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Abbreviations and notations

The different abbreviations and notations used throughout this thesis are explained below:

i.i.d : Independent and identically distributed.

CDF : Cumulative distribution function note F (.).

PDF : Probability density function also density function note f(.).

F̄ (.) : Complementary cumulative distribution function.

Xk,n : kth statistical order.

fk,n (x) : pdf of the order statistic.

Fk,n (x) : cdf of the order statistic.

Fn (.) : Empirical (or sample) distribution function.
←
F (x) : Generalized inverse of a function F .

GEV : Generalized Extreme Value.

GPD : Generalized Pareto distribution.

L(θ|X) : Likelihood function.

MLE : Maximum likelihood estimator.

LM : L-moments

I{Xi≤x} : Indicator function

D→
n→+∞

: Convergence in probability

a.s→
n→+∞

: Almost sure convergence
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Introduction

Extreme Value Theory (EVT), which emerged between 1920 and 1940 thanks to the

work of scientists Fréchet, Fisher, Tippett, Gumbel, and Gnedenko, is considered one of the

fundamental branches of mathematical statistics. It focuses on the analysis of rare events that

have a low probability of occurrence. Despite their rarity, these events can have significant

impacts, particularly in fields such as finance, insurance, and environmental science, where

they may lead to severe losses or sudden changes.

Extreme events can result in significant human and material losses. While such disasters

cannot always be prevented, societies can implement preventive measures to mitigate their

impact. One valuable tool in this effort is the statistical theory of extreme values, which

offers broadly applicable and insightful results for understanding and managing rare events.

In this context, EVT plays a crucial role in the statistical modeling of such phenomena by

focusing on the behavior of distributions in the tails, i.e., at very large or very small values.

The importance of EVT lies in its ability to provide a reliable method for predicting rare

events, even beyond the range of previously observed data (Embrechts et al., 1997). The most

advanced statistical methods for extreme events will be studied both from the theoretical and

application sides.

This master’s thesis is divided into three chapters. In the first chapter, we will present an

overview of the fundamental concepts related to Extreme Value Theory (EVT). This includes

the definition of order statistics and record values (both upper and lower), their properties,

and their distributions in the continuous case. We also review key theoretical foundations
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such as the Fisher-Tippett theorem (1928), domains of attraction, and the Generalized Pareto

Distribution, which is considered a core tool for modeling tail behavior.

In the second chapter, we focus on the estimation of the tail index, a central quantity in

Extreme Value Theory (EVT). In this context, we introduce and study several estimation

methods, including semi-parametric estimators such as the Hill, Pickands, and Moment es-

timators, as well as the parametric approach of the Maximum Likelihood Estimator (MLE)

and L-moment. Each method is analyzed separately with regard to its definition and theor-

etical properties.

Finally, the third chapter is devoted to the practical part of the creation of our application

using the R software.
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Chapter 1

Extreme value

This chapter introduces key concepts in extreme value theory. We begin with order statistics,

followed by fundamental notations. Then, we present the Fisher-Tippett theorem, which

characterizes the limiting distributions of extreme values. Next, we discuss the domain of

attraction, which classifies distributions based on their asymptotic behavior. Finally, we

examine the Pareto distribution, a crucial model for heavy-tailed data. These concepts form

the theoretical foundation for the methods developed later.

1.1 Order statistics

The use of extreme value theory relies on properties of order statistics and extrapolation

techniques. In other words, it is based on the law of large numbers for the maxima of properly

renormalized random variables. Let X1,...,Xn be a sequence of independent and identically

distributed (i.i.d) random variables following the distribution FX and the associated density

fX .

3



CHAPTER 1. EXTREME VALUE

1.1.1 Definitions and Notations

Definition 1.1.1 The order statistic of a sample (X1, ..., Xn) refers to the sequence obtained

by rearranging the values in increasing order, which is denoted by (X(1,n), ..., X(n,n)). In other

words, we have X(1,n) ≤ X(2,n) ≤ ... ≤ X(n,n). For 1 ≤ i ≤ n, we have: Xi,n is the ith order

statistic. The minimum and maximum of an i.i.d sample of size n represent extreme values

are,

X(1,n) = min(X1,...,Xn)

and,

X(n,n) = max(X1,...,Xn)

1.1.2 Distributions of order statistics

Theorem 1.1.1 The cumulative distribution function (CDF) of the order statistic Xi,n is

provided for all x ∈ R as described by David (1970) and Balakrishnan and Clifford Cohen

(1991).

Fi,n (x) = FXi,n (x) = P (Xi,n ≤ x) =

n∑
r=i

Cr
n [F (x)]r [1− F (x)]n−r , x ∈ R.

the density of Xi,n is expressed as

fi,n (x) =
n!

(i− 1)! (n− i)!f (x) [F (x)]i−1 [1− F (x)]n−i

It can therefore be concluded that for the minimum statistic, the CDF and the PDF are,

respectively

F1,n (x) = FX1,n (x) = 1− [1− F (x)]n

4



CHAPTER 1. EXTREME VALUE

and,

f1,n (x) = fX1,n (x) = n [1− F (x)]n−1 f (x)

for the maximum statistics, we have:

Fn,n (x) = FXn,n (x) = [F (x)]n

and,

fn,n (x) = fXn,n (x) = n [F (x)]n−1 f (x)

Proof. Using the independence of the random variables (X1,...,Xn) we can conclude that,

F1,n (x) = P (X1,n ≤ x) = 1− P (X1,n > x) = 1− P
(

n⋂
i=1

Xi > x

)
= 1−

n∏
i=n

P (Xi > x) = 1−
n∏
i=1

[1− P (Xi ≤ x)] = [1− F (x)]n ,

and,

Fn,n (x) = P (Xn,n ≤ x) =
n∏
i=1

P (Xi ≤ x) = [F (x)]n ,

and we deduce the densities,

f1,n (x) = fX1,n (x) = n [1− F (x)]n−1 f (x)

fn,n (x) = fXn,n (x) = n [F (x)]n−1 f (x)

5



CHAPTER 1. EXTREME VALUE

1.2 Fundamental notions

1.2.1 Central Limit Theorem (C.L.T)

Definition 1.2.1 If X1, ..., Xn are independent and identically distributed random variables

(i.i.d.) with a mean µ and variance σ2 ,then:

_

Xn − µ
σ√
n

D→
n→+∞

N(0, 1)

1.2.2 Empirical distribution function

Definition 1.2.2 The empirical distribution function of the sample (X1,...,Xn) is estimated

using order statistics as follows,

Fn(x) =
1

n

n∑
i=1

I{Xi≤x} =


0 if x < X1,n

i−1
n

if Xi−1,n ≤ x ≤ Xi,n, 2 ≤ i ≤ n

1 if x ≥ Xn,n

1.2.3 Regular variations

The concept of a regularly varying function plays an important role in characterizing the

domains of attraction in extreme value theory. Here, we present some key results and for

further details, we refer to the work of Bingham et al. (1987).

Definition 1.2.3 A function f : R+ → R+ is said to be regularly varying at infinity if and

only if there exists a real number α such that, for all x > 0,

lim
t→∞

f(tx)

f(t)
= xα

6
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We write f ∈ RVα, where α is called the index (or exponent) of the regularly varying function

f .

Remark 1.2.1 When α = 0, we obtain the case of the slowly varying function, as defined

below.

Proposition 1.2.1 A function l is said to be slowly varying if l(t) > 0 for suffi ciently large

t and if, for all x > 0, we have:

lim
t→∞

l(tx)

l(t)
= 1

Proposition 1.2.2 It is said that the function g(x) is of regular variation of order α if and

only if,

∃α > 0 : g(x) = xαl(x)

1.2.4 Terminal point

Definition 1.2.4 We denote by xF the upper extreme point of the distribution F (i.e. the

largest possible value for Xi,n, can take the value +∞). Then, the terminal point of a function

F is,

xF = sup{x, F (x) ≤ 1}

Proposition 1.2.3 We have when n→∞, Xn,n
a.s→ xF .

1.2.5 Survival Function

We assume that X is a continuous random variable with probability density function f(x)

and cumulative distribution function F (x) = P (X < x). It is often useful to work with

7



CHAPTER 1. EXTREME VALUE

the complement of the cumulative distribution function, which is the survival function
−
F (x),

defined as follows,
−
F (x) = 1− F (x) = P (X > x) =

∞∫
t

f(t)dt

Remark 1.2.2 Every survival function
−
F (x) is monotonically decreasing.

1.2.6 Generalized inverse

The generalized inverse remains defined even when F is not bijective either because this

function is discontinuous or because it is constant on intervals with non-empty interior.

Definition 1.2.5 The generalized inverse of a function F is the application defined by,

←
F (y) = inf{x ∈ R, F (x) ≥ y}.

1.2.7 Quantile function and tail quantile

The quantile function of the distribution function F is the generalized inverse function of F

defined by,

Q(y) = F←(y) = inf{x ∈ R, F (x) ≥ y}

In extreme value theory, a function denoted by U and called the tail quantile function is

defined by:

U(t) = Q(1− 1

t
) = (

1
_

F
)←(t), 1 < t <∞

1.3 Fisher-Tippet theorem (1928)

The extreme value theorem, according to Gnedenko (1943), specifies the form of the limit-

ing distribution for the maxima or minima of samples when the observation period for the

8
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extremes becomes infinite. This theorem relies on four fundamental assumptions: independ-

ence, the same distribution for the variables, and the existence of a sequence of coeffi cients

to normalize the random variable.

The limiting distribution can take three possible forms: the Gumbel distribution (Type I),

the Fréchet distribution (Type II), and the Weibull distribution (Type III), each with specific

characteristics depending on the distribution of the extremes.

Theorem 1.3.1 (Fisher’s Theorem) Under certain regularity conditions on the distribu-

tion function F , there exists a value γ ∈ R as well as two sequences of real normalizing

constants (an)n≥1 and (bn)n≥1 such that, for every x ∈ R,

lim
n→+∞

P

(
Xn,n − bn

an
≤ x

)
= Gγ(x)

where Gγ(x) is a distribution function associated with a limiting distribution, with,

• If γ > 0 (Frechet law)

Gγ(x) = φγ(x) =

 0 if x ≤ 0

exp[−(x)]−
1
γ if x > 0

• If γ < 0 (Weibull law)

Gγ(x) = ψγ(x) =

 exp[−(−x)]−
1
γ if x < 0

1 if x ≥ 0

• If γ = 0 (Gumbel law)

G0(x) = Λ(x) = exp[− exp(−x)] for all x ∈ R

9



CHAPTER 1. EXTREME VALUE

1.4 Generalized Extreme Value (GEV) Distribution

Jenkinson in 1995 combined the three families of extreme value distributions introduced by

Fisher and Tippett in 1928 into a generalized version of the probability distributions which is

called the generalized extreme value (GEV) distribution. The distribution function of GEV

is written as

H (x) =


exp

− [1 + γ

(
x− µ
σ

)]−1

γ

 For γ 6= 0, 1 + γ

(
x− µ
σ

)
> 0

exp

(
− exp

(
−x− µ

σ

))
For γ = 0

(1.1)

where γ is called extreme values index. Then, we can easily show that the density function

of the GEV distribution is

h (x) =


1

σ

[
1 + γ

(
x− µ
σ

)]−1 + γ

γ


exp

− [1 + γ

(
x− µ
σ

)]−1

γ

 For γ 6= 0

1

σ
exp

(
−
(
x− µ
σ

)
− exp

(
−
(
x− µ
σ

)))
For γ = 0

1.5 Domains of attraction

Definition 1.5.1 A distribution F is said to be in the domain of attraction of Gγ, written

as F∈ D(Gγ), if ∃ ( an) > 0 and (bn) ∈ R such that:

10



CHAPTER 1. EXTREME VALUE

Figure 1.1: Densities of the standard extreme value distributions.

lim
n→+∞

P

(
Xn,n − bn

an
≤ x

)
= lim

n→+∞
F (anx+ bn) = Gγ(x)

1.5.1 Fréchet Attraction Domain

This concept is attributed to the French mathematician Maurice Fréchet (1878−1973) , who

played a significant role in the development of the extreme value limit theory. Recall that

the Fréchet domain of attraction contains heavy-tailed laws or Pareto-type laws. The laws in

this domain have an infinite terminal point. Any function belonging to the Fréchet domain

of attraction is a function with regular variations.

Definition 1.5.2 A distribution function F (x) belongs to the domain of attraction of the

Fréchet distribution if and only if it can be written in the form,

F (x) = 1− x
−1
γ l(x)

11
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where l(x) is a slowly varying function. In this case, the normalizing sequences( an) and (bn)

are given for all n > 0 by:

an = F−1(1− 1

n
), bn = 0.

1.5.2 Weibull Attraction Domain

This concept emerged in the context of Extreme Value Theory and is primarily associated

with the work of Swedish mathematician Ernst Hjalmar Waloddi Weibull. In 1939, Weibull

presented his notable research on the Weibull distribution in the field of probability theory

and statistics. A distribution function belongs to the domain of attraction of the Weibull

distribution if and only if its terminal point is finite.

Definition 1.5.3 A distribution function F (x) belonging to the Weibull attraction domain

is written as follows,

F (x) = 1− (xF − x)
−1
γ l((xF − x)−1), l(.) ∈ RV0 for x ≤ xF

The normalization sequences ( an) and (bn) are given by:

an = F−1(1)− F−1(1− 1

n
), bn = F−1(1)

and if the distribution function F∗(.), defined by:

F∗(x) =

 0 if x < 0

F (xF − 1
x
) if x ≥ 0

belongs to the Fréchet attraction domain.

12
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1.5.3 Gumbel Attraction Domain

This concept is attributed to the mathematician Emil Julius Gumbel , who was one of the

pioneers in developing Extreme Value Theory. In 1958, Gumbel published his famous book

"Statistics of Extremes",which became one of the key references in this field. The Gumbel

domain of attraction contains the laws whose survival function is exponentially decreasing,

i.e. the laws with light tails.

Definition 1.5.4 A distribution function F (x) belongs to the domain of attraction of Gumbel

if and only if there exists t < xF such that F (x) can be written in the following form,

_

F (x) = c(x) exp

− x∫
t

1

α(u)
du

 , {t < x ≤ xF}

where c(x) → c > 0 as x → xF , and α(x) is a positive and differentiable function, with

α
′
(x)→ 0 as x→ xF . In this case, a possible choice for the sequences ( an) and (bn) for all

n > 0 is as follows,

an = F−1(1− 1

n exp (1)
)− F−1(1− 1

n
), bn = F−1(1− 1

n
)

The table below give different examples of standard distributions in these three domains of

attraction.

Domain of attraction
Fréchet γ > 0 Gumbel γ = 0 weibull γ < 0

Law

Burr
Fréchet
Loggamma
Loglogistic
Pareto

Gamma
Gumbel
Logistic
Lognormal
Weibull

Uniform
Reverse Burr

Table 1.1: Domains of attraction of common distributions

Example 1.5.1 Let the distribution function of the exponential distribution with parameter

13
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λ > 0 be:

F (X) = 1− exp(−λx), x ≥ 0

We define the normalization sequences .an =
1

λ
and bn =

1

λ
ln(n). The normalized distribution

function is given by:

F n(anx+ bn) = [(1− exp(−1

λ
λx− λ1

λ
ln(n))]n

=

(
1− exp(−x)

n

)n
→ exp(− exp(−x)) = Λ(x)

1.6 Generalized Pareto Distribution

The generalized Pareto distribution (GPD) is widely used in engineering, environmental

science, and finance to model low-probability events. Typically, the GPD is used to estimate

extreme values, such as the 99th percentile of a specific event.

The probability density function (PDF) of the Generalized Pareto distribution GPD is given

by,

gσ,γ(x) =


1

σ
[1 + γ(x

σ
)]
−1−

1

γ if γ 6= 0

1

σ
exp(−x

σ
) if γ = 0

with σ > 0.

The cumulative distribution function is given,

Gσ,γ(x) =

 1− (1 + γx
σ

)
−1
γ if γ 6= 0

1− exp(−x
σ
) if γ = 0

Definition 1.6.1 Let X be a random variable with a cumulative distribution function F and

14



CHAPTER 1. EXTREME VALUE

a terminal point xF . For all u < xF , the function Fu(x) is defined as:

Fu(x) = P [X − u ≤ x|X > u], for x ≥ 0.

It is called the distribution function of the excess above the threshold u.

Definition 1.6.2 The mean function of the excesses of the random variable X with respect

to the threshold u < xF , and we denote it by e(u), de ned by:

∀u < xF e(u) = E (X − u|X > u) =
1

F (u)

xF∫
u

F (t) dt (1.2)

Remark 1.6.1 By the definition of conditional probabilities, Fu can also be expressed as:

Fu(x) =


F (u+x)−F (u)

1−F (u) if x ≥ 0,

0 otherwise
.

Theorem 1.6.1 (Pickands, 1975) A cumulative distribution function F belongs to the at-

traction domain Dγ if and only if there exists a positive function σ(.) and a real number γ

such that the excess distribution Fu can be uniformly approximated by a Generalized Pareto

Distribution (GPD) denoted Gσ,γ.This can be formulated by the following relation:

lim
u→xF

sup
x∈(0,xF−u)

|Fu(x)−Gσ(u),γ(x)| = 0,

Example 1.6.1 For the exponential distribution with parameter λ = 1 , the cumulative

distribution function is given by F (x) = 1− exp(−x) for x ≥ 0 .By setting σ = 1 , we have

Fu(x) =
F (u+ x)− F (u)

1− F (u)
=

1− exp(−(u+ x))− (1− exp(−u))

1− (1− exp(−u))

15



CHAPTER 1. EXTREME VALUE

Simplifying, this gives:

Fu(x) =
exp(−u)− exp(−(u+ x))

exp(−u)
= 1− exp(−x)

Thus, the limiting distribution obtained is the Generalized Pareto Distribution (GPD) with

parameter 1.

16



Chapter 2

Estimation of extreme value

The estimate of the tails index, plays an important role in limiting an extreme law, when

it exists, is indexed by a parameter called extreme value index, there are two methods for

estimating the extreme value index : parametric methods, meaning that the data follow

an exact GEV distribution, and semi-parametric methods, where the parameter has both a

finite-dimensional and an infinite-dimensional and are therefore based on partial properties of

the underlying distribution, such as the Hill estimator, a widely used method for estimating

the tail index of heavy-tailed distributions, next, the Pickands estimator, which provides an

alternative approach based on order statistics and is particularly useful in extreme value

analysis, finally, the Moment estimator, which leverages higher-order moments to estimate

tail indices. Each of these estimators plays a crucial role in statistical modeling and risk

assessment in various fields.

2.1 Parametric estimators

17



CHAPTER 2. ESTIMATION OF EXTREME VALUE

2.1.1 Maximum Likelihood Estimators

The Maximum Likelihood Estimation (MLE) method is one of the most widely used tech-

niques for deriving estimators.

Principle of the Maximum Likelihood Method

Definition 2.1.1 Suppose that X1,...,Xn is an independent and identically distributed sample

from a population with a probability density function or probability mass function given by

f(x|θ1, ..., θk). The likelihood function is then defined as:

L(θ|X) = L(θ1, ..., θk|x1,...,xn) =
n∏
i=1

f(xi|θ1, ..., θk)

Definition 2.1.2 Let θ̂ be the parameter value at which the likelihood function L(θ|x) attains

its maximum when treated as a function of θ, the maximum likelihood estimator (MLE) of

the parameter θ based on a sample X is denoted by θ̂.

Proposition 2.1.1 In most cases, the likelihood function is expressed as a product, so θ̂ will

generally be calculated by maximizing the log-likelihood. When θ = (θ1, ..., θk) and all the

partial derivatives below exist, θ̂ is the solution to the system of equations:

∂

∂θj
logL(θj|x1,...,xn) = 0, ∀j ∈ (1, 2, ...)

Application of the Maximum Likelihood Method to GEV

Proposition 2.1.2 The log-likelihood function is given by:

For γ 6= 0

log(L(γ|X) = −n log (σ)−
(

1

γ
+ 1

) n∑
i=1

log

(
1 + γ

Xi − µ
σ

)
−

n∑
i=1

(
1 + γ

Xi − µ
σ

)−1

γ

18
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For γ = 0

log(L(γ|X) = −n log (σ)−
n∑
i=1

exp

(
Xi − µ
σ

)
−

n∑
i=1

(
Xi − µ
σ

)

2.1.2 Method of L-moments

The L-moments, whose theory was unified by Hosking (1990), are linear combinations of order

statistics and exhibit lower sample variances and higher robustness to outliers compared to

the conventional moments.

Analogously to the classical method of moments, the L-moment estimation method derives

parameter estimates by equating the first sample L-moments to their corresponding theor-

etical expressions. Theoretical L-moments are defined using the quantile function (i.e., the

inverse of the cumulative distribution function).

Principle of the L-moments Method

Definition 2.1.3 Let X1, X2, .., Xn be a sample of size n from a continuous distribution

FX(x) with the quantile function Q(u) = F−1X (u), and let X(1,n), X(2,n), ..., X(n,n) be the order

statistics associated with this sample, for r ≥ 1 the rth L-moments lr is given by:

lr =
1

r

r−1∑
i=0

(−1)i
(
r − 1

i

)
E
(
X

(r−i,r)

)
, r = 1, 2, ... (2.1)

With

E(X(j,r)) =
r!

(j − 1)!(r − j)!

∫
x(F (x))(j−1)(1− F (x))(r−j)dF (x) (2.2)

The L in "L-moments" emphasizes that lr is a linear function of the expected order statistics.

The first few L-moments are

The first L-moment is used to calculate the mean (position measurement) and is defined by:

l1 = E(X(1,1))
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The second L-moment is used to calculate (measure of dispersion) is given by:

l2 =
1

2
E(X(2,2) −X(1,2))

The third L-moment for studying symmetry (skewnes measure) is given by:

l3 =
1

3
E(X(3,3) − 2X(2,3) +X(1,3))

The fourth L-moment to study kurtosis (kurtosis measure) is defined by:

l4 =
1

4
E(X(4,4) − 3X(3,4) + 3X(2,4) −X(1,4))

L-skewness, τ3, can then be found by taking the ratio of l3 to l2; i.e.

τ3 =
l3
l2

The approximation for L-moments and L-skewness which are known as sample L-moments

and sample L-skewness respectively, can be found from a finite sample of size n, arranged in

ascending order. The sample L-moments, λ, are written as

λj+1 =

J∑
k=0

(−1)j−k
(
j

k

)(
j + 1

k

)
bk, j = 0, 1, ..., n− 1 (2.3)

with,

bk =
1

n

(
n− 1

k

)−1 n∑
i=k+1

(
i− 1

k

)
Xi,n

Thus, the sample L-skewness, t3, can then be found by taking the ratio of λ3 to λ2 such that

t3 =
λ3
λ2
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Application of the L-moment method to GEV

By substituting equation 1.1 in equation 2.2 and equating the population L-moments in equa-

tion 2.1 to their corresponding sample L-moments in equation 2.3, the parameter estimates

for the GEV distribution can be found as follows,

γ̂ = 7.8590c+ 2.9554c2

with c =
2

(3 + t3)
− log (2)

log (3)

σ̂ =
l2γ̂

(1− 2−γ̂) (Γ (1− γ̂))

µ̂ = l1 −
σ̂

γ̂
[1− Γ (1 + γ̂)]

with Γ typically refers to the Gamma function.

2.2 Semi-parametric estimators

2.2.1 Hill Estimator

The Hill estimator was introduced by Hill (1975) as a nonparametric method for estimat-

ing the tail parameter of distributions belonging to the Fréchet domain of attraction. To

construct this estimator, Hill applied the maximum likelihood method to the k largest ob-

servations in a sample. A significant number of theoretical studies have been dedicated to

investigating its properties. Mason (1982) demonstrated its weak consistency, while De-

heuvels, Haeusler, and Mason established its strong consistency in Deheuvels et al. (1988).

The asymptotic normality of the estimator was studied by Davis and Resnick (1984), Csörgö

and Mason (1985), Haeusler and Teugels (1985), and Smith (1987), among others.
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Theorem 2.2.1 Let F ∈ D(Gγ) for γ > 0 if and only if,

lim
t→∞

1− F (tx)

1− F (t)
= x−

1
γ , γ > 0.

Theorem 2.2.2 Gives an equivalent form of this condition:

lim
t→∞

∞∫
t

(1− F (x))dx
x

1− F (t)
= γ

Now partial integration yields

∞∫
t

(1− F (x))
dx

x
=

∞∫
t

(log u− log t)dF (u).

Hance we have

lim
t→∞

∞∫
t

(log u− log t)dF (u)

1− F (t)
= γ

To develop an estimator based on this asymptotic result, we replace in the last equation the

parameter t with the intermediate order statistic Xn−k,n , and the distribution function F

with the empirical distribution function Fn. Thus, we obtain the estimator proposed by Hill

in 1975, denoted by γ̂H ,defined by

γ̂H =

∞∫
Xn−k,n

(log u− logXn−k,n)dF (u)

1− F (Xn−k,n)

or

γ̂H =
1

k

k∑
i=1

[logXn−i+1,n − logXn−k,n]
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Proof. This can be interpreted as follows:

P (
X

t
> x|X > t)→ x−

1
γ

as t→∞ and x > 1.

Moreover, if we define Yj(t) as the relative excesses beyond t, that is:

Yj(t) =
Xi

t
,with Xi > t

where i corresponds to the index of the j-th excess in the original sample, and j = 1, ..., Nt

, then Nt represents the total number of excesses above t.By constructing the log-likelihood

based on the excesses Y1(t), ...., YNt(t) conditionally on Nt we obtain:

logL(Y1(t), ...., YNt(t)) = −Nt log γ − (1 +
1

γ
)
Nt∑
j=1

log Yj(t)

Thus, the derivative of the log-likelihood with respect to γ is given by:

d logL

dγ
= −Nt

γ
+

1

γ2

Nt∑
j=1

log Yj(t) = 0

Solving this equation, we obtain the estimator of γ in the following form:

γ =
1

Nt

Nt∑
j=1

log Yj(t)

For an excess threshold t defined as the order statistic Xn−kn,n where 1 ≤ k ≤ n and k →∞

, and replacing Nt with k , we obtain Hill’s estimator (1975):

γ̂H =
1

k

k∑
i=1

[logXn−i,n − logXn−k,n]
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Figure 2.1: Hill estimator

Proposition 2.2.1 (Properties of the Hill Estimator) Let (k)n≥1 be a sequence of in-

tegers such that 1 < k ≤ n, k →∞ and k
n
→ 0 as n→∞.

• Weak consistency : Then, γ̂H converges in probability to γ.

• Strong consistency : Moreover, if k
log logn

→ ∞ an n → ∞, then γ̂H converges almost

surely to γ.

Proof. See Mason (1982), Deheuvels and all (1988)

Proposition 2.2.2 (Asymptotic Normality of the Hill Estimator) Let F be a distri-

bution function that belongs to the domain of attraction of the extreme value distribution Gγ

with γ > 0.Then, for any sequence k →∞ satisfying ........,

√
k(γ̂H − γ)

D→ N(0, γ2)

as n→∞ , where N(0, γ2) is the normal distribution with mean 0 and variance γ2.

Proof. See Davis and Resnick (1984).
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2.2.2 Pickands Estimator

This estimator is based on the calculation of quantiles. It was first introduced by Pickands

(1975) and later revisited by Drees (1995) and Drees and Kaufmann (1998). Additionally,

Dekkers and de Haan (1989) studied its properties, establishing its weak consistency and

asymptotic normality. Constructed using three order statistics, this estimator has the ad-

vantage of being valid regardless of the domain of attraction of the distribution.

Definition 2.2.1 We assume that (Xi, i = 1, ..., n) is a sequence of independent random vari-

ables following a distribution F that belongs to one of the domains of attraction. Let (k)n≥1

be a sequence of integers with 1 ≤ k ≤ n . The Pickands estimator is defined by:

γ̂p = (log 2)−1 log
Xn−k,n −Xn−2k,n

Xn−2k,n −Xn−4k,n
.

Figure 2.2: Pickands’Estimator

Proposition 2.2.3 (Properties of Pickands’Estimator) Let ( k)n≥1 be a sequence of

integers such that 1 ≤ k ≤ n, k →∞, and k
n
→ 0 as n→∞ .

• Weak consistency : Then,γ̂pconverges in probability to γ.

• Strong consistency : If k
log logn

→∞ an n→∞, then γ̂p converges almost surely to γ.

25



CHAPTER 2. ESTIMATION OF EXTREME VALUE

• Asymptotic normality: The strong convergence as well as the asymptotic normality were

established by Dekkers and de Haan (1989) as

√
k(γ̂p − γ)

D→ N(0,
γ2(22γ+1 + 1)

4(log 2)2(2γ − 1)2
).

as n→∞ and k →∞.

Proof. See Dekkers and de Haan (1989).

2.2.3 Moment Estimator

Another estimator, which can be considered as an adaptation of the Hill estimator to ensure

consistency regardless of the sign of the index γ , was proposed by Dekkers et al. (1989).

This is known as the moment estimator.

Definition 2.2.2 For γ ∈ R, the moment estimator is defined by

γ̂M = γ̂H + 1− 1

2

(
1− (γ̂H)2

M
(2)
n

)−1

Where:

M (r)
n =

1

k

k−1∑
(

i=0

logXn−i,n − logXn−k,n)r, r = 1, 2.

The moment estimator is also known as the Dekkers-Einmahl-de Haan estimator.

Proposition 2.2.4 (Properties of the Moment Estimator) Suppose that F ∈ D(Gγ), γ ∈

R, k →∞ and k
n
→ 0 as n→∞

• Weak consistency : Then,γ̂Mconverges in probability to γ.

• Strong consistency : If, moreover, k
(logn)δ

→ ∞ as n → ∞ for some δ > 0, then γ̂M

converges almost surely to γ
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Figure 2.3: Moment estimator

• Asymptotic normality: Under certain conditions on the distribution F (see Dekkers et

al. (1987)),
√
k(γ̂M − γ)

D→ N(0, σ2M) as n→∞

where

σ2M =

 1 + γ2 si γ ≥ 0

(1− γ2)(1− 2γ)
(

4− 81−2γ
1−3γ + (5−11γ)(1−2γ)

(1−3γ)(1−4γ)

)
si γ ≤ 0

Proof. See Dekkers et al. (1987).

2.3 The choice of the number k

Choosing the number k in extreme value estimation is a key challenge as it depends on the

shape of the tail of the distribution and must be estimated based on the available data.

The problem lies in balancing bias and variance: increasing k leads to higher bias, while

reducing the data increases the variance. The optimal value of k can be determined using

the numerical and graphical methods.
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2.3.1 Numerical Method

To achieve an accurate estimation of the tail index using the Hill estimator, it is neces-

sary to compute the Mean Squared Error (MSE), which depends on the number of extreme

observations k. The MSE is expressed as:

MSE(γ̂k) = MSE(γ̂k − γ)2

= biais2(γ̂k) + var(γ̂k)

Thus, the objective is to select the optimal value of k that minimizes the MSE, achieving

the best balance between bias and variance.

ln this context, de Haan and Peng (1998) proposed determining the optimal number of

observations kopt for estimating the tail index as follows :

kopt =

 1 + 2
2γ

2γ+1
2γ ( (γ+1)

2

2γ
)

1
2γ+1 if 0 < γ < 1

2η
2
3 if γ > 0

2.3.2 Graphical Method

It is the simplest method for determining k. It consists of plotting the graph (k, γ̂H) and

selecting the value at which (k, γ̂H) becomes horizontal. This estimator is only valid in the

domain of attraction of the Fréchet distribution, that is, when γ > 0.

2.4 Threshold selection
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Figure 2.4: The graph (k, γ̂H)

2.4.1 Rule of thumb

One way to approach setting a threshold is by using a rule of thumb to choose the k largest

observations and modeling. Commonly used is the 90th percentile, but others have also been

proposed, such as k =
√
n and k = n(2/3)/log(log(n)) all of which are practical but to some

level theoretically improper[. It is the fastest method of setting a threshold but due to the

difference in behavior between different data it is not necessarily a reliable way of setting

a good threshold due to the inevitable difference between most data. From the view of an

insurance company it is possible that the information of interest may be the distribution of

claims above some certain value, or the size of some upper quantile of claims. It is therefore

sometimes of interest to use a certain threshold to get information even if it depreciates the

theoretical analysis of the data.

2.4.2 Graphical approach

In a statistical framework, the choice of the threshold u is very important because it induces

a large variability in the estimation of the extreme quantiles and the parameters of the law of

excesses. There are different approaches for the choice of the threshold u of the POT method.
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Indeed, the threshold must be large enough to satisfy the asymptotic character of the model,

but not too high either, in order to keep a suffi cient number of excesses to properly estimate

the parameters of the model. Generally, u is determined graphically by the graph of the

mean excess function (Mean Excess Plot) 1.2.

Figure 2.5: The average distribution of excesses.
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Application

3.1 Simulation

In this simulation study, we explore the behavior of extreme values using the Generalized

Extreme Value (GEV) distribution. We generate synthetic data to model such events and

analyze their properties within the GEV framework. Our objectives include generating syn-

thetic data, estimating the parameters of the GEV distribution, analyzing the characteristics

of extreme values, and validating the model by comparing it with real-world data. This

study aims to deepen our understanding of extreme value theory and demonstrate the ap-

plication of the GEV distribution in contexts where forecasting and managing extreme risks

are essential.
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n = 100 n = 200
ML LM ML LM

γ̂ 0.3249 0.2805 0.2838 0.2817
σ̂ 0.9339 0.9705 0.9034 0.8995
µ̂ −0.0064 0.0079 −0.0941 −0.0953

Table 3.1: The results of the parameters estimated by the two parametric methods.

3.1.1 Simulate a data sample for a GEV and estimated the para-

meters

R code

n =100, 200 # Sample size

shape =0.3

scale =1

location = 0

rgev_alternative = function(n, loc, scale, shape) {

u = runif(n)

x= loc + (scale / shape) * ((-log(u))^(-shape) - 1)

return(x)

}

simulated_data = rgev_alternative(n, loc = location, scale = scale, shape= shape)

hist(simulated_data, breaks = 30, freq = FALSE,

main = "Simulated Data rom GEV Distribution", xlab = "Value")

LM= fevd(simulated_data, method = "Lmoments")

ML=fevd(simulated_data,method="MLE")

3.1.2 Discussion and conclusion

Based on the results of this code, in particular the results of the form parameter estimated by

the two methods, which were positive and included in the 0.3 range. This leads us to conclude
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Figure 3.1: Histogram of the simulated Data from GEV Distribution

that the exact distribution of the data is the distribution of Fréchet, which is characterized

by a heavy tail.

3.2 Real data

This part focuses on estimating the extreme value index using real-world data. The dataset

consists of confirmed cases of coronavirus infection recorded between January 22, 2020, and

December 23, 2022. The data were collected from Constantine Hospital.

The objectives of this empirical study are:

• To conduct a descriptive analysis of the dataset.

• To perform threshold selection for extreme value modeling.

• To estimate the index using parametric methods.

• To estimate the index using semi-parametric methods.
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3.2.1 Descriptive analysis of the data

First, we do a simple statistical analysis on our data set, the results are as follows:

Min 1st Qu Median Mean 3rd Qu Max skewness kurtosis
0.0 14.25 153.50 254.41 328.75 2521.00 2.68 12.30

Table 3.2: Statistical analysis of data.

These statistics indicate a high degree of dispersion in the number of daily cases, with values

ranging from 0 to over 2500. The presence of extreme values is evident, making this dataset

suitable for extreme value theory (EVT) analysis. Kortosis is 12.30 greater than 3, hence the

heavy-tailed distribution.

Figure 3.2: Confirmed cases of coronavirus infection in Algeria
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Figure 3.3: Histogram of the confirmed cases of coronavirus infection

R code

library(moments)

summary(X)

kurtosis(X)

skewness(X)

3.2.2 Adjustment by normal law

For the normal distribution adjustment using the Shapiro-Wilk test, the following hypotheses

are tested: H0 : The sample follows a normal distribution.

H1 : The sample does not follow a normal distribution.
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We set a significance threshold of α = 0.05. The result: p-value = 2.2× 10−16.

Test decision:

Fitting the data of our sample by the normal distribution gives a p-value equal to 2.2×10−16,

this value is less than the significance threshold α = 0.05, therefore the sample does not follow

a normal distribution, further confirming the appropriateness of EVT

R code

shapiro.test(X)

3.2.3 Threshold selection

We use the POT method to choice the threshold u,

Figure 3.4: The average distribution of excesses for the real data.

the graph appears linear from threshold 1500 approximately, this allowed us to consider the

value u = 1500 as the optimal threshold.
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R code

library(evir)

meplot(X)

3.2.4 Estimation by parametric methods

In this section, we will estimate the parameters of the GEV using the following methods:

• Maximum likelihood (ML) method.

• L-moments (LM) method.

ML LM
γ̂ 1.5277 0.3680

Table 3.3: Parametric estimation.

Interpretation of Results

The estimate obtained by the maximum likelihood method is γ̂ = 1.5277, which is a very

high value, indicating that the data follow a heavy-tailed distribution. This suggests a high

probability of observing extremely large values, typical of a Fréchet-type behavior. Such

a large value may also reflect the presence of strong outliers or extreme variability in the

sample. In contrast, the estimate obtained using the L-moment method is γ̂ = 0.3680. This

value is still positive, confirming that the distribution retains a heavy-tailed.

R code

library(extRemes)

library(evd)

LM= fevd(X, method = "Lmoments")

ML=fevd(X,threshold=1500,method="MLE")
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3.2.5 Estimation by semi-parametric methods

Using some semi-parametric methods to estimate the extreme value index γ (Hill, Moments,

Pickands). The results are as follows:

γ̂H γ̂P γ̂M
0.2169 0.1536 0.1497

Table 3.4: Semi-parametric estimation.

R code

N = length(X)

k = length(X[which(X > 1500)])

Y = sort(X,decreasing = TRUE)

t=numeric(k)

for(i in 1:k){

t[i]=Y[i]

}

# Hill estimator

Z = log(t)

H = sum(Z)/k-log(Y[k])

# Pickands estimator

Pickands=(1/log(2))*log(((Y[k])-(Y[(2*k)]))

/(((Y[(2*(k))])-(Y[(4 *(k))]))))

# Moments estimator

M2=(1/k)*sum((log(t)-log(Y[k]))^2)

M=H+1-(1/2)*((1-((H^2)/M2))^(-1))

Interpretation of Results

A positive extreme value index γ (as in your Hill and Moment estimates) suggests the data

belong to the Fréchet domain, i.e., the distribution has a heavy tail. This is consistent with
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rare but very large spikes in infection counts.

This code in R confirms the reliability of our conclusions:

R code

library(VGAM)

x=rfrechet(1000,location=0,scale=1,shape=0.2169)

hist(X,prob=TRUE,col=4,main="HistogramwithFittedfrechetDistribution")

curve(dfrechet(x,location=0,scale=1,shape=0.2324),col=2,add=TRUE,lwd=2)

Figure 3.5: Histogram with fitted Frechet distribution
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Conclusion

This master’s thesis addresses the estimation of extreme values through a systematic compar-

ison between semi-parametric estimators, such as the Pickands, Hill, and Moment estimat-

ors, and parametric estimators like L-moments and Maximum Likelihood Estimators (MLE).

These methods are pivotal tools for analyzing extreme data, particularly when dealing with

rare events that have significant impacts.

The study demonstrated that semi-parametric estimators are characterized by their flexibility,

as they do not assume a specific distributional form, making them suitable for cases where

the statistical model is diffi cult to define precisely. In contrast, parametric estimators rely on

clear assumptions about the distribution and provide greater accuracy and effi ciency when

these assumptions hold true.

Practically, the analysis showed that the performance of each estimator varies based on

sample characteristics and data distribution. For example, the Hill estimator excelled in

heavy-tailed distributions, while the L-moments estimator provided more stable results for

small samples. On the other hand, Maximum Likelihood Estimators offered high accuracy

under ideal conditions, but they are highly sensitive to model specification.

Despite the challenges associated with each estimation approach, the comparison highlights

the potential benefits of combining both methods in future research. Integrating the flexibility

of semi-parametric estimators with the effi ciency of parametric ones could lead to more

adaptable models that better capture the complexities of extreme data.

Thus, this thesis underscores the importance of continued research in this area, focusing on
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developing hybrid and adaptive approaches that account for the nature of extreme phenomena

and contribute to improved estimation accuracy and a deeper understanding of extreme data

behavior.
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R Software

R is a system, commonly known as language and software, which allows statistical analyzes

to be carried out. More particularly, it comprises means which make possible the manipula-

tion of the data, the calculations and the graphical representations. R also has the ability to

run programs stored in text files and includes a large number of statistical procedures called

packets. The latter make it possible to deal fairly quickly with subjects as varied as linear

models (simple and generalized), regression (linear and non-linear), time series, classic para-

metric and non-parametric tests, the various methods of data analysis , ... Several packages,

such ade4, MASS, multivariate, scatterplot3d among others are intended for the analysis of

multidimensional statistical data.

It was originally created in 1996 by Robert Gentleman and Ross Ihaka of the Department

of Statistics at the University of Auckland in New Zealand. It is designed to be used with

Unix, Linux, Windows and MacOS operating systems. A key element in R’s development

mission is the Comprehensive R Archive Network (CRAN) which is a collection of sites that

provides everything needed for the distribution of R, its extensions, documentation, source

files and files. binaries. The master site of CRAN is located in Austria in Vienna, it can

be accessed by the URL: "http://cran.r-project.org/". The other CRAN sites, called mirror

sites, are spread all over the world.
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Abstract 

 

The tail index, which is one of the fundamental concepts in extreme value theory, is widely used in 

the analysis of rare events and large deviations. It has significant applications in various fields such as 

economics, insurance, and environmental studies. 

This thesis focuses on estimating extreme values using parametric and semi-parametric methods. The 

parametric methods include Linear Moment Estimators (L-moments) and Maximum Likelihood 

Estimator (MLE), while the semi-parametric methods rely on order statistics such as Hill, Pickands, 

and Moment estimators. The theoretical foundations of these methods are presented, along with 

numerical applications using the R software. 

Keywords: Extreme values, The tail index,Parametric estimation, Semi-parametric estimation.  

 

 

Résumé 

 

L'indicateur de queue, qui est l'un des concepts fondamentaux dans la théorie des valeurs extrêmes, 

est largement utilisé dans l'analyse des phénomènes rares et des grandes déviations. Il trouve des 

applications importantes dans divers domaines tels que l'économie, l'assurance et l'environnement. 

Cette thèse se concentre sur l'estimation des valeurs extrêmes à l'aide de méthodes paramétriques et 

semi-paramétriques. Les méthodes paramétriques incluent les estimateurs des moments linéaires (L-

moments) et l'estimateur du maximum de vraisemblance (MLE), tandis que les méthodes semi-

paramétriques reposent sur des statistiques ordonnées telles que les estimateurs de Hill, Pickands et 

Moments. Les bases théoriques de ces méthodes sont présentées, ainsi que des applications 

numériques utilisant le programme R. 

Mots-clés : Valeurs extrêmes, L'indice de queue, Estimation paramétrique, Estimation semi-

paramétrique. 

 

 الملخص

 

الذيل، الذي يعُدّ من المفاهيم الأساسية في نظرية القيم المتطرفة، يسُتخدم على نطاق واسع في تحليل الظواهر النادرة  مؤشر 

  .والانحرافات الكبيرة، وله تطبيقات هامة في مجالات متعددة مثل الاقتصاد، التأمين، والبيئة

 معلمية وشبه معلمية. تشمل الطرق المعلمية مقدّرات العزوم الخطيةتركز هذه الأطروحة على تقدير القيم المتطرفة باستخدام طرق 

(L-moments) ومقدّر الاحتمالية العظمى (MLE) بينما تعتمد الطرق شبه المعلمية على الإحصاءات الترتيبية مثل مقدّرات ،

 .R تخدام برنامجهيل، وبيكاندس، والمومنت. تعُرض الأسس النظرية لهذه الطرق، إلى جانب تطبيقات عددية باس

 .ر المعلمي، التقدير شبه المعلميالتقدي ،مؤشر الذيلالقيم المتطرفة،  :كلمات مفتاحية
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