0:25870 0:32940
0:24688 0:32038

200
WLS
LS
MLE

0:08115 0:10115
0:09291 0:11668
0:08573 0:10815

0:16581 0:23007
0:18343 0:23036
0:17198 0:21836

1000
WLS
LS
MLE

0:03115 0:04515
0:04093 0:05123
0:03772 0:04730

0:05364 0:09952
0:08193 0:10250
0:07590 0:09526

2000
WLS
LS
MLE

0:02001 0:02115
0:02896 0:03627
0:02649 0:03325

0:04215 0:06587
0:05817 0:07255
0:05388 0:06741

Table 3.4: Simulated bias and RMSE when scale parameter (�=1.5)
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Conclusion

This thesis addresses the estimation of the parameters of the Frechet distri-

bution using the Weighted Least Squares (WLS) method, which was developed to

handle heteroscedasticity that a¤ects the e¢ ciency of Least Squares (LS) estim-

ators. Previous studies supporting the use of WLS were reviewed, emphasizing

the importance of selecting an appropriate weighting function to ensure variance

stability and improve estimation accuracy.

The proposed methodology integrates previous concepts for determining suit-

able weights, particularly the approach introduced by Zyl & Schall (2012), which

enhanced estimation performance. Simulation results demonstrated that the pro-

posed method provides higher accuracy and e¢ ciency compared to traditional

methods.

Accordingly, the proposed approach can be considered an alternative for es-

timating the parameters of statistical distributions, with potential for future devel-

opment by integrating it with other estimation techniques , it also can be applied

to real and censured data.
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Annex A: R Software

3.3 What is the R language?

R is a system and programming language speci�cally designed for conducting

statistical analyses. It is characterized by its ability to process data, perform cal-

culations, and create various graphical representations. R also o¤ers the capability

to run stored programs (packages) to execute advanced statistical procedures such

as linear and non-linear models, time series, parametric and non-parametric tests,

and methods for analyzing multidimensional data.

Code R:

chapter 2 : example 2.1.1

# Data from the table

x<-c(1,2,3,4,5,6,7,8,9,10)

y<-c(4.90,6.55,8.67,12.59,17.38,13.81,14.60,32.46,18.73,20.27)

plot(x,y)

# LS estimation

lm1<-lm(y�x)

lm1
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abline(lm1)

title("scatter plot and regression line")

summary(lm1)

#WLS estimation

lm2<-lm(y�x,weights=(1/x^2))

lm2

summary(lm2)

chapter 3 :

#Simulation of shape parameter estimation �

library(evd)

Fchapeau <- function(x) {rank(x) / (length(x) + 1)}

# WLS estimator

wls <- function(x) {

y <- log(x)

n <- length(x)

t <- 1:n

w <- ((n + 1 - t) / (n + 2)) * t * (log(t / (n + 1)))^2

f <- log(-log(Fchapeau(x)))

alpha <- -(sum(w) * sum(w * f * y) - sum(w * f) * sum(w * y)) / (sum(w) *

sum((w * y)^2) - (sum(w * y))^2)

return(1 / alpha)

}
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# LS estimator

ls <- function(x) {

y <- log(x)

n <- length(x)

f <- log(-log(Fchapeau(x)))

alpha <- -(n * sum(f * y) - sum(f) * sum(y)) / (n * sum(y^2) - (sum(y))^2)

return(1 / alpha)

}

# simulation Function

my_sample <- function(n, alpha, beta) {

T <- numeric(3)

x <- rfrechet(n, loc = 0, scale = beta, shape = 1 / alpha)

# MLE via optimization

logL <- function(alpha_est) {

-sum(log(dfrechet(x, loc = 0, scale = beta, shape = 1 / alpha_est)))

}

opt <- optimize(logL, c(0.01, 5))

T[1] <- wls(x)

T[2] <- ls(x)

T[3] <- opt$minimum

return(T)

}

# Matrix to store the estimators
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n <- 2000 # sample size

M <- 10000 # numbre of iterations

alpha <- 1/0.6

beta <- 1

B <- matrix(0, nrow = M, ncol = 3)

for (j in 1:M) {

print(j)

A <- my_sample(n, alpha, beta)

B[j, 1] <- A[1] # WLS

B[j, 2] <- A[2] # LS

B[j, 3] <- A[3] # MLE

}

# Bias and RMSE calculation

bias <- means(abs(B - alpha))

rmse <- sqrt(means((B - alpha)^2))

# Show results

cat("Bias WLS =", bias[1], "nn")

cat("RMSE WLS =", rmse[1], "nnnn")

cat("Bias LS =", bias[2], "nn")

cat("RMSE LS =", rmse[2], "nnnn")

cat("Bias MLE =", bias[3], "nn")

cat("RMSE MLE =", rmse[3], "nn")
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Annex B:Abreviations and

notations

The following is an explanation of the various abbreviations and notations which

are in use throughout this report:

(
; A; P ) probability space

rv random variable

i:i:d Independent andidentically distributed

X rv dened on (
; A; P ) , population

E [X] expectation of (or mean of X)

V ar (X) variance of X

pdf probabilty density function

df distribution function

Fn empirical df

F generalized inverse of F ,quantile function

Q quantile function ,generalized inverse of X

Qn empirical quantile function.
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X1;n � :::: � Xn;n order statistics pertaining to the sample(X1; :::; Xn)

k numbers of top statistics (upper observations)

xF upper endpoint

EV I extreme value index

EV T extreme value theory

GEVD generalized extreme value distribution

GPD generalized Pareto distribution

D(:) domain of attraction

RV� regular variation at 1 with index �

RV0 regular variation at 0 with index �

a:s�! almost sure convergence

p�! convergence in probability

d�! convergence in distribution

i:e in other words

� tail index


 extreme value index

MLE maximum likelihood estimator

exp or e exponential

log logarithm

LSE least squares estimator

WLS weighted least squares

RMSE root mean square ereur
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Abstract 
        This thesis is devoted to studing the estimation of the Frechet distribution parameters using the 

weighted least squares method, as an alternative, effective, and more efficient approach than 

traditional method, especially in the presence of the problem of heteroscedasticity. 

        The main objective of this thesis is to improve the accuracy and efficiency of estimating 

distribution parameters by proposing appropriate weights based on previous concepts (Zyl and 

Schall (2012)). 

         An R simulation study was conducted to test the performance of the proposed method, and the 

results showed its superiority in terms of efficiency and accuracy. 

Keywords : Frechet distribution, tail index estimation, weighted least squares, shape parameter, 

scale parameter . 

Résumé 

        Cette thèse est consacrée à l’étude de l’estimation des paramètres de la distribution de Fréchet 

 par la méthode des moindres carrés pondérés, une approche alternative, efficace et plus 

performante que les méthodes traditionnelles, notamment face au problème d’hétéroscédasticité. 

         L’objectif principal de cette thèse est d’améliorer la précision et l’efficacité de l’estimation des 

paramètres de distribution en proposante des pondérations appropriées sur des concepts antérieurs  

(Zyl et Schall (2012)). 

        Une étude de simulation R a été réalisée pour tester les performances de la méthode proposée, 

et les résultats ont montré sa supériorité en termes d’efficacité et de précision. 

Mots clés : distribution de Fréchet, estimation de l’indice de queue, paramètre de forme, paramètre 

d’echelle. 

 ملخــــــــص
باستخدام طريقة المربعات الصغرى الموزونة،  فريشيهلدراسة تقدير معلمات توزيع الأطروحة مخصصة     

 كنهج بديل وفعال وأكثر كفاءة من الطرق التقليدية. خاصة في ظل وجود مشكلة عدم تجانس التباين.

أوزان  حاقتراالهدف الرئيسي من هذه الرسالة هو تحسين دقة وكفاءة تقدير معلمات التوزيع من خلال      

(.1220وشال  زيل)سابقة مفاهيم مناسبة مستندة الى   

النتائج تفوقها من حيث  تلاختبار أداء الطريقة المقترحة، واظهر     R  مة محاكاة باستخداتم اجراء دراس     

 الكفاءة والدقة.

قياس، ممعلمات ال ،الموزونة، المربعات الصغرى تقدير مؤشر الذيل، فريشيه عتوزيالكلمات المفتاحية: 

 معلمات الشكل.

 


	Dedication
	Acknowledgment
	Contents
	List of Tables
	List of Figures
	Introduction
	blueTail index estimation
	Fundamentals of EVT
	Order statistics
	Distribution of extreme values
	Limit distributions
	Domains of attraction
	Characterizations of the attraction domain

	Methods of semi-parametric estimation
	Hill's estimator
	Pickand's estimator
	Moment estimator

	Methods of parametric estimation
	Maximum likelihood estimator
	Weighted moment estimator
	L-moment estimator


	blueA weighted least-squares estimation method for Frechet distribution parameters
	Fundamentals of regression
	Simple regression model
	 Least-squares (LS) method
	Weighted least-squares (WLS) method

	Estimation of Frechet distribution parameters using regression model
	Model transformation to linear form

	Estimators and main results
	Least-squares estimator
	Weighted least-squares estimator


	blueSimulation study
	Performance of the estimators
	Results and discussion

	Conclusion
	Bibliographie
	Annexe A: Logiciel R
	What is the R language?

	Annexe B: Abreviations and Notations
	Abstract
	Résumé
	ملخــــــــص

