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Notations and symbols

Rn : The space of n-dimensional real vectors,

Rn
+ : The positive orthant of Rn,

Rm×n : The vector space of real matrices of size (m× n),

0m×n : The zero matrix (m× n),

I : The identity matrix of order n,

AT : The transpose of matrix A ∈ Rm×n,

A−1 : The inverse of a regular matrix A,

aij : Matrix element of A ∈ Rm×n,

A
1
2 : The square root of the matrix A � 0,

A � 0 (A � 0) : A is a positive semidefinite (positive definite) matrix,

A � 0 (A ≺ 0) : A is a negative semidefinite (negative definite) matrix,

λi(A) : The ith eigenvalue of A ∈ Rn×n,

Sp(A) : The spectrum of the matrix A,

diag(x) : The diagonal matrix X with Xii = xii,

Tr(A) : Trace of matrix A ∈ Rn×n (Tr(A) =
∑

aii =
∑

λi(A)),

ρ(A) : The spectral radius of A (ρ(A) = max
i
|λi(A)|),

det(A) : The determinant of A ∈ Rn×n (det(A) =
∏
i

λi(A)),

Sn =
{
X : X ∈ Rn×n, X = XT

}
,

Sn
+ = {X : X ∈ Sn, X � 0},

Sn
++ = {X : X ∈ Sn, X � 0},

A •B = Tr(ATB) ∀A,B ∈ Rn×n

iv



Terminology

• LCP : Linear complementarity problem,

• SDP : Semidefinite programming,

• NT : Nesterov-Todd,

• TC : Trajectory center,

• inner : Inner iteration,

• outer : Outer iteration,

• SVD : Singular value decomposition,

• KKT : Karush-Kuhn-Tucker,

• IPMS : Interior point methods,

• SDLCP : Semidefinite linear complementarity problem,

• SDLS : Semidefinite least square,

• NS-SDLS : Non symmetric semidefinite least square,

• LMI-LS : Linear matrix inequalities least squares problem
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Introduction

The field of mathematical optimization has witnessed remarkable progress over the past

several decades, with interior-point methods (IPMs) emerging as one of the most signifi-

cant developments in the late 20th century. Originally conceived for linear programming

problems, these methods have since been extended to various classes of convex optimiza-

tion problems, including semidefinite programming (SDP) and complementarity problems.

This thesis focuses on the application and development of interior-point methods for solving

monotone semidefinite linear complementarity problems (SDLCPs), a powerful framework

that generalizes both classical linear complementarity problems and semidefinite program-

ming.

Semidefinite linear complementarity problems arise naturally in numerous applications

across engineering, economics, and operations research. They provide a unified framework

for modeling problems involving matrix variables with semidefiniteness constraints, where

the complementarity condition captures essential equilibrium properties. The monotonicity

assumption, which ensures the problem’s well-posedness, makes these problems particularly

amenable to solution by interior-point methods. The growing importance of SDLCPs in

modern optimization stems from their ability to model complex systems where traditional

linear or nonlinear programming formulations prove inadequate.

The theoretical underpinnings of this work rest on three fundamental pillars: convex analy-

sis, matrix optimization, and complementarity theory. Convex analysis provides the essen-

tial tools for understanding the geometric structure of the feasible region and the behavior

of optimization algorithms. The theory of self-concordant barriers, developed by Nesterov

and Nemirovskii, plays a crucial role in the complexity analysis of interior-point methods
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for SDLCPs. This theory establishes that certain barrier functions allow the construc-

tion of polynomial-time algorithms for convex optimization problems, including those with

semidefinite constraints.

Matrix optimization introduces additional layers of complexity compared to vector opti-

mization problems. The spectral properties of symmetric matrices, their decomposition,

and the various norms defined on matrix spaces all contribute to the rich structure of

SDLCPs. The complementarity condition in SDLCPs, expressed through the trace in-

ner product Tr(XY ) = 0 for matrix variables X,Y � 0, generalizes the componentwise

complementarity of traditional linear complementarity problems while maintaining crucial

connections to optimality conditions in convex programming.

The core algorithmic contribution of this work lies in the development and analysis of

primal-dual interior-point methods for SDLCPs. These methods follow the central path,

a smooth trajectory through the interior of the feasible region that leads to optimal solu-

tions as a barrier parameter approaches zero. The Nesterov-Todd (NT) direction, which

preserves certain invariance properties crucial for efficient computation, serves as the foun-

dation for our algorithmic framework.

A significant focus of this research is the investigation of kernel functions and their role in

determining search directions. Kernel functions, which are strictly convex and barrier func-

tions defined on the positive real line, can be extended to matrix spaces through spectral

decomposition. Different choices of kernel functions lead to distinct algorithmic behaviors,

with implications for both theoretical complexity and practical performance. We systemat-

ically analyze various kernel functions from the literature, comparing their properties and

the resulting iteration complexity bounds.

The implementation of interior-point methods for SDLCPs presents unique computational

challenges. Unlike linear programming where the main computational burden lies in solv-

ing linear systems, SDLCP algorithms require careful handling of matrix operations and

eigenvalue computations. The symmetrization of the complementarity condition, necessary

to maintain matrix symmetry throughout the iterations, introduces additional complexity

in the linear algebra computations.
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The practical significance of SDLCPs and their solution methods spans multiple disciplines.

In control theory, they appear in linear matrix inequality (LMI) formulations of stability

and performance analysis problems. Combinatorial optimization benefits from SDP relax-

ations of difficult problems, where SDLCP formulations often provide tighter bounds than

linear programming relaxations. Eigenvalue optimization, a fundamental tool in numerical

analysis and scientific computing, can be expressed naturally as an SDLCP. Particular

applications include; Maximum cut problems in graph theory, Chebyshev approximation

with logarithmic constraints, stability analysis of dynamical systems via Lyapunov equa-

tions, geometric problems involving quadratic forms and ellipsoidal approximations.

This document is organized as follows: Chapter 1 establishes the mathematical foundations,

covering convex analysis, matrix calculus, and optimization theory. Chapter 2 focuses on

semidefinite programming and complementarity problems, detailing their formulation, du-

ality theory, and applications. Chapter 3 presents Primal-dual Inner point methods for

SDLCP based on kernel functions.
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Chapter 1

General Notions

The aim of this first chapter is to present some fundamental notions of differential calculus

and convex analysis, linear programming, and the asymptotic study of the convergence of

an optimization algorithm. These notions are useful for demonstrating theoretical results

in the following chapters.

1.1 Some Notations

1. For any n ∈ N∗, Rn denotes the Euclidean space R×R× . . .×R ("product n times").

In general, a vector x ∈ Rn will be denoted x = (x1, x2, . . . , xn)
T (column vector).

2. We denote e1, e2, . . . , en the elements of the canonical basis of Rn, where ei is the

vector of Rn given by

(ei)j = δij =


0 if i 6= j

1 if i = j

, ∀i, j ∈ {1, 2, . . . , n}.

(Kronecker symbol).

3. For all x, y ∈ Rn, we denote by 〈x, y〉 ∈ R the scalar product of x and y, which is

given by

〈x, y〉 =
n∑

i=1

xiyi.
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4. For any x ∈ Rn, we denote by ‖x‖ ≥ 0 the Euclidean norm of x, given by

‖x‖ =
√
〈x, x〉 =

√√√√ n∑
i=1

x2i .

5. For any x ∈ Rn and r > 0, B(x, r) denotes the open ball centered at x with radius r,

given by

B(x, r) = {y ∈ Rn, ‖y − x‖ < r}.

6. If a, b ∈ Rn, we denote [a, b] the subset of Rn given by

[a, b] = {a+ t(b− a) ≡ (1− t)a+ tb, t ∈ [0, 1]}.

If a, b ∈ Rn with a 6= b, then [a, b] denotes the interval of numbers x ∈ R such that

a ≤ x ≤ b.

7. We also recall the Cauchy-Schwarz inequality

|〈x, y〉| ≤ ‖x‖ · ‖y‖, ∀x, y ∈ Rn.

1.2 Gradient and Hessian

1.2.1 Notion of Partial Derivative

Let Ω ⊂ Rn be an open set and f : Ω→ R.

1. We say that f is of class Cm on Ω (f ∈ Cm(Ω)) if all partial derivatives up to order

m exist and are continuous.

2. For any x ∈ Ω and any i ∈ {1, 2, . . . , n}, we denote (when it exists)

∂f

∂xi
(x) = lim

t→0

1

t
[f(x+ tei)− f(x)].

(This is the partial derivative of f at x in the direction xi).

5



3. For any x ∈ Ω, we denote (when it exists)

Jf (x) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
∈ Rn, ∀x ∈ Ω.

(The Jacobian of f at x). We have

∇f = (Jf )
T .

4. For any x ∈ Ω and h ∈ Rn, we denote (when it exists):

∂f

∂h
(x) = lim

t→0

1

t
[f(x+ th)− f(x)] = f ′(0).

(This is the directional derivative of f at x in the direction h). We have

∂f

∂h
(x) = 〈∇f(x), h〉, ∀x ∈ Ω, ∀h ∈ Rn.

1.2.2 Hessian Matrix

Let Ω ⊂ Rn be an open set and f : Ω → R a function of class C2. The Hessian matrix of

f at x ∈ Ω is the matrix H(x) defined by

H(x) = ∇2f(x) =

(
∂2f

∂xi∂xj

)
1≤i,j≤n

.

1.3 Convex Analysis

Convexity is a key mathematical tool for analyzing optimization problems. Here, we intro-

duce some essential concepts frequently used in this context.
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1.3.1 Convex Sets and Functions

1. A set C of Rn is said to be convex if:

λx+ (1− λ)y ∈ C, ∀x, y ∈ C, ∀λ ∈ [0, 1].

2. C is said to be affine if:

λx+ (1− λ)y ∈ C, ∀x, y ∈ C, ∀λ ∈ R.

3. C is a convex polyhedron if it is of the form:

C = {x ∈ Rn : AT
i x ≤ bi, i = 1, . . . ,m},

where Ai is a non-zero vector of Rn and bi is a scalar for i = 1, . . . ,m.

C can be written in the following matrix form:

C = {x ∈ Rn/Ax ≤ b},

where A is a matrix of Rm×n and b is a vector of Rm.

Let f : C → R be a function and C a convex set of Rn.

1. f is said to be mid-convex on C if:

∀x, y ∈ C, f
(
x+ y

2

)
≤ f(x) + f(y)

2
.

2. f is said to be quasi-convex on C if:

f(λx+ (1− λ)y) ≤ max(f(x), f(y)), ∀λ ∈ [0, 1], ∀x, y ∈ C.

7



3. f is said to be convex on C if the following inequality is satisfied:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1], ∀x, y ∈ C.

4. f is said to be strictly convex on C if:

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y), ∀λ ∈]0, 1[, ∀x, y ∈ C and x 6= y.

5. f is said to be strongly convex on C if there exists α > 0 such that:

∀λ ∈]0, 1[, ∀x, y ∈ C and x 6= y,

we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
αλ(1− λ)‖x− y‖2.

(We also say that f is α-convex).

6. f is convex on C if and only if f is mid-convex and quasi-convex on C.

7. If f is a continuous function on a convex set C, we have

(a) f is convex on C if and only if f is mid-convex on C.

(b) f is α-convex on C if and only if

∀x, y ∈ C, f
(
x+ y

2

)
≤ f(x) + f(y)

2
− α

8
‖x− y‖2.

1.4 Taylor Formulas

Let Ω ⊂ Rn be an open set, f : Ω→ R, a ∈ Ω, and h ∈ Rn such that [a, a+ h] ⊂ Ω. Then

1. If f ∈ C1(Ω), then

8



(a) Taylor’s formula of order 1 with integral remainder:

f(a+ h) = f(a) +

∫ 1

0
〈∇f(a+ th), h〉dt.

(b) Taylor-Maclaurin formula of order 1:

There exists θ ∈ [0, 1] such that f(a+ h) = f(a) + 〈∇f(a+ θh), h〉.

(c) iii) Taylor-Young formula of order 1:

f(a+ h) = f(a) + 〈∇f(a), h〉+ o(‖h‖).

2. If f ∈ C2(Ω), then

(a) Taylor’s formula of order 2 with integral remainder:

f(a+ h) = f(a) + 〈∇f(a), h〉+
∫ 1

0
(1− t)〈∇2f(a+ th)h, h〉dt.

(b) Taylor-Maclaurin formula of order 2:

There exists θ ∈ [0, 1] such that f(a+h) = f(a)+〈∇f(a), h〉+1

2
〈∇2f(a+θh)h, h〉.

(c) Taylor-Young formula of order 2

f(a+ h) = f(a) + 〈∇f(a), h〉+ 1

2
〈∇2f(a)h, h〉+ o(‖h‖2).

Remark 1.4.1 In the previous formulas, the notation o(‖h‖k) for k ∈ N∗ means an ex-

pression that tends to 0 faster than ‖h‖k (i.e., if we divide it by ‖h‖k, the result tends to

0 as h tends to 0).

9



1.5 General Optimization Problem

Optimization has a specific vocabulary, so we will introduce some classical notations and

definitions. First, we give the general formulation of an optimization problem, for which

we need

1. An objective function or cost function or criterion to minimize, denoted f : Rn → R,

which depends on several variables x = (x1, x2, . . . , xn).

2. A set A ⊂ Rn where we seek the solution. We say that A is the set of feasible elements

of the problem or the set of constraints.

We seek to minimize f on A, i.e., we seek x̃ ∈ A such that

f(x̃) = min
x∈A

f(x)f(x̃) ≤ f(x), ∀x ∈ A.

There are two types of optimization unconstrained and constrained. In both cases, the

goal is to find the values that minimize a function. However, in constrained optimization,

the solutions are subject to restrictions.

1.5.1 Necessary Conditions for a Minimum

Let f : Rn → R be a function and let the problem

min
x∈Rn

f(x)

. The local and global minima of f on Rn are defined as follows

Definition 1.5.1 1. We say that the function f of problem (P ) has a global (or absolute)

minimum at x̃ ∈ Rn if and only if

∀x ∈ Rn, f(x̃) ≤ f(x).

2. We say that the point x̃ ∈ Rn is a local (or relative) optimum of (P ) if there exists a

10



neighborhood V of x̃ such that

∀x ∈ V (x̃), f(x̃) ≤ f(x).

3. We say that x̃ ∈ Rn is a strict local optimum of (P ) if and only if

∃V (x̃) such that ∀x ∈ V (x̃), f(x̃) < f(x).

4. We say that ỹ ∈ Rn is a revised strict local optimum of (P ) if

∃V (x̃) such that x̃ is the only optimal solution of (P ).

Remark 1.5.1 1. A global minimum is clearly a local minimum.

2. If we simply say minimum, we mean global minimum.

3. For maximization, minimize the function (−f)

max f(x) = −min f(−x).

1.5.2 Extremum Points

Let f : Rn → R be a function, and x̂ ∈ Rn.

1. We say that x̂ is a point of absolute (respectively relative) maximum of f on Rn if x̂

is a point of absolute (respectively relative) minimum of −f on Rn.

2. We say that x̂ is a point of absolute (respectively relative) extremum of f on Rn if x̂

is either a point of absolute (respectively relative) minimum of −f on Rn or a point

of absolute (respectively relative) maximum of f on U .

Lemma 1.5.1 Let U ∈ Rn, a ∈ Rn, and u∗ an element belonging to the interior of U

(u∗ ∈
◦
U). Then the following two assertions are equivalent

1. 〈a, u− u∗〉 ≥ 0, ∀u ∈ U .

11



2. a = 0.

Definition 1.5.2 Let U ⊂ Rn be a set and u∗ ∈ U . We say that w ∈ Rn is an admissible

direction for u∗ in U if there exists t0 > 0 such that u∗ + tw ∈ U for all t ∈ [0, t0].

Example 1.5.1 1. If u∗ ∈
◦
U , then any vector w ∈ Rn is an admissible direction for u∗

in U .

2. If U is convex, then for any ν ∈ U , the vector ν − u∗ is an admissible direction for

u∗ in U .

Lemma 1.5.2 Let Ω ⊂ Rn be an open set, U ⊂ Ω, f : Ω→ R a function of class C1, and

u∗ ∈ U a point of local minimum of f on U . Let w ∈ Rn be an admissible direction for u∗

in U . Then

〈∇f(u∗), w〉 ≥ 0.

Lemma 1.5.3 Let Ω ⊂ Rn be an open set, U ⊂ Ω a convex set, and f : Ω→ R a function

of class C1. Let u∗ ∈ U be a point of local minimum of f on U . Then

1. 〈∇f(u∗), u− u∗〉 ≥ 0, ∀u ∈ U .

(This is the Fermat condition.)

2. If in addition u∗ is in the interior of U (u∗ ∈
◦
U), then the condition

〈∇f(u∗), u− u∗〉 ≥ 0, ∀u ∈ U

is equivalent to

∇f(u∗) = 0 (This is the Euler equation).

1.5.3 Optimality Conditions

Theorem 1.5.1 Let Ω ⊂ Rn be an open set, U ⊂ Ω a convex set, f : Ω → R a function

of class C1 and convex, and u∗ ∈ U . Then the following three assertions are equivalent

1. u∗ is a point of global minimum of f on U .

12



2. u∗ is a point of local minimum of f on U .

3. 〈∇f(u∗), u− u∗〉 ≥ 0, ∀u ∈ U .

Remark 1.5.2 In the case where u∗ ∈
◦
U , then assertion 3 of Theorem 1.5.1 can be re-

placed, thanks to Lemma 1.5.3, by the Euler equation:

∇f(u∗) = 0.

1.6 Mathematical Programming

Mathematical programming is a broad and rich field in numerical analysis. It addresses

several mathematical models and important practical problems.

1.6.1 Unconstrained Optimization Problem

We will study the unconstrained optimization problem in which we minimize the function

f : Rn → R over the entire space Rn. We consider the problem formulated as follows

(P) {min f(x);x ∈ Rn}

which can be written as

{find x̂ ∈ Rn such that f(x̂) ≤ f(x); ∀x ∈ Rn}

1.6.1.1 Existence and Uniqueness

We are now interested in the question of the existence of minima for unconstrained opti-

mization problems.

Theorem 1.6.1 (Existence) Let f : Rn → R be an application such that

1. f is continuous.

2. f is coercive (i.e., lim||x||→∞ f(x) = +∞).
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Then, there exists x̂ ∈ Rn such that f(x̂) ≤ f(y) for all y ∈ Rn.

Theorem 1.6.2 (Uniqueness) Let f : Rn → R be strictly convex. Then there exists at

most one x̂ ∈ Rn such that:

f(x̂) ≤ f(y), ∀y ∈ Rn

Theorem 1.6.3 Let f be a function of class C1. Suppose there exists α > 0 (called the

ellipticity constant) such that for all (x, y) ∈ Rn × Rn, we have:

(∇f(x)−∇f(y), x− y) ≥ α‖x− y‖2 (α− elliptic)

Then f is strictly convex and coercive.

1.6.1.2 Optimality Conditions

In this section, we will seek to obtain the necessary and sometimes sufficient conditions

for minimality, since these optimality conditions will most often be used to facilitate the

calculation of a minimum. Therefore, these conditions will be expressed using the first or

second derivative.

The two necessary conditions for optimality are as follows:

First-Order Necessary Conditions

Given a vector x̂ ∈ Rn, we would like to be able to determine if this vector is a local

or global minimum of the function f . The property of continuous differentiability of f

provides a first way to characterize an optimal solution.

Theorem 1.6.4 Let f : Rn → R be a differentiable function at the point x̂ ∈ Rn. If x̂ is

a local optimum of (P ), then

∇f(x̂) = 0 (∗)

Remark 1.6.1 1. A point x̂ in Rn that satisfies ∇f(x̂) = 0 is called a critical point or

14



stationary point.

2. The previous theorem does not apply if the function f is not differentiable.

3. Condition (∗) is a first-order condition because it involves only the first derivative of

the function f .

There are situations where the relation (∗) is a necessary and sufficient condition.

Theorem 1.6.5 Let f : Rn → R be a convex function C1. A point x̂ achieves a minimum

over Rn if and only if ∇f(x̂) = 0.

We now give a necessary condition to further specify the possible minima. This condition

will involve the second derivative of f .

Second-Order Necessary Conditions

Theorem 1.6.6 Let f : Rn → R be of class C2. If f has a local minimum at x̂, then

1. ∇f(x̂) = 0, and

2. The Hessian matrix H(x̂) is positive semi-definite.

Second-Order Sufficient Conditions

The conditions given above are necessary, meaning that they must be satisfied for any

local minimum. However, any vector that satisfies these conditions is not necessarily a

local minimum. The following theorem establishes a sufficient condition for a vector to be

a local minimum if f is continuously differentiable twice.

Theorem 1.6.7 Let f : Rn → R be of class C2. If

1. ∇f(x̂) = 0, and

2. H(x̂) is positive definite,

then f has a local minimum at x̂.
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1.6.2 Constrained Optimization Problem

A constrained optimization problem is defined as follows.

(P )

 min f(x)

x ∈ C

f : Rn → R is continuous, C ⊆ Rn is the set of constraints. If (C = Rn), (P ) is called an

unconstrained optimization problem.

1.6.2.1 Mathematical Program

In general, a mathematical program is defined as follows

(PM)

 min f(x)

x ∈ C

where

C =

 x ∈ Rn/gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

and f, gi, hj are given functions from Rn to R.

f is called the objective function and C the set of feasible solutions or the constraint set

or simply "the domain".

A feasible solution of (PM) is any point x∗ satisfying the constraints (i.e., (x∗ ∈ C)).

1.6.2.2 Classification and Resolution of a Mathematical Program

The classification of (PM) and its numerical treatment are established based on the funda-

mental properties of the functions f, gi, hj , namely convexity, differentiability, and linearity.

Among the most studied special cases, we note

• Linear programming (f linear, gi, hj affine).
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• Convex programming (f, gi convex, hj affine, C convex).

• Integer programming (C is a discrete set, i.e., the variables are integers).

1.6.2.3 Existence and Uniqueness of Solution

In this paragraph, we give two existence theorems and the uniqueness theorem.

Theorem 1.6.8 If C is a non-empty compact subset of Rn and if f is continuous on C,

then (PM) admits at least one optimal solution x∗ ∈ C.

Theorem 1.6.9 If C is a closed non-empty subset of Rn, f is continuous and coercive on

C (i.e., lim||x||→∞ f(x) = +∞), then (PM) admits at least one optimal solution.

Theorem 1.6.10 If C is a convex non-empty subset of Rn, f is strictly convex on C, then

(PM) admits at most one optimal solution.

1.6.2.4 Optimality Conditions

Before giving the optimality conditions of (PM), we require that the constraints satisfy

certain criteria called "qualification criteria".

A constraint gi is said to be active (or saturated) at x̄ ∈ C if gi(x̄) = 0.

A point x̄ ∈ C is said to be regular (or the constraints are qualified at x̄) if the gradi-

ent components corresponding to the saturated constraints at x̄ are linearly independent.

There are also two usual qualification criteria at any point of C, namely

• If all constraints are affine.

• If C is defined only by inequalities, we have Slater’s condition: gi(x) is convex for all

i = 1, . . . ,m and there exists a point x0 such that gi
(
x0
)
< 0, (int (C) 6= ∅).

1.6.2.5 Lagrangian Duality

Let
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S = {x ∈ D ⊂ Rn : gi(x) ≤ 0, i = 1, . . . k, hj(x) = 0, j = 1, . . . ,m}

and consider the primal problem

m = inf
x
[f(x), x ∈ S]

The Lagrangian associated with this problem is the function L : D× [0,+∞]k×Rm −→ R,

defined by

L(x, λ, µ) f(x) |
k∑

i=1

λigi(x) +

m∑
j=1

µjhj(x)

We set

α(x) = sup
λ,µ

[L(x, λ, µ) : λ ≥ 0] =

 f(x) if gi(x) ≤ 0

+∞ otherwise
and hj(x) = 0

Thus

ᾱ = inf
x∈D

α(x) = inf
x
[f(x) : x ∈ S]

The dual problem associated with the primal problem is

β̄ = sup
(λ,µ)∈D

[L(x, λ, µ)]

We have the duality inequality

−∞ ≤ β̄ ≤ ᾱ

Theorem 1.6.11 (Karush-Kuhn-Tucker): Let x̄ ∈ C satisfy one of the qualification con-

ditions and suppose that f, gi, hj are C1 (Rn). We have:

If x̄ is a local optimum for (PM), then there exist real numbers called Lagrange multipliers:
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µi ∈ R+, i = 1, . . . ,m and λj ∈ R, j = 1, . . . , p such that:



∇f(x̄) +
∑m

i=1 µi∇gi(x̄) +
∑p

j=1 λj∇hj(x̄) = 0

µigi(x̄) = 0,

i = 1, . . . ,m

hj(x̄) = 0,

j = 1, . . . , p

(optimality conditions) (complementarity conditions)

If, in addition, f, gi, hj are convex, the above conditions are both necessary and sufficient

for x̄ to be a global optimum for (PM).

1.6.3 Optimization Algorithm

We will present an algorithm to converge to an optimal solution of the problem (PM).

Most constrained optimization algorithms exploit the optimality conditions to determine

local minima. We will give some definitions here.

1.6.3.1 Description

An algorithm is defined by an application A, from C to C, where C is the set of feasible

solutions, allowing the generation of a sequence of elements of C by the formula

 x0 ∈ C given, k = 0 Initialization step

xk+1 = A (xk) , k = k + 1 Iteration

If we replace C with its interior, assuming that int(C) 6= ∅, the algorithm is called an

interior point algorithm.

Defining an algorithm is nothing more than constructing a sequence (xk)k∈N of C and

conducting a study to show its convergence.
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1.6.3.2 Convergence

Definition 1.6.1 We say that the algorithm A is convergent if the sequence (xk)k∈N gen-

erated by the algorithm converges to a limit x∗.

1.6.3.3 Rate of Convergence

A criterion for measuring the speed (or rate) of convergence is the evolution of the error

made at each iteration (ek = ‖xk − x∗‖).

Before giving the notations of convergence, we give the definitions of the following asymp-

totic notations

Definition 1.6.2 (Notation O) Let f, g : N → R+. We write f(n) = O(g(n)) when

there exist integers c and n0 such that for all n ≥ n0,

f(n) ≤ cg(n)

Intuitively, this means that the value of the function f is less than that of g up to a

multiplicative constant, for sufficiently large instances (data). Similarly, we define

Definition 1.6.3 ((Notations o,Ω,Θ)) Let f, g : N→ R+.

• We write f(n) = o(g(n)) when for all real c, there exists an integer n0 such that for

all n ≥ n0,

f(n) ≤ cg(n)

• We write f(n) = Ω(g(n)) when there exist integers c and n0 such that for all n > n0,

cg(n) ≤ f(n)

• We write f(n) = Θ(g(n)) when f(n) = O(g(n)) and f(n) = Ω(g(n)).
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Let (xk)k∈N be a sequence given by the algorithm A and convergent to x∗. The classification

of the speed of convergence of a sequence is based on the notions of comparison of functions

in the neighborhood of +∞.

Indeed, if we assume that the error ek does not vanish, the speed of convergence can be

• Linear: If ‖ek‖ = Ω(‖ek+1‖) and
(
∥ek+1∥
∥ek∥

)
< 1, for sufficiently large k. We also say

that the error ek decreases linearly, i.e.,

∃c ∈ [0, 1 [, ∃k0 ∈ N, ∀k ≥ k0, ek+1 ≤ cek

• Superlinear: If ‖ek+1‖ = o (‖ek‖), where the error decreases as follows ∃αk a positive

sequence that converges to 0 such that ek+1 ≤ αkek.

• Of order γ with γ > 1: If ‖ek+1‖ = O(‖ek‖γ) and
(
∥ek+1∥
∥ek∥γ

)
< 1, for sufficiently large

k, where the error decreases as follows

∃c ∈ [0, 1 [, ∃k0 ∈ N, ∀k ≥ k0, ek+1 ≤ c (ek)γ

In the case γ = 2, the convergence is said to be quadratic.

1.6.4 Linear Programming (PL)

A linear program (PL) is an optimization problem that consists of maximizing (or mini-

mizing) a linear objective function of n decision variables subject to a set of constraints

expressed as linear equations or inequalities.
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1.6.4.1 General Form

(PL)



min ctx

s.t.

Ax = b

Dx ≥ e

x ∈ Rn

where A ∈ Rm×n and D ∈ Rp×n are given matrices, c ∈ Rn, b ∈ Rm and e ∈ Rp are given

vectors.

We can show that any linear program can be reduced to one of the following two forms

1.6.4.2 Canonical Form

(PLC)



min ctx

s.t.

Ax ≥ b(or ≤)

x > 0.

1.6.4.3 Standard Form

(PLS)



min ctx

s.t.

Ax = b

x ≥ 0.

where A is a real matrix of type (m,n) assumed to be of full rank (i.e., rg(A) = m < n), b

is a vector in Rm.

In the following, we are interested in the linear programming problem (PL) in the following

standard form

22



(PL)



min ctx

s.t.

Ax = b

x ≥ 0.

The dual of the linear program (PL) is a linear program defined by

(DL)



max bty

s.t.

Aty + s = c

s ≥ 0, s ∈ Rn

y ∈ Rm.

We denote by

• F(PL) = {x ∈ Rn : Ax = b, x ≥ 0}, the set of feasible primal solutions of (PL).

• A vector x ∈ F(PL) is called a feasible solution of (PL).

• A vector x∗ ∈ F(PL) minimizing the objective function of (PL) is called an optimal

solution of (PL).

• A feasible linear program (PL) is bounded if the objective function is bounded on

F(PL).

•
◦
F (PL)= {x ∈ Rn : Ax = b, x > 0}, the set of strictly feasible primal solutions of (PL).

• F(DL) =
{
y ∈ Rm : Aty + s = c, s ≥ 0

}
, the set of feasible dual solutions of (DL).

• A vector y∗ ∈ F(DL) maximizing the objective function of (DL) is called an optimal

solution of (DL).

•
◦
F (DL)=

{
y ∈ Rm : Aty + s = c, s > 0

}
, the set of strictly feasible dual solutions of

(DL).
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•
◦
F

′
=

◦
F (PL) ×

◦
F (DL), the set of strictly feasible primal-dual solutions of (PL) and

(DL).

We give some fundamental results of duality in linear programming

• If one of the problems (PL) and (DL) admits an optimal solution, the same is true

for the other, and their corresponding optimal values are equal.

• If one of the problems has an infinite optimal value, the other has no optimal solution.

Theorem 1.6.12 (Weak Duality) If x and (y, s) are respectively feasible solutions for

(PL) and (DL), then

ctx ≥ bty

Theorem 1.6.13 (Strong Duality) If x̄ and (ȳ, s̄) are respectively feasible solutions cor-

responding to a finite optimal value for (PL) and (DL) such that

ctx̄ = btȳ

then x̄ is an optimal primal solution of (PL) and ȳ is an optimal dual solution of (DL).

Remark 1.6.2 We can easily remark that if x̄ and (ȳ, s̄) are feasible solutions of (PL) and

(DL) respectively, then we have the following property:

ctx̄ = btȳ ⇔ x̄s̄ = 0⇔ x̄ts̄ = 0

1.7 Matrices calculation

Matrix analysis provides essential tools for optimization problems. For instance, the second-

order partial derivatives make up the Hessian matrix, which is essential in assessing the

nature of critical points (i.e., minima, maxima, or saddle points) of amultivariable function.

This is an important topic in optimization, where the eigenvalues of the Hessian matrix
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specify whether the function is convex or concave. (Semi-definite matrices come into play

inoptimization. Thepositive semi-definiteness of the Hessian carries specific implications

on the convexity of the function within a region. Convex functions have the nice property

that every local minimum is also a global minimum. Positive semi-definite matrices are

fundamental to the theory andalgorithms of semi-definite programming.

In this section, we present some known results for norms, symmetric matrices, and semidef-

inite matrices.

1.7.1 Scalar product and norms

We start with the definition of the scalar product of two vectors.

Definition 1.7.1 The usual scalar product of two vectors X and Y of Rn is defined by:

〈X,Y 〉 =
n∑

i=1

xiyi = XTY.

Similarly, we define a scalar product on the set of real square matrices.

Definition 1.7.2 Let A,B ∈ Rn×n, the scalar product of A and B denoted A•B is defined

by:

A •B = Tr(ATB) =

n∑
i=1

n∑
j=1

aijbij = B •A.

We recall that Tr(·) is the trace of Rn×n matrix.

It is important to note that the trace is a linear function; moreover, it verifies the following

properties

1. ∀A,B ∈ Rn : Tr(AB) = Tr(BA),

2. ∀A ∈ Rm×n : Tr(A) = Tr(AT ),

3. ∀A,B ∈ Rn : A ∼ B ⇒ Tr(A) = Tr(B).

Let us now state the notion of vector norm.
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Definition 1.7.3 The vector norm is an application from Rn to R+ denoted by ‖ · ‖ that

satisfies the following conditions:

1. ∀x ∈ Rn : ‖x‖ = 0⇔ x = 0,

2. ∀x ∈ Rn, ∀α ∈ R : ‖αx‖ = |α|‖x‖,

3. ∀x, y ∈ Rn : ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The matrix norm associated with the scalar product of two matrices is defined by

Definition 1.7.4 Let A,B ∈ Rn×m, the application ‖ · ‖ : Rn×m → R+ is called matrix

norm if it verifies the following conditions:

1. ‖A‖ = 0⇔ A = 0, ∀A ∈ Rn×m,

2. ‖αA‖ = |α|‖A‖, ∀α ∈ R,

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ Rn×m,

4. ‖AB‖ ≤ ‖A‖‖B‖, ∀A,B ∈ Rn×m.

Note that the usual matrix norms for any A ∈ Rn×m are:

‖A‖1 = max
1≤j≤m

n∑
i=1

|aij |,

‖A‖∞ = max
1≤i≤n

m∑
j=1

|aij |.

and

‖A‖2 =
√
ρ(AAT ).

This latter norm is called the spectral norm. We will also use the Frobenius norm.

‖A‖F =
√
Tr(A∗A) =

√√√√ n∑
i=1

m∑
j=1

(aij)2.
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If A = AT , we have

‖A‖F =
√
Tr(ATA) =

√
Tr(A)2 =

√√√√ n∑
k=1

(λk)2,

and

‖A‖2 =
√
ρ(AT ) =

n
max
i=1
|λi|, ‖A‖2 ≤ ‖A‖F ≤

√
n‖A‖2.

For any matrix norm, we have

ρ(A) ≤ ‖A‖.

Let us recall that Sn denotes the set of real symmetric matrices of order n. Here are some

important properties

1. ∀X,Y ∈ Sn :

Tr(XY ) = Tr(Y X),

2. If A is an invertible matrix, then

Tr(AXA−1) = Tr(X).

Definition 1.7.5 Let X ∈ Sn, then

1. X is a positive semi-definite matrix (X ∈ Sn
+, or X � 0) if for all u ∈ Rn, uTXu ≥ 0.

2. X is a positive definite matrix ( X ∈ Sn
++, or X � 0 ) if for all u ∈ Rn, u 6= 0,

uTXu > 0.

Theorem 1.7.1 Let A ∈ Sn, the following conditions are equivalent

1. A ∈ Sn
+ (resp. A ∈ Sn

++),

2. λmin(A) ≥ 0 (resp. λmin(A) > 0),
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3. ∃P ∈ Rn×n : A = PP T (resp. ∃P ∈ Rn×n : rg(P ) = n,A = PP T ).

Theorem 1.7.2 Let A ∈ Sn
++, then there exists a unique matrix B ∈ Sn

++ such that

A = B2. Moreover, B is called the square root of A.

Lemma 1.7.1 Let A,B ∈ Sn
++, the following assertions are equivalent:

1. A •B = 0,

2. AB = 0,

3. 1
2(AB +BA) = 0.

Lemma 1.7.2 Let A,B ∈ Sn
++, then

λmin(A)λmin(B) ≤ λmin(A)Tr(B) ≤ A •B ≤ λmax(A)Tr(B) ≤ nλmax(A)λmax(B).

Theorem 1.7.3 Let A,B ∈ Sn, we have:

1. Tr(AB) ≥ 0 for all matrices A,B � 0,

2. ∀A,B � 0,Tr(AB) = 0 if and only if AB = 0,

3. ∀A ∈ Sn,Tr(AB) ≥ 0 for all B � 0 implies A � 0.

Now, we present some definitions and results of matrix calculation.

Definition 1.7.6 1. A ∈ Rn×n is a normal matrix if AAT = ATA. Moreover, if

AAT = I then A is said to be orthogonal, where I is the identity matrix of order n.

2. A normal matrix A is said to be positively stable if and only if A is positive definite.

3. Any matrix A ∈ Sn is diagonalizable, i.e., there exists an orthogonal matrix U such

that:

A = UDUT with D = Diag(λ1, λ2, . . . , λn),

where λi are the eigenvalues of A.

28



4. If A � 0 then UAUT � 0 for any orthogonal matrix U .

5. For A,B ∈ Sn, if AB = BA (i.e., A and B are commuting matrices), then there

exists an orthogonal matrix U and two diagonal matrices Λ and Σ such that:

A = UΛUT and B = UΣUT .

Definition 1.7.7 Let A ∈ Sn. If A � 0 with spectral decomposition A = UΛUT , the

matrix square root
√
A is defined by:

√
A = U



√
λ1 0 · · · 0

0
√
λ2

. . . ...
... . . . . . . 0

0 · · · 0
√
λn


UT ,

where λi are the eigenvalues of A (with U orthogonal and Λ = Diag(λ1, λ2, . . . , λn)). The

matrix
√
A is called the principal square root of A and is itself a positive semidefinite

symmetric matrix.

1.7.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the notion of eigenvalues to rectan-

gular (m× n) matrices and enables the construction of generalized inverses [?, ?].

Lemma 1.7.3 Let A ∈ Rm×n, then the matrix AAT ∈ Sn
+.

Definition 1.7.8 Let A ∈ Rm×n. The singular values of A are the square roots of the

eigenvalues of AAT .

Theorem 1.7.4 Let A ∈ Rm×n with at least one nonzero eigenvalue of AAT . There exist

unitary matrices U ∈ Rm×m, V ∈ Rn×n, and a diagonal matrix W ∈ Rm×n such that

(i) W = UTAV
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(ii) The matrix W has the form:

W =

 D 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

 ,

where D = diag(σ1, σ2, . . . , σr) with r = min(m,n), and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are

the nonzero singular values of A.
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Chapter 2

Semidefinite Programming

problem and complementarity

In this chapter, we will study minimization problems of linear functions with linear con-

straints, where the variable is a symmetric positive semi-definite matrix X ∈ Sn.

2.1 Problem Formulation

A semidefinite program is a mathematical program with

• A set of variables xij .

• A linear objective function.

• A set of linear constraints.

• A positive semi-definiteness constraint.

Definition 2.1.1 A semidefinite program in standard form is written as follows:

(SDP )


min C •X = 〈C,X〉 = Tr(CX)

s.t. Ai •X = bi, i = 1, . . . ,m

X � 0,
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where: b = (b1, b2, . . . , bm) ∈ Rm, and C,X and Ai (i = 1, . . . ,m) are matrices in Sn.

Proposition 2.1.1 A semidefinite program is a convective program. For the proof, it

is easy to see that the objective function is a linear function, so demonstrating that a

semidefinite program is convective comes down to demonstrating that the set of constraints

of the problem (SDP) is a convective set.

Definition 2.1.2 1) A matrix X ∈ Sn is called feasible for (SDP ) if

X � 0, Ai •X = bi, i = 1, . . . ,m.

The set of primal feasible solutions of (SDP ) is denoted by Fp = {X ∈ Sn |

X is feasible}.

2) A matrix X ∈ Sn is called strictly feasible for (SDP ) if

X � 0, Ai •X = bi, i = 1, . . . ,m.

The set of strictly primal feasible solutions of (SDP ) is denoted by F∗
p = {X ∈ Sn |

X is strictly feasible}.

Definition 2.1.3 1) The primal optimal value of (SDP ) is defined by:

p∗ = inf {C •X | X ∈ Sn+, Ai •X = bi, i = 1, . . . ,m}.

2) X∗ is a primal optimal solution of (SDP ) if

X∗ ∈ Fp and C •X∗ = p∗.

Several mathematical programs can be formulated as an (SDP ) problem. We present a

few of them here.
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2.1.1 Linear Programming

In practice, transforming a linear program into a semidefinite program (SDP ) is not nu-

merically advantageous, even though a linear program can theoretically be written as an

(SDP ). Specifically

A linear program (LP ) is a problem of the form:

(LP )


min cTx

s.t. Ax = b

x ≥ 0,

where x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

To convert a linear program (LP) into a semidefinite program (SDP), follow these steps

X = diag(x), C = diag(c), and Ai = diag(ai) for i ∈ {1, . . . ,m},

where ai denotes the i-th row of the matrix A. This preserves the linear objective function

in the form

〈C,X〉 = cTx,

and for the constraints, we have

Ai •X = bi, where Ai •X = aTi x, i = 1, . . . ,m.

Additionally,

x ≥ 0 =⇒ X � 0.

Thus, the (LP) in the variable x can be rewritten in the standard form of a (SDP) in the
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matrix variable X as follows

(SDP )


min 〈C,X〉

s.t. Ai •X = bi, i = 1, . . . ,m

X � 0.

2.2 Application Domains

The preprocessing described here can be applied to any problem that can be written in the

form of a quadratic constraint. This includes problems such as quadratic programming,

quadratic assignment, and, more generally, any problem that can be expressed in the form

of a quadratic constraint.

2.2.1 Eigenvalue search

It is about the oldest problems addressed using semi-definite programming.

2.2.1.1 Search for Extreme Progress Variables

Considering a symmetric matrix A, to search for the extreme value of the progress variable,

we must find the minimum eigenvalue of A. This is given by

λmin(A) = min
||x||=1

xTAx = min
||x||=1

xTAx

xTx

Let X = xxT , then

Tr(AX) =

n∑
i=1

λi − ||x||2 = 1

The problem (V.E) becomes
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minλ

s.t. Tr(AX) = 1

X � 0

In reality, the problem of finding the minimum value of the progress variable is written as

λmin(A) = max
||x||=1

xTAx = max
||x||=1

xTAx

xTx

and its formulation in (SDP ) is


maxλ

Tr(AX) = 1

X � 0

Problems of Min-Max of Progress Variables

The problem is studied in the sense of DD0 in linear algebra as follows.

Search for the optimal value

λ∗ = min
x∈Rn

λmin(C +A(x))

Given C ∈Mn and

A : Rn →Mn, x 7→ A0 + x1A1 + . . .+ xnAn

The problem is written in a weak form (in the sense of the problem (SDP ) ) as follows.


minλ

λmin(C +A(x)) ≤ λ

x ∈ Rn

⇐⇒


minλ

λI − C −A(x) � 0

x ∈ Rn
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2.2.1.2 Spectral Norm of a Matrix

Given A ∈Mn, we consider its spectral norm

||A||2 =
√
λmax(ATA) =

√
λmax(AAT )

This norm can be calculated using semidefinite programming (SDP ) as follows


||A||2 = min γγIn A

AT γIm

 � 0

We use the Schur complement theorem here.

2.3 Duality

The Duality in linear (SDP) is very similar to the duality in classical (LP), with a few key

differences.

Consider the standard linear (SDP) problem

(SDP )


minC •X

Ai •X = bi, i = 1, . . . ,m

X � 0

To obtain the dual problem of (SDP ), we consider the Lagrangian function

q(y) = min
X∈Sn+

[
C •X +

m∑
i=1

(bi −Ai •X)yi, y ∈ Rm

]

= min
X∈Sn+

[(
C −

m∑
i=1

yiAi

)
•X + bT y, y ∈ Rm

]

We then have
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max
y∈Rm

q(y) =

 max bT y if C −
∑m

i=1 yiAi � 0

−∞ otherwise.

Therefore, by convention, the dual of (SDP ) is

(DSDP )


max bT y

C −
m∑
i=1

yiAi � 0, i = 1, . . . ,m

y ∈ Rm.

This is a semi-definite program that can also be written as

(DSDP )


max bT y

S +
m∑
i=1

yiAi = C, i = 1, . . . ,m

y ∈ Rm, S � 0.

Definition 2.3.1 A pair (y, S) ∈ Rm × Sn is called a feasible solution of (DSDP ) if

S � 0,

m∑
i=1

yiAi + S = C, i = 1, . . . ,m.

We denote by Fd = {(y, S) ∈ Rm × Sn | (y, S) is feasible} the set of dual feasible solutions

of (DSDP ).

Similarly, (y, S) is called a strictly feasible solution of (DSDP ) if

S � 0,
m∑
i=1

yiAi + S = C, i = 1, . . . ,m.

We denote by F+
d = {(y, S) ∈ Rm×Sn | (y, S) is strictly feasible} the set of strictly feasible

dual solutions of (DSDP ).

Definition 2.3.2 The optimal value of (DSDP ) is defined by

d∗ = sup
y

{
bT y

∣∣∣∣∣ C −
m∑
i=1

yiAi ∈ Sn+, i = 1, . . . ,m, y ∈ Rm

}
.
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A pair (y∗, S∗) is an optimal dual solution of (DSDP ) if

(y∗, S∗) ∈ Fd and bT y∗ = d∗.

2.3.1 Primal-Dual Relationships in Semi-Definite Programming

As in linear programming, the (SDP ) problem can be written in several forms. The

following table presents the different types of corresponding dual problems.

2.3.2 Weak Duality

Proposition 2.3.1 Let X ∈ Fp and (y, S) ∈ Fd. Then

C •X − bT y = S •X ≥ 0, and p∗ ≥ d∗.

Proof.

1) We have

C•X−bT y = C•X−
m∑
i=1

biyi = C•X−
m∑
i=1

yi(Ai•X) =

(
C −

m∑
i=1

yiAi

)
•X = S•X ≥ 0,

since S � 0 and X � 0.

Therefore,

C •X − bT y ≥ 0 ∀X ∈ Fp and ∀(y, S) ∈ Fd.

2) We have

C •X ≥ bT y ∀X ∈ Fp and ∀y ∈ Fd

⇒ C •X∗ ≥ bT y ∀(y, S) ∈ Fd

⇒ p∗ = C •X∗ ≥ bT y∗ = d∗

⇒ p∗ ≥ d∗

Hence weak duality holds.
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2.3.3 Strong Duality

Although linear programming and (SDP ) have very similar structures, some duality results

from (LP ) do not hold for (SDP ). In particular, strong duality is not guaranteed unless

strict feasibility is preserved for one of the two problems, as shown in the following theorem

Theorem 2.3.1 1) If the (SDP ) problem is strictly feasible, i.e., ∃X ∈ F+
p , then p∗ =

d∗. Moreover, if p∗ is finite, then the set of optimal dual solutions for (DSDP ) is

non-empty and compact.

2) If the (DSDP ) problem is strictly feasible, i.e., ∃(y, S) ∈ F+
d , then p∗ = d∗. More-

over, if d∗ is finite, then the set of optimal primal solutions for (SDP ) is non-empty

and compact.

2.4 Complementarity in SDP

Analogous to linear programming, we can express the condition for X∗ and y∗ to be optimal

solutions of (SDP ) and (DSDP ), respectively, through a complementarity condition.

Theorem 2.4.1 Let X∗ ∈ FP and (y∗, Z∗) ∈ FD with duality gap

〈C,X∗〉 − bT y∗ = 〈X∗, Z∗〉.

Then X∗ and (y∗, Z∗) are optimal solutions for (SDP ) and (DSDP ) respectively if and

only if X∗Z∗ = 0.

The complementarity problem can then be written as

(Pc)


Ai •X = bi i = 1, . . . ,m, X � 0

Z +
m∑
i=1

yiAi = C, Z � 0

XZ = 0.
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Remark 2.4.1 Since (SDP ) is a convex problem, the solution to the complementarity

problem is a global optimum for (SDP ).

2.5 Solution Methods for SDP

The similarity between SDP and linear programming (LP) has motivated researchers to

apply proven LP techniques, particularly primal-dual interior-point methods of the central

path variety.

The generalization of interior-point methods from LP to SDP dates back to the early

1990s. The first algorithms in this direction were introduced independently by Alizadeh and

Nesterov & Nemirovskii. Alizadeh extended Ye’s potential reduction projective algorithm

from LP to SDP and argued that many known interior-point algorithms for LP could be

adapted to solve SDP. Nesterov and Nemirovskii developed the profound theory of interior-

point methods based on self-concordant barrier functions.

2.5.1 Interior-Point Methods

Interior-point methods are among the most widely used and efficient approaches for solving

SDP problems. These relatively new methods are analogous to Karmarkar’s projective

method for linear programming.

The term "interior-point" encompasses three distinct types of methods; affine methods,

potential reduction methods and central trajectory methods. Our focus will be on central

trajectory methods, also known as path-following methods, which have proven particularly

effective for semidefinite programming

2.5.2 Primal-dual central trajectory methods

The principle of these methods is to minimize the duality gap by solving the following

system
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
Ai •X = bi i = 1, . . . ,m,

Z +
m∑
i=1

yiAi = C,

XZ = µI, X,Z � 0

((2.8))

which represents the parameterized system of optimality conditions for the (SDP ) prob-

lems and (DSDP ). The system (2.8) admits a unique solution under the assumptions

that

• Ai, i = 1, . . . , n are linearly independent

• F0 6= ∅ (the strictly feasible set is non-empty)

The solution of the system is denoted by (X(µ), y(µ), Z(µ)) for a fixed µ > 0.

The set of solutions (X(µ), y(µ), Z(µ)) for all µ > 0 defines the central path, which converges

to the optimal solution as µ approaches 0.

To solve the nonlinear system (2.8), we use Newton’s method. The goal is to compute

primal and dual directions ∆X, ∆y, and ∆Z respectively by solving the linear system


Ai •X = 0 i = 1, . . . ,m,
m∑
i=1

∆yiAi +∆Z = 0,

X∆Z + Z∆X = µI −XZ, X,Z � 0.

(2.9)

The complete Newton iteration is defined by

X+ = X + α∆X,

y+ = y + α∆y,

Z+ = Z + α∆Z,

where α ∈ (0, 1] is a step length parameter, and must maintain strict feasibility (i.e. X+ ∈

F0
p and (y+, Z+) ∈ F0

D).

Unfortunately, X+ is not always symmetric. To address this issue, several researchers have

proposed symmetric directions in the literature. Notable contributions include the works
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of Zhang, Halemeyer et al., Kojima et al. and Monteiro, Alizadeh-Haeberly-Overton, and

Nesterov-Todd.

Currently, several researchers have extended the kernel function approach from linear pro-

gramming to semidefinite programming to develop new directions and improve algorithm

complexity. Among the various symmetric direction proposals, the Nesterov-Todd (NT)

direction has emerged as particularly significant for semidefinite programming. A detailed

study of this method for Semidefinite Linear Complementarity Problems (SDLCP) will be

presented in the next chapter.
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Chapter 3

Primal-dual Inner point methods

for SDLCP based on kernel

functions

3.1 Definitions and formulation

Given a linear transformation L : Sn → Sn and a symmetric matrix Q ∈ Sn, the semidef-

inite linear complementarity problem (SDLCP) seeks to find matrices X,Y ∈ Sn
+ such

that

Y = L(X) +Q and Tr(XY ) = 0,

where Tr(XY ) denotes the trace of the matrix product XY .

Definition 3.1.1 Let L : Sn → Sn be a linear transformation. Then

1. L is a P -transformation if

X ∈ Sn, XL(X) = L(X)X, and XL(X) ≤ 0 =⇒ X = 0.

2. L is a P0-transformation if (L+ ϵI) is a P -transformation for all ϵ > 0, where I is
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the identity transformation on Sn.

3. L is a P2-transformation if

X ≥ 0, Y ≥ 0, (X − Y )[L(X)− L(Y )](X + Y ) ≤ 0 =⇒ X = Y.

4. L is a monotone transformation (strictly monotone) if

L(X) •X ≥ 0 (L(X) •X > 0), for all matrices X ∈ Sn (X 6= 0).

Definition 3.1.2 1. A transformation L is strictly semi-monotone (S.S.M) or an E−-

transformation if it satisfies:

X ≥ 0, XL(X) = L(X)X, and XL(X) ≤ 0 =⇒ X = 0.

2. A transformation L is semi-monotone (S.M) or an E0-transformation if L + ϵI is

strictly semi-monotone for all ϵ > 0.

Definition 3.1.3 Let L : Sn → Sn be a linear transformation.

1. L has the R0-property if the only solution to (SDLCP )(L, 0) is the zero matrix.

2. L has the Q-property if for every Q ∈ Sn, the problem (SDLCP )(L,Q) has a solu-

tion.

Definition 3.1.4 A linear transformation L : Sn → Sn is said to have the globally

uniquely solvable (GUS) property if, for every Q ∈ Sn, the SDLCP problem (L,Q) has

a unique solution.

Definition 3.1.5 For a linear transformation L : Sn → Sn, we say that L has

1. the column sufficiency property if, for every Q ∈ Sn, the problem (SDLCP )(L,Q)

has a convex solution set (which may be empty).
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2. the cross commutative property if, for all Q ∈ Sn and any solutions X1 and X2 of

(SDLCP )(L,Q), the commutativity conditions

X1Y2 = Y2X1 and X2Y1 = Y1X2,

hold, where Yi = L(Xi) +Q for i = 1, 2.

Definition 3.1.6 Let L : Sn → Sn be a linear transformation. Its transpose, LT : Sn →

Sn, satisfies

〈L(X), Y 〉 = 〈X,LT (Y )〉 for all X,Y ∈ Sn.

A linear transformation L is self-adjoint on Sn if L = LT , and it is normal if LLT = LTL.

Theorem 3.1.1 For a linear transformation L : Sn → Sn, consider the following proper-

ties

(a) L is monotone (L(X) •X ≥ 0 for all X ∈ Sn),

(b) L is column sufficient,

(c) L satisfies the cross commutative property.

1. 2. 3.

The implications between these properties are

(a)⇒ (b)⇒ (c).

3.2 Existence and Uniqueness

Theorem 3.2.1 Consider a linear transformation L : Sn → Sn. If both (SDLCP )(L, 0)

and (SDLCP )(L,E) for some positive definite matrix E ∈ Sn have unique solutions (specif-

ically zero), then (SDLCP )(L,Q) has a solution for every Q ∈ Sn.

Theorem 3.2.2 Let L : Sn
+ → Sn

+ have the P -property. Then, for every Q ∈ Sn, the

SDLCP with data (L,Q) has a solution.
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Theorem 3.2.3 For a linear transformation L : Sn → Sn, the following assertions are

equivalent

1. For all Q ∈ Sn, (SDLCP )(L,Q) has at most one solution,

2. L has the P - and cross commutative properties,

3. L has the GUS-property.

Theorem 3.2.4 Given a linear transformation L : Sn → Sn, if L is monotone, then for

every Q ∈ Sn, the problem (SDLCP )(L,Q) has a convex (possibly empty) solution set.

Corollary 3.2.1 If L is a linear monotone transformation, then

L has GUS-property⇐⇒ L has P -property.

Theorem 3.2.5 If L is a strictly monotone transformation, then L has the GUS-property.

Theorem 3.2.6 For a linear transformation L : Sn → Sn, we have the following asser-

tions:

strictly monotone property⇒ P2-property⇒ GUS-property.

3.3 Well-known transformations

3.3.1 Lyapunov transformation

The Lyapunov transformation associated with square matrix A is defined by

LA(X) = AX +XAT .

Theorem 3.3.1 Consider the Lyapunov transformation LA with a given square matrix A.

The following properties hold:

(a) The following assertions are equivalent:
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(i) LA has the GUS-property,

(ii) A is positive stable and positive semi-definite.

(b) LA has the P2-property if and only if A is positive definite.

(c) If A is a normal matrix, then the following are equivalent:

(i) LA has the strictly monotone property,

(ii) LA has the GUS-property,

(iii) LA has the P -property.

3.3.2 Stein transformation

The Stein transformation SA associated with a square matrix A is defined as

SA(X) = ATXA

Theorem 3.3.2 Consider the Stein transformation SA, with a given square matrix A. The

following properties hold

(a) The following assertions are equivalent:

(i) SA has the GUS-property (globally uniquely solvable),

(ii) A is Schur stable (all eigenvalues lie inside the unit disk) and I − ATa) A is

positive semi-definite.

(b) SA has the P2-property if and only if A is such that I −ATA is positive definite.

(c) If A is a normal matrix (AAT = ATA), then the following are equivalent

(i) SA has the strictly monotone property,

(ii) SA has the GUS-property,

(iii) SA has the P -property.
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Definition 3.3.1 Let A be a square matrix. The two-sided transformation associated with

matrices A and AT is defined by

LA,AT (X) = AXAT ,

where X is a matrix of compatible dimensions.

1. Symmetry Preservation: If X is symmetric, then LA,AT (X) is also symmetric. This

is because

LA,AT (X)T = (AXAT )T = AXTAT = AXAT = LA,AT (X).

2. Positive Definiteness: If A is invertible and X is positive definite, then LA,AT (X) is

positive definite. This follows from the fact that for any non-zero vector v,

vTLA,AT (X)v = vTAXAT v = (AT v)TX(AT v) > 0,

since X is positive definite and AT v 6= 0 for non-zero v.

3. Eigenvalue Relationship: The eigenvalues of LA,AT (X) are related to the eigenvalues

of X and A. Specifically, if λ is an eigenvalue of X with eigenvector u, then Au is an

eigenvector of LA,AT (X) with the same eigenvalue λ.

4. Trace Preservation: The trace of the transformation is given by

Tr(LA,AT (X)) = Tr(AXAT ) = Tr(XATA).

If A is orthogonal (i.e., ATA = I), then

Tr(LA,AT (X)) = Tr(X).

Theorem 3.3.3 1. LA,AT (X) has the GUS-property,

2. A is positive definite or negative definite.
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3.4 Primal-dual central path

Consider the following semidefinite linear complementarity problem (SDLCP): Seek a pair

of matrices (X,Y ) ∈ Sn × Sn satisfying the following conditions.

X, Y ∈ Sn
+, Y = L(X) +Q, and X • Y = Tr(XY ) = 0, (3.1)

where L : Sn → Sn is a linear transformation and Q ∈ Sn.

The feasible set, strict feasible set, and solution set of System (3.1) are subsets of Rn×n,

denoted by F , F0, and S respectively.

F = { ( X, Y ) ∈ Sn × Sn, Y = L(X) +Q : X � 0, Y � 0} ,

F0 = { ( X, Y ) ∈ F : X � 0, Y � 0} ,

S = {( X, Y ) ∈ F : Tr(XY ) = 0} .

We assume that the (SDLCP) satisfies the following conditions

1. F0 is not empty,

2. L is monotone (〈L(X), X〉 ≥ 0, ∀X ∈ Sn),

3. L is self-adjoint (L = LT , such that: 〈L(X), Y 〉 = 〈X,LT (Y )〉∀X,Y ∈ Sn).

Since for X,Y ∈ Sn
+, X • Y = 0 if and only if XY = 0. Then, finding a solution of (3.1) is

equivalent to solving the following system:


Y = L(X) +Q,

XY = 0,

X � 0, Y � 0.

(3.2)
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Theorem 3.4.1 ([44]) Under conditions (1), (2), the set of solution of (SDLCP)

S = {(X,Y ) ∈ F : Tr(XY ) = 0},

is non-empty and convex.

Proposition 3.4.1 The function f(X) = Tr(X(L(X) + Q)) is convex, if conditions (2),

(3) are satisfied.

Theorem 3.4.2 Assume that the conditions (1), (2) and (3) are satisfied, then the prob-

lem (SDLCP) is equivalent to the following convex semidefinite problem

(PO)


minX Tr(X(L(X) +Q)),

X � 0,

Y = L(X) +Q � 0.

Hence, finding the solution of (3.1) is equivalent to finding the minimizer of (PO).

3.4.1 Logarithmic barrier function

To introduce the method of interior point (primal-dual central path) to solve the system

(PO), we associate it with the following nonlinear barrier minimization problem

(PO)µ


min

[
ψµ(X,Y ) = XY − µ log det(XY )

]
, µ > 0,

Y = L(X) +Q,

X � 0, Y � 0.

where the barrier parameter µ > 0.

In the following theorems, it is assumed that conditions (1), (2), and (3) hold.

Theorem 3.4.3 The function ψµ(X,Y ), µ > 0 is strictly convex.

Theorem 3.4.4 There exists (X0, Y 0) ∈ F0, the set

Ωµ =
{
X ∈ Sn : ψµ(X) ≤ ψµ(X

0)
}
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is compact.

The problem (PO)µ has a unique solution if the function ψµ(X,Y ) is strictly convex for

µ > 0. Since (PO)µ is a convex semidefinite optimization problem, the KKT conditions

are necessary and sufficient. These conditions can be written as follows


XY − µI = 0,

Y = L(X) +Q,

X � 0, Y � 0.

(3.3)

where µ > 0 and I is the identity matrix.

The resolution of system (3.3) is equivalent to that of (PO)µ. Assuming a strictly feasible

pair (X0, Y 0) ∈ F0 exists satisfying the interior point condition (IPC) for (SDLCP) and

that L is a linear monotone transformation, both system (3.3) and (PO)µ have a unique

solution for a fixed µ > 0.

Definition 3.4.1 The solution of the problem (PO)µ for µ > 0 is (X(µ), Y (µ)) and

C = {(X(µ), Y (µ)) : µ > 0}.

is the set of all solutions of the system (PO)µ and is called the central path.

As µ→ 0, the sequence (X(µ), Y (µ)) approaches the solution (X,Y ) of problem (SDLCP).

Lemma 3.4.1 Under the conditions (1), (2), the set

{(X(µ), Y (µ)) : 0 ≤ µ ≤ µ−},

is bounded for all µ− > 0.

Theorem 3.4.5 limµ→0(X(µ), Y (µ)) = (X∗, Y ∗), where (X∗, Y ∗) is a solution of

(SDLCP).
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3.4.2 Classical search direction

To solve system (3.3), we employ primal-dual path-following algorithms. These algorithms

approximate the central path, guiding us toward the solution of (3.3) through Newton

steps, where each iteration updates the variables as follows

Xk+1 = Xk + α∆X, Y k+1 = Y k + α∆Y.

We observe that (X,Y ) is a solution of (SDLCP) if and only if it solves (3.3) with µ = 0.

The first equation in system (3.3) is nonlinear, making direct resolution generally infeasible.

Specifically,

Fµ(X,Y ) = 0 and (X,Y ) ∈ Sn
++ × Sn

++, µ ∈ R∗
+, (3.4)

where Fµ : Sn × Sn → Sn × Rn×n is defined by

Fµ(X,Y ) =

 XY − µI

L(X) +Q− Y

 = 0.

Applying Newton’s method to equation (3.4) yields

Fµ(X,Y ) +∇Fµ(X,Y )(∆X,∆Y )T = 0,

which simplifies to the system of linear equations

 L(∆X) = ∆Y

X∆Y +∆XY = µI −XY
(3.5)

This system can be rewritten as

 L(∆X) = ∆Y

∆X +X∆Y Y −1 = µY −1 −X
(3.6)
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Let µ > 0 and (X,Y ) be a strictly primal-dual feasible point. The Newton direction

(∆X,∆Y ) at this point is the unique solution to system (3.5).

3.4.2.1 Algorithm

Algorithm approach

1. We start with a strictly primal-dual feasible point (X0, Y 0) in a neighborhood of the

central path, with a known initial parameter µ0 = Tr(X0Y 0)
n ;

2. Using Newton directions ∆X, ∆Y , we construct the new pair (Xk+1, Y k+1);

3. We check if Xk+1 and Y k+1 remain strictly feasible for all µ > 0, and consider two

cases:

• If nµk < ϵ (where ϵ is a specified precision), then (Xk+1, Y k+1) are approximate

solutions to system (3.3).

• Otherwise, if nµk ≥ ϵ, (Xk+1, Y k+1) are not yet approximate solutions. In this

case, we reduce µ to µ+ = (1 − θ)µ with 0 < θ < 1, ensuring proximity to the

central trajectory.

Remark 3.4.1 If θ depends on n, in particular θ = Θ
(

1√
n

)
then the algorithm is called

a small-step algorithm. If θ is a constant, θ = O(1), then the algorithm is called a

large-step algorithm.

Symmetrization technique

Under the given conditions, the system admits a unique, generally nonsymmetric solution

(∆X,∆Y ). To address this, replacing the last equation in (3.5) with

HP (X∆Y +∆XY ) = µI −HP (XY ),

where HP is a linear transformation defined by

HP (M) =
1

2

(
PMP−1 + P−TMTP T

)
,
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for an invertible matrix P and a real square matrix M of order n. Applying this method,

the linearized second Newton equation in (3.5) becomes

 L(∆X) = ∆Y,

∆X + P∆Y P T = µY −1 −X,

The several choices for the matrix P include I, Y
1
2 , X

1
2 , X−1, and Y .

3.5 Nesterov-Todd direction

We apply the Nesterov-Todd symmetrization scheme to define

P = X
1
2 (X

1
2Y X

1
2 )−

1
2X

1
2 = Y − 1

2 (Y
1
2XY

1
2 )

1
2Y − 1

2 .

Let D = P
1
2 , where P

1
2 denotes the symmetric square root of P .

The matrix D is used to scale X and Y to the same matrix V , defined by

V =
1
√
µ
D−1XD−1 =

1
√
µ
DY D,

V 2 =
1

µ
D−1XYD.

Both matrices V and D are symmetric and positive definite. Using (3.9), the system (3.6)

becomes

 L̃(∆X) = ∆Y ,

∆X +∆Y = V −1 − V,
(3.11)

The equations are defined as

∆X =
1
√
µ
D−1∆XD−1, ∆Y =

1
√
µ
D∆Y D, and L̃(∆X) = DL(D∆XD)D. (3.12)
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The linear transformation L̃ is also monotone on Sn.

According to the given hypotheses, the new linear system (3.11) has a unique symmetric

solution (∆X ,∆Y ). These directions are not orthogonal, as

∆X •∆Y = Tr(∆Y ∆X) = 1
µ∆X • L(∆X) ≥ 0.

This non-orthogonality complicates the analysis compared to standard SDO problems.

To maintain the feasibility of the algorithm’s iterations and their proximity to the central

trajectory, we define a proximity measure

δ(V ) = 1
2‖V

−1 − V ‖. (3.13)

This measure satisfies

δ(V ) = 0 if and only if V = V −1 or equivalently XY = µI.

This confirms that the points are on the central trajectory.

3.6 The generic primal-dual Interior point algorithm

This section outlines the framework of a generic interior-point primal-dual algorithm for

SDLCP.

• Initialization: We select a threshold value τ ≥ 1 and assume the existence of a

strictly feasible initial point (X0, Y 0) satisfying δ(X0, Y 0, µ0) ≤ τ for some known

µ0.

• Iteration Step: Using the computed directions (∆X,∆Y ) and a step size α ∈ (0, 1),

the algorithm generates new iterates

(Xk+1, Y k+1) = (Xk + α∆X,Y k + α∆Y ).
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• Duality Gap Update: The search for an optimal primal-dual solution corresponds

to driving X • Y to zero, achieved by updating the parameter µ

µk+1 = (1− θ)µk with 0 < θ < 1.

The generic form of the large-update primal-dual interior point algorithm for solving

SDLCP is stated as follows

Algorithm 1 Primal-Dual Interior Point Algorithm for SDLCP
Require: • Threshold parameter τ ≥ 1

• Accuracy parameter ϵ > 0

• Barrier update parameter 0 < θ < 1

• Strictly feasible pair (X0 � 0, Y 0 � 0)

• Initial µ0 = Tr(X0Y 0)/n with δ(X0, Y 0, µ0) ≤ τ
1: Initialize: X ← X0, Y ← Y 0, µ← µ0

2: while nµ ≥ ϵ do
3: µk+1 ← (1− θ)µk
4: while δ(X,Y, µ) > τ do
5: Solve System (3.11) and use (3.12) to obtain (∆X,∆Y )
6: Determine step size α ∈ (0, 1)
7: Update (Xk+1, Y k+1)← (Xk + α∆X,Y k + α∆Y )
8: end while
9: end while

3.7 Kernel function and its qualification

In recent years, kernel functions have gained significant popularity, proving crucial and

highly advantageous in various domains of mathematical programming research. A kernel

function is defined as follows

Definition 3.7.1 Let Ψ(t) : R++ → R+ be a twice continuously differentiable function.

Then Ψ is called a kernel function if it satisfies the following conditions

1. Ψ′(1) = Ψ(1) = 0,

2. Ψ′′(t) > 0,
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3. lim
t→0+

Ψ(t) = lim
t→+∞

Ψ(t) = +∞.

The first two conditions imply that Ψ is strictly convex and attains its minimum at t = 1

with Ψ(1) = 0. This allows Ψ(t) to be expressed as

Ψ(t) =

∫ t

1

(∫ x

1
Ψ′′(y) dy

)
dx. (3.1)

Condition (3) indicates that Ψ acts as a barrier function.

Lemma 3.7.1 Let Ψ(t) be a twice-differentiable function, then the following properties are

equivalent

1. Ψ(
√
t1t2) ≤ Ψ(t1)+Ψ(t2)

2 , for all t1, t2 > 0.

2. tΨ”(t) + Ψ′(t) ≥ 0, t > 0.

3. Ψ(eϵ) is convex.

In the following table, we provide the different known kernel functions in the literature,

and the complexity of their algorithm for small- and large-step interior point methods
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Kernel function algorithmic complexity algorithmic complexity

Ψi(t) Small step large step

1 1
2(t

2 − 1)− logt O(
√
n log n

ϵ ) O(n log n
ϵ )

2 t2−1
2 + t1−q−1

q(q−1) −
q−1

q(q−1)(t− 1), q > 1 O(q
√
n log n

ϵ ) O(qn
q+1
2q log n

ϵ )

3 t2−1
2 + (e−1)2

e
1

e−1 −
e−1
e O(

√
n log n

ϵ ) O(n3/4 log n
ϵ )

4 1
2(t

2 − 1
t )

2 O(
√
n log n

ϵ ) O(n2/4 log n
ϵ )

5 t2−1
2 + e

1
t−1 − 1 O(

√
n log n

ϵ ) O(
√
n(log n)2 log n

ϵ )

6 t2−1
2 −

∫ t
1 e

1
ξ dξ O(

√
n log n

ϵ ) O(
√
n log2 n log n

ϵ )

7 t2−1
2 + t1−q−1

q−1 , q > 1 O(q2
√
n log n

ϵ ) O(qn
q+1
2q log n

ϵ )

8 t− 1 + t1−q−1
q−1 , q > 1 O(q2

√
n log n

ϵ ) O(q log2 n log n
ϵ )

9 t1−p−1
p−1 − log t, p ∈ [0, 1] O(

√
n log n

ϵ ) O(n log n
ϵ )

10 t1−p−1
p−1 + t1−q−1

q−1 , p ∈ [0, 1], q > 1 O(
√
n log n

ϵ ) O(qn
q+p

q(1+p) log n
ϵ )

11 t2 − 1 + t1−q−1
q−1 − log t, p > 1, q > 1 O(

√
n log n

ϵ ) O(qn
q+1
2q log n

ϵ )

12 (m+ 1)t2 − (m+ 2)t+ 1
tm ,m > 4 O(q2

√
n log n

ϵ ) O(m
2m+1
2m log n

ϵ )

13 t2 − 2t+ 1
sin( πt

1+t
)
, t > 0 O(

√
n log n

ϵ ) O(n3/4 log n
ϵ )

14 t2−1
2 + 4

πp [tan
p h(t)− 1], t > 0 O(p2

√
n log n

ϵ ) O(pn
p+2

2(p+1) log n
ϵ )

Table 3.1: Different known kernel functions.

3.8 Spectral decomposition for symmetric matrices

We present results on the spectral decomposition for symmetric matrices, enabling us to

extend the definition of a function ψ : R→ R to a matrix function ψ : Sn → Sn.

Theorem 3.8.1 (Spectral Theorem for Symmetric Matrices) A real n × n matrix

A is symmetric if and only if there exists an orthogonal matrix Q ∈ Rn×n such that Q⊤AQ

is a diagonal matrix Λ containing the eigenvalues of A.
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Definition 3.8.1 Let V be a symmetric matrix with spectral decomposition

V = Q⊤ diag(λ1(V ), λ2(V ), . . . , λn(V ))Q,

where Q is an orthogonal matrix that diagonalizes V . The matrix-valued function ψ : Sn →

Sn is defined by

ψ(V ) = Q⊤ diag
(
ψ(λ1(V )), ψ(λ2(V )), . . . , ψ(λn(V ))

)
Q.

We note that ψ(V ) is well-defined when ψ(t) is well-defined at each eigenvalue of V .

If ψ(t) is differentiable, then its matrix derivative ψ′(V ) is given by

ψ′(V ) = Q⊤ diag
(
ψ′(λ1(V )), ψ′(λ2(V )), . . . , ψ′(λn(V ))

)
Q.

A matrix function is a matrix M(t) where each element Mij(t) is a function of t, forming the

matrix [Mij(t)]
n
i,j=1. Standard properties like continuity, differentiability, and integrability

apply naturally to matrix functions, interpreted component-wise.

Let H(t) and M(t) be differentiable matrix functions. We have the following derivatives

d

dt
Tr(ψ(H(t))) = Tr(ψ′(H(t))H ′(t)),

d

dt
(H(t)M(t)) = H ′(t)M(t) +H(t)M ′(t),

d

dt
Tr(H(t)) = Tr(H ′(t)),

d

dt
H(t) =

[
d

dt
Hij(t)

]n
i,j=1

= H ′(t).

For any function (t), the divided difference (t) is defined as

∆ψ(t1, t2) =


ψ(t1)− ψ(t2)

t1 − t2
, when t1 6= t2,

ψ′(t), when t1 = t2.

Lemma 3.8.1 Suppose H(t) is a matrix function that is positive definite with eigenvalues
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λ1(t) ≥ λ2(t) ≥ · · · ≥ λn(t) > 0. If H(t) is twice differentiable with respect to t ∈ (lt, ut)

and ψ(t) is twice continuously differentiable on a domain containing all eigenvalues of H(t),

then

d

dt
Tr(ψ(H(t))) = Tr(ψ′(H(t))H ′(t)),

d2

dt2
Tr(ψ(H(t))) ≤ ω‖H ′(t)‖2 +Tr(ψ′(H(t))H ′′(t)),

where

ω = max
{∣∣∆ψ′(λj(t), λk(t))

∣∣ : t ∈ (lt, ut), j, k = 1, 2, . . . , n
}

is a constant depending on H(t) and ψ(t), with the divided difference of the derivative

defined as:

∆ψ′(t1, t2) =
ψ′(t1)− ψ′(t2)

t1 − t2
, ∀t1, t2 ∈ [lt, ut], t1 6= t2.

The following theorem is crucial for interior point methods based on the kernel function

for SDLCP.

Theorem 3.8.2 Let V1 and V2 be symmetric positive definite matrices, and let Ψ be the

real-valued matrix function induced by the scalar function ψ. Then the following inequality

holds:

Ψ

((
V

1/2
1 V2V

1/2
1

)1/2)
≤ 1

2
(Ψ(V1) + Ψ(V2)) .

3.9 The search directions determined by kernel functions

Revising the second equation in system (3.11), we substitute −ψ′(V ) for its right-hand

side. This substitution results in a new system for determining search directions.

 L̃(DX) = DY ,

DX +DY = −ψ′(V ).
(4.10)
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Here, ψ(t) is a given kernel function, and ψ(V ), ψ′(V ) are the associated matrix functions.

The search directions DX and DY are obtained by solving system (4.10), from which

∆X and ∆Y are computed via (3.12). Note that these search directions satisfy the non-

orthogonality condition

DX •DY ≥ 0.

Using these directions with a step size α determined by appropriate line search rules, we

construct new iterates

X+ = X + α∆X and Y+ = Y + α∆Y.

To analyze an interior-point algorithm, we define the proximity measure δ(V ) : Sn
++ → R+

as follows

δ(V ) =
1

2
‖ − φ′(V )‖ = 1

2

√
Tr(φ′(V )2) =

1

2
‖Dx +Dr‖. (4.11)

The value of Ψ(V ) ∀(V ), is strictly convex and attains its minimum value zero at V = I.

Therefore, we have

δ(V ) = 0⇔ V = I ⇔ ∀(V ) = 0.

Therefore, the value of Ψ(V ) provides a measure of the distance between a given iterate

(X,Y ) and the central path point (X(µ), Y (µ)).

3.10 The Generic Primal–Dual IPM for SDLCP

The general framework of the primal–dual kernel function-based interior-point method

(IPM) for SDLCP operates as follows:

• Initialization: We assume the existence of a strictly feasible initial point (X0, Y 0)
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in a τ -neighborhood, i.e., Ψ(V ) ≤ τ .

• Outer Iteration: The barrier parameter µ is reduced by the factor (1 − θ)µ with

fixed 0 < θ < 1, which changes V and yields a new µ-center (X(µ), Y (µ)). Conse-

quently, Ψ(V ) exceeds the threshold τ .

• Inner Iteration:

– Solve the Newton system (15) using (11) to obtain the unique search direction

– Introduce a step size to reduce Ψ(V )

– Repeat until the iterate returns to the τ -neighborhood of the current µ-center

• Termination: The process repeats until nµ ≤ ϵ for given accuracy ϵ.

Algorithm 2 Generic Interior-Point Algorithm for SDLCP
Require: • Threshold parameter τ ≥ 1

• Accuracy parameter ϵ > 0

• Barrier update parameter 0 < θ < 1

• Strictly feasible initial pair (X0, Y 0)

• Initial µ0 = 1 satisfying Ψ(X0, Y 0;µ0) ≤ τ
Initialize: X ← X0, Y ← Y 0, µ← µ0

2: while nµ ≥ ϵ do
µ← (1− θ)µ {Update barrier parameter}

4: while Ψ(V ) > τ do
Solve system (15) and use (11) to obtain ∆X, ∆Y

6: Determine step size α
Update: X ← X + α∆X, Y ← Y + α∆Y

8: end while
end while

Algorithm 2 is well-defined and achieves the currently best-known iteration bound of

O
(√
n log n log n

ϵ

)
for large-update methods.
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ABSTRACT    

This thesis investigates interior-point methods for solving monotone semidefinite linear 
complementarity problems (SDLCPs). It presents theoretical foundations of convex analysis, matrix 
optimization, and complementarity theory, with a focus on primal-dual interior-point algorithms based 
on kernel functions. The study analyzes the central path, Nesterov-Todd directions, and various kernel 
functions' impact on algorithmic complexity. Applications in optimization, control theory, and 
eigenvalue problems are discussed. The work provides complexity bounds for large and small update 
methods, demonstrating their polynomial-time convergence. Key results include equivalence theorems 
between SDLCP and related problems, as well as spectral decomposition techniques for symmetric 
matrices. 

 

RESUME 

Cette thèse étudie les méthodes de points intérieurs pour résoudre les problèmes de complémentarité 
linéaire semi-définis monotones (SDLCP). Elle présente les fondements théoriques de l'analyse convexe, de 
l'optimisation matricielle et de la théorie de la complémentarité, en se concentrant sur les algorithmes 
primaux-duaux basés sur des fonctions noyau. L'étude analyse le chemin central, les directions de Nesterov-
Todd et l'impact de diverses fonctions noyau sur la complexité algorithmique. Les applications en 
optimisation, théorie du contrôle et problèmes aux valeurs propres sont discutées. Le travail fournit des 
bornes de complexité pour les méthodes à grands et petits pas, démontrant leur convergence en temps 
polynomial. Les résultats clés incluent des théorèmes d'équivalence entre SDLCP et problèmes connexes, 
ainsi que des techniques de décomposition spectrale pour matrices symétrique 

 

  ملخص 

). ويقدم الأسس SDLCP( وجبةل الخطي شبه المميالتكمسائل لحل  الأمثلةبالنسبة لمسائل تدرس هذه الأطروحة طرق النقطة الداخلية 
ل، مع التركيز على خوارزميات مي، ونظرية التكات المعرفة موجباالمصفوفخواص ونتائج نظرية حول النظرية للتحليل المحدب، و

وتأثير وظائف النواة المختلفة  Nesterov-Toddالثنائية الأولية القائمة على وظائف النواة. تحلل الدراسة المسار المركزي واتجاهات 
 على التعقيد الخوارزمي. يتم مناقشة التطبيقات في التحسين ونظرية التحكم ومشاكل القيمة الذاتية. يقدم العمل حدود التعقيد للطرق ذات

والمشاكل  SDLCPؤ بين الخطوات الكبيرة والصغيرة، مما يوضح تقاربها في وقت متعدد الحدود. تتضمن النتائج الرئيسية نظريات التكاف
  ذات الصلة، بالإضافة إلى تقنيات التحلل الطيفي للمصفوفات المتماثلة. 
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