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INTRODUCTION

In the study of dynamic systems, continuous chaotic systems represent a fascinating and
intricate class of systems whose behavior can be both unpredictable and deterministic [1, 2].
A dynamic system is a mathematical model used to describe the evolution of a system over time.
It is typically governed by differential equations that define how the system’s state changes con-
tinuously with respect to time [3, 4].
These systems are used to model a wide variety of physical, biological, and engineered systems,
ranging from fluid dynamics and population growth to electrical circuits and climate models
[5, 6].
One of the most important concepts in the study of dynamical systems is stability [7].
Stability refers to the behavior of a system’s solutions under small perturbations to the initial
conditions. A system is considered stable if small changes in initial conditions lead to small
changes in the system’s future behavior. Conversely, instability occurs when even small
perturbations can result in large, unpredictable changes in the system’s state [8].
As dynamic systems evolve, they may undergo significant qualitative changes
in behavior [9]. These changes are often captured in the concept of bifurcation, where a small
change in a system’s parameters can lead to a sudden and dramatic change in its long-term
behavior. Bifurcations are a key phenomenon in understanding chaotic systems, as they mark
the point at which a system transitions from periodic or regular behavior to chaotic dynamics
[10].
At the heart of chaotic systems lies chaos, a form of deterministic unpredictability [11].
In chaotic systems, small differences in initial conditions can lead to vastly different outcomes,
making long-term prediction practically impossible. This sensitive dependence on initial
conditions, often referred to as the ”butterfly effect,” is one of the hallmarks of chaos [12].
Despite this unpredictability, chaotic systems are governed by deterministic laws, which means
that their behavior is fully determined by their initial conditions and governing equations [13].
The concept of chaotic systems with stable equilibria has gained significant attention
in recent research [14]. The term ”chaotic system with hidden attractors” refers to systems
that either have no equilibrium points or possess only a single stable equilibrium point [15, 16].
This novel class of attractors was first identified by Leonov and colleagues [17, 18, 19].
A key characteristic is that any unstable equilibrium point does not lie within its basin
of attraction [20].To distinguish between different types of attractors, the conventional attractor
is classified as ”self-excited,” while a hidden attractor forms in systems without equilibria [21].
The fundamental difference is that the attraction basin of a hidden attractor does not overlap
with any small neighborhood surrounding any equilibrium point. In contrast, the attraction
basin of a self-excited attractor will intersect with some unstable equilibrium points [22].
In 2016, the researchers enhanced the discrete parameter model by introducing hidden
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bifurcations and generating multiple spiral patterns [23].Hidden bifurcation theory is established
on the foundation of hidden attractor theory, which was developed by Leonov and colleagues
[17]. To identify hidden bifurcations, the researchers maintained fixed system parameters while
introducing a new control parameter ε in the nonlinear component, regulated by a homotopy
parameter ε, while keeping the other parameters constant [25]. This parameter, ε, ranges from
0 to 1. When ε equals 0, the nonlinear part of the system is decoupled, resulting in a
cycle-shaped attractor [26, 27]. Conversely, when ε equals 1, the system displays the attractor
of the original system [28, 24].

This thesis explores three fundamental aspects of complex dynamics. The first chapter es-
tablishes a comprehensive foundation in continuous dynamic systems, covering essential math-
ematical frameworks, stability analysis, and bifurcation theory required to understand chaotic
behavior in deterministic systems. The second chapter analyzes the novel concepts of hidden
attractors and hidden bifurcations, distinguishing them from traditional self-excited attractors
by examining how their basins of attraction relate to equilibrium points, with
particular emphasis on Leonov’s groundbreaking classification methodology and the homotopy-
based approach for uncovering hidden structures in phase space. The final chapter applies these
theoretical concepts to Chua’s circuit system, demonstrating how hidden attractors and bifur-
cations manifest in this paradigmatic work.
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CHAPTER 1

CONTINUOUS DYNAMIC SYSTEM

1.1 Introduction

Chaos theory is a branch of mathematics and physics that focuses on the study of dynamic
systems characterized by extreme sensitivity to initial conditions. This fundamental property,
commonly referred to as the ”butterfly effect,” causes small perturbations in starting conditions
to lead to vastly different outcomes over time. Among the most widely studied in this domain
are continuous dynamic systems, which are systems described by nonlinear ordinary differential
equations and evolve over continuous time.

A continuous chaotic system typically exhibits irregular, non-repeating behavior while
remaining deterministic in nature. The trajectories of such systems do not settle into fixed
points or periodic orbits but instead approach complex structures known as strange attractors.
These attractors possess a fractal geometry and exhibit sensitive dependence on initial condi-
tions, which makes long-term prediction practically impossible despite the system being gov-
erned by deterministic rules.

One of the earliest and most influential examples of a continuous chaotic system
is the Lorenz system [12], originally developed to model atmospheric convection. Since its
discovery, many other continuous-time chaotic systems have been formulated Chua’s circuit
[17].
These systems have spurred extensive research due to their potential applications in areas such
as secure communication, electrical engineering, neuroscience, weather forecasting,
and financial systems.

The analysis of continuous chaotic systems involves various qualitative and quantitative
tools. Phase space visualization, bifurcation diagrams, and Poincaré sections are commonly
used to study the global behavior of the system. Additionally, indicators such as Lyapunov
exponents help in distinguishing chaotic behavior from regular dynamics by quantifying
the average rate of divergence of nearby trajectories.

In recent years, research has further expanded into complex behaviors such as hidden
attractors, multistability, and coexisting attractors. These phenomena have significant impli-
cations for understanding the complete dynamic range of nonlinear systems and developing
advanced control and synchronization techniques.
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CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

1.2 Important Definitions

Definition 1.2.1 (Dynamic Systems) A dynamic system is one in which the state changes
over time t. Evolution is regulated by a framework of principles that determine the system’s
state for discrete or continuous values of t.

Dynamic system are classified into two categories:
• Continuous dynamic systems.
• Discrete dynamic systems.

Definition 1.2.2 (Continuous Dynamic Systems) A continuous dynamic system can be
represented by a differential equation of the form,

dx

dt
= f(x, µ), x ∈M ⊂ Rm, µ ∈ Rr,m and r ∈ N. (1.1)

Where f is continuous .

Example 1.2.1 We consider a system of differential equations (Lotka-Volterra)
ẋ = αx− βxy

, (x, y) ∈ R2,

ẏ = δxy − γy.

Definition 1.2.3 (Discrete Dynamical Systems) Discrete dynamical systems are known
as regressive sequences,

xk+1 = f(xk, µ), xk ∈M ⊂ Rm, µ ∈ Rr k = 1, 2, ... (1.2)

Where f is discrete .

Example 1.2.2 We consider the discrete dynamical system (logistic map) :

xn+1 = rxn(1− xn), xn ∈ [0, 1].

Definition 1.2.4 (Autonomous System) An autonomous system is a system of differential
equations in which the independent variable (typically time, t) does not explicitly appear
in the equations. Mathematically, it is expressed as:

dx

dt
= f(x), (1.3)

where x is the state vector and f(x) is a function independent of t. Autonomous systems
describe time-invariant dynamics, meaning their behavior is solely determined by their state
and not by explicit time dependence.

Definition 1.2.5 (Non-Autonomous System) A non-autonomous system is a system
of differential equations where the independent variable explicitly appears in the governing
equations. It has the general form:

dx

dt
= f(x, t), (1.4)

Here, the evolution of x depends both on the current state and explicitly on time t. Such systems
often model time-dependent external forces or perturbations.
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CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

Definition 1.2.6 (Dissipative System) A dissipative system is a dynamical system in which
the total energy decreases over time due to dissipation (e.g., friction, resistance, or damping).
It is characterized by the existence of an attractor, towards which trajectories converge.
The phase-space volume of such a system contracts over time. Mathematically, if V represents
the phase-space volume, a dissipative system satisfies:

dV

dt
< 0, (1.5)

for most cases. Dissipative systems are commonly encountered in thermodynamics, fluid
dynamics, and chaos theory.

Definition 1.2.7 (Conservative System) A conservative system is a system in which
the total energy remains constant over time, meaning there is no energy loss due to dissipation.
The system’s Hamiltonian (total energy function) is preserved:

dV

dt
= 0. (1.6)

Conservative systems maintain phase-space volume (Liouville’s theorem) and typically describe
systems with purely reversible dynamics, such as ideal mechanical systems without friction.

Definition 1.2.8 (Linear Dynamic System) A linear dynamic system or linear differential
system is an equation relating to a vector function x(t) , which can be written as

ẋ = A(t)x(t). (1.7)

Where more generally

ẋ = A(t)x(t) + g(t),

Where A is a square matrix and g a vector whose elements are functions of t. The linear word
only concerns the dependence on x, the elements of A(t) and g(t) do not have to be linear in t.

Definition 1.2.9 (Nonlinear Dynamic System) A nonlinear dynamical system can always
be written by a differential equation from the following form :

ẋ = f(t, x(t)) =


f1(x(t))
f2(x(t))

.

.

.
fn(x(t))

 ,

or x(t) ∈ Rn, and f is a nonlinear function ,We note f(t, x(t)) = F (x(t)).

6



CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

1.2.1 Phase Space

Definition 1.2.10 A graph representing a solution of a system of differential equations is called
its integral curve, and a projection of the integral curve onto the phase space along the t axis
is referred to as a phase curve (trajectory, or orbit).

Definition 1.2.11 A limit cycle is considered orbitally asymptotically stable (or simply stable)
if, for any perturbation within its small neighborhood U , all trajectories that start near the cycle
remain within this neighborhood and eventually tend toward the cycle over time (t −→∞).

Definition 1.2.12 The phase curve (trajectory) of the periodic solution of the system 1.2.2 is
closed and is referred to as a cycle. Furthermore, any cycle (the closed phase curve
of the system 1.2.2 defines a periodic solution with a certain period.

Definition 1.2.13 (The Poincaré map) The Poincaré map, or first return map, introduced
by Henri Poincaré in 1881, is a fundamental tool for studying the stability and bifurcations
of periodic orbits. The concept is simple: if r is a periodic orbit of the system 1.2.2 passing

through the point ,x0 and
∑

is a hyperplane perpendicular to r at x0, then for any point x

in P close to x0, the solution of 1.2.2 starting from x at t = 0, denoted φ(x), will cross P again
at a point P (x) near x0 see Fig 1.1.

Figure 1.1: Poincaré map

Definition 1.2.14 Let x0 be a singular point (fixed point, equilibrium point, stationary point)
of a differentiable vector field F (x) so F (x0) = 0.

Definition 1.2.15 A singular point of a vector field is a point in phase space where the vector
of the field vanishes.

Definition 1.2.16 The periodic solution x(t) of an autonomous system of differential equations
1.2.2 exists if there exists a constant T ; such that x(t+ T ) = x(t) for all t. The period
of the solution x(t) is named after the minimal such value T and the solution x(t) is called
T -periodic solution.

Definition 1.2.17 A stationary solution of an autonomous system of differential equations
(a solution that is constant at a singular point) is called Lyapunov stable if all solutions with
initial conditions from a sufficiently small neighborhood of the singular point are defined for all
positive time and, as time progresses, converge uniformly to the stationary solution when
the initial conditions approach the singular point.

Definition 1.2.18 The isolated closed trajectory is referred to as a limit cycle in an
autonomous system of ordinary differential equations.
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CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

1.2.2 Attractors of Dissipative Systems

Definition 1.2.19 In relation to a flow ϕt set B ⊂M compact invariant if there is an attrac-
tive set in its neighbourhood U (the open set containing B) such, that B ⊂ ω(U) and for almost
all

x ∈ U,ϕt(x) −→ B, t −→∞,

(i.e.dist( ϕt(x), B) = infy∈B =‖ ϕt(x) − y ‖−→ 0, when t −→ ∞). The greatest set, U,
satisfying this definition, is called a attraction of field for B.

Definition 1.2.20 The indecomposable attractive set is referred to as an attractor.

Remark 1.2.1 Not all attractive sets are attractors; only those that have the property
of indecomposability, meaning they cannot be divided into two separate compact invariant sub-
sets, are considered attractors.

Different Types of Attractors

There are two types of attractors: regular attractors and strange attractors,
or chaoticattractors.

1.Regular attractors:

Regular attractors characterize the evolution of non-chaotic systems and can be of three
kinds.

•The fixed point:
A simple type of attraction in which the system moves towards a fixed point. This is the most
usual case. It is important to remember that the real draw is mostly through the docks.
There is always at least one ”output path” for other types of fixed points. Each value
in the Jacobian matrix with a positive real part is linked to a special vector that shows
the direction the path goes away from the fixed point.
•The Periodic Limit Cycle
Due to perpetual oscillations, the phase path may close on itself, making time evolution cyclic.
In a dissipative physical system, a strong equation component compensates for average losses
from dissipation.
•The pseudo-periodic limit cycle(Invariant tori)
This represents a nearly specific instance of the preceding case. The system offers a minimum
of two concurrent periods with an irrational ratio. The phase path does not self-close; instead,
it surrounds a two-dimensional polysurface.
2. Strange attractors
A surface containing divergent paths is called an unstable surface, while a surface containing
converging paths is called a stable surface. It is worth noting that this cannot be visualized
in a phase space of only two dimensions. Strange attractors are properties of the evolution
of chaotic systems: after a certain period of time, all points in phase space (belonging
to the attraction basin of the attractor) give paths tending to form the strange attractor.
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CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM
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Figure 1.2: Different types of attractors (a) fixed point; (b) periodic limit cycle; (c) pseudo-
periodic limit cycle(Invariant tori); (d) strange attractor (Lorenz attractor).
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CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

Qualitative Study of Dynamic Systems
Qualitative studies help us understand solution behaviour with out solving the differential
equation. Especially useful for analysing solutions at equilibrium points. For a comprehensive
understanding of a dynamic system, we want the transition function or vector field to cancel
all transient occurrences, resulting in stable behaviour. In this scenario, the system will enter
one of two states:
1)The case of equilibrium (fixed points, periodic points).
2) The case of chaotic.
Linear algebra is used to simplify dynamic system equations in this study. We need linearize
most nonlinear dynamic systems connected to events in nature.

1.2.3 Linearization of Dynamic Systems

Consider the nonlinear dynamic system defined by:

·
X = F (X), X = (x1, x2, . . . , xn), F = (f1, f2, . . . , fn), (1.8)

were X0 a fixed point (equilibrium) of this system.

Suppose a small upset ε(t) is applied in the neighborhood of the fixed point. The function
f can be developed in series of Taylor in the neighborhood of point X0 as follows:

ε(t) +X0 = F (ε(t) +X0) ' F (X0) + JF (X)ε(t), (1.9)

with JF (X0) is the Jacobian matrix of the function F defined by

JF (X0) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

· · · · · · · · · · · ·
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


X=X0

(1.10)

As F (X0) = X0, then equation (1.9) becomes again:

ε(t) = JF (X0)ε(t). (1.11)

The writing (1.11) means that the system (1.8) is linearized.

1.3 Concept of Stability

Stability in the sense of Lyapunov

Consider the following dynamic system:

dx

dt
= f(x, t), (1.12)

with f a nonlinear function.

Definition 1.3.1 the equilibrium point x0 of the system (1.12) is:

1. Stable if

∀ε > 0,∃ δ > 0 : ‖x(t0)− x‖ < δ ⇒ ‖x(t, x(t0))− x0‖ < ε,∀ t ≥ t0. (1.13)

10



CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

2. Asymptotically stable if:

∃ δ > 0 : ‖x(t0)− x‖ < δ ⇒ lim
t→∞
‖x(t, x(t0))− x0‖ = 0. (1.14)

3. Exponentially stable if:

∀ε > 0,∃ δ > 0 : ‖x(t0)− x‖ < δ ⇒ ‖x(t, x(t0))− x0‖ < a ‖x(t0)− x‖ exp(−bt), ∀ t > t0.
(1.15)

4. Unstable if

∀ε > 0,∃ δ > 0 : ‖x(t0)− x‖ < δ ⇒ ‖x(t, x(t0))− x0‖ > ε,∀ t ≥ t0. (1.16)

wich mean that equation (1.13) is not satisfied see Fig. 1.3.

Stability

x
e

x
0

Asymptotic Stability

x
e

x
0

Instability

x
e

x
0

Figure 1.3: The various classifications of stability according to Lyapunov’s theory.
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CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

Lyapunov’s first method (indirect method)

Lyapunov’s first method is based on examining the linearization around the equilibrium
point x0 of the system (1.12). More precisely, we examine the eigenvalues λi of the Jacobian
matrix evaluated at the equilibrium point. According to this method, the properties of stability
of x0 are expressed as follows:

1- If all the eigenvalues of the Jacobian matrix have a strictly real part negative,
x0 is exponentially stable.

2- If the Jacobian matrix has at least one eigenvalue with a strictly positive real part,
x0 is unstable.

Remark 1.3.1 We cannot determine equilibrium stability using this method if the matrix
Jacobian has at least one zero eigenvalue and no eigenvalue with a positive real portion.
The system’s trajectories converge to a manifold equal to the number of zero eigenvalues
of the Jacobian matrix. The stability of the equilibrium can be studied in this subspace using
the second technique.

Lyapunov’s Second Technique (Direct Technique)
Lyapunov’s first technique is straight forward to implement; yet, it permits only a limited

analysis of equilibrium stability. Furthermore, she provides no indication of the dimensions
of the basins of attraction. The second technique is more challenging to execute;
yet, it is extensive and more comprehensive. The concept relies on the definition of a particular
function, referred to as the Lyapunov function, denoted as V (x), which diminishes along
the system’s paths with in the attraction basin. This theorem will encapsulate this technique.

Theorem 1.3.1 The equilibrium point x0 of the system (1.12) is stable if there exists a function
V (x) : D → R

continuously differentiable having the following properties :

1. D is an open of Rn and x0 ∈ D.

2. V (x) > V (x0) ∀ x 6= x0 in D.

3.
·
V (x) ≤ 0 ∀ x 6= x0 in D.

There is no method to find a Lyapunov function. But in mechanics and for electrical
systems one can often use the total energy as a Lyapunov function.

1.4 Bifurcation and Chaos

1.4.1 The Bifurcation Theory

This section addresses a differential system influenced by auxiliary parameters, focussing
on the variations in the phase portrait as these parameters change. This issue is examined
by catastrophe theory, especially in the context of dissipative systems reliant on a potential,
where the positions of equilibria and their bifurcations are regarded as the key characteristics
of the phase portrait.

To construct the phase portrait at bifurcation values, where qualitative changes occur,
specific tools are required. This study focusses on local bifurcations associated with

12



CHAPTER 1. CONTINUOUS DYNAMIC SYSTEM

an equilibrium point in a continuous system. The bifurcation diagram will provide geometric
assistance for both methods, highlighting the significance of utilising appropriate coordinates.

Definition 1.4.1
dx

dt
= g(x, t, η), (1.17)

Let x0 be the solution to the problem of dimension n and control parameter η .
A bifurcation is a qualitative change in the solution of the system x0 when we modify it,
specifically including the disappearance or change of stability and the emergence of new
solutions see Fig.1.4.

Definition 1.4.2 The ”common dimension” of misalignment is the smallest number
of parameters required to achieve desingularity. In a system of differential equations when
bifurcation takes place, the common dimension is the number of parameters. The system’s
bifurcation becomes more complex as the common dimension increases beyond one.

Definition 1.4.3 A bifurcation diagram represents a specific segment of the parameter space,
illustrating all branch points within that segment.

Definition 1.4.4 (Bifurcations in Codimension 1) A codimension-1 bifurcation occurs when
a qualitative change in the system’s behavior happens by varying a single parameter. These
bifurcations are the most common in practical applications and are typically classified into:

• Saddle-node bifurcation: Two fixed points (one stable, one unstable) collide
and annihilate each other.

• Transcritical bifurcation: Two equilibrium points exchange stability.

• Pitchfork bifurcation: A symmetric bifurcation where one equilibrium splits into three
(super critical) or three merge into one (subcritical).

• Hopf bifurcation: A stable fixed point becomes unstable, giving rise to a periodic orbit.

Definition 1.4.5 (Bifurcation in Codimension 2) A codimension-2 bifurcation occurs when
a qualitative change requires the variation of two independent parameters. These bifurcations
act as organizing centers for more complex dynamical behaviors and often give rise to bifurcation
diagrams with multiple bifurcation. Examples include:

• Bogdanov-Takens bifurcation: A saddle-node bifurcation and a Hopf bifurcation
co-occur at a critical point.

• Cusp bifurcation: A saddle-node bifurcation unfolds with an additional parameter.

• Takens-Bogdanov bifurcation: A system has a degenerate equilibrium where two
eigenvalues are zero, leading to complex dynamic behaviors.
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Figure 1.4: Bifurcation diagram

1.4.2 Chaos Theory

Nonlinear dynamic systems, including piecewise linear ones, can display intricate and ostensibly
unpredictable behaviours that may initially seem random. Nonetheless, despite this seemingly
arbitrary nature, these behaviours are wholly deterministic, indicating that they adhere to exact
mathematical principles devoid of any external randomness or noise affecting their progression.
The intrinsic unpredictability in these systems is termed chaos.

Chaos emerges when little variations in initial conditions result in significantly divergent
outcomes over time, a phenomenon referred to as sensitive dependency on original conditions.
This indicates that even minor fluctuations in the initial conditions of a system can lead
to significantly divergent outcomes, rendering long-term predictions virtually unattainable
despite the system’s deterministic characteristics.

The mathematical discipline that systematically investigates and delineates chaotic
phenomena is known as chaos theory. This discipline aims to comprehend and delineate
the long-term progression of dynamical systems, especially those regulated by nonlinear equa-
tions. Chaos theory typically seeks to analyse qualitative aspects, such as stability, bifurcations,
attractors, and the existence of fractal structures, rather than concentrating on identifying pre-
cise
solutions see Fig. 1.4.2. It has extensive applications in disciplines such as physics, engineering,
meteorology, biology, and economics, where intricate systems often display chaotic behaviour .

Chaos Properties
1. Sensitivity to Initial Conditions

In a chaotic system, even a minute mistake in determining the beginning state x0 in phase
space would (nearly always) be rapidly magnified. From a mathematical point of view,
we say that the function f demonstrates a sensitive dependency on initial conditions when
the following conditions are met:
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∃β > 0,∀(x, d) ∈M,∀ε > 0,∃(y, q) ∈M :

{
‖ x− y ‖< ε,

‖f q(x)− fd(y)‖ > β.
(1.18)

2. The strange attractor
A strange attractor, or at least one variant, exists within every dissipative chaotic system
by repeatedly stretching and folding a phase space cycle an infinite number of times, one would
geometrically obtain this attractor. The attractor exists with in a bounded space, despite
its ”length” being infinite. As a result, the definition is as follows:

Definition 1.4.6 A bounded subset H of phase space attracts a weird or chaotic transformation
P if it has a neighbourhood G that contains every point of H and a ball with the following
qualities:
a) Attraction: G is a capture zone, thus any orbit by P with a beginning point in G is totally
contained in it. Additionally, any orbit can be as near to H as desired.
b)- Its space is limited. Zero volume. The dimension is fractal.
c)- Each trajectory on the attractor is nearly certainly aperiodic, as it never passes again over
the same location.
d) Two trajectories near together increase their distance exponentially (sensitivity to initial
conditions).

3.One of the most important characteristics of chaotic motion in a system is the presence
of broad spectra. The value of one of the variables in a dynamic system at regular intervals
is frequently used to describe the temporal evolution of the system. This type of representation
is known as the time series.

3.Lyapunov’s Exponents
Various techniques exist to assess whether a nonlinear system demonstrates chaotic behaviour;
however, these methods are frequently constrained
in quantity and necessitate extended
observation periods. We selected two widely utilised and complementary methods for analysing
chaotic behaviour: the fractal dimension and Lyapunov exponents. The fractal dimension
quantifies the geometric complexity of an attractor, whereas Lyapunov exponents assess
sensitivity to initial conditions, which is a fundamental characteristic of chaotic systems.

Lyapunov exponents were introduced by Aleksandr Mikhailovich Lyapunov in his doctoral
thesis, ”The General Problem of the Stability of Motion”, presented on ”October 12, 1892”,
at the University of Moscow. This study presents a method for quantifying the divergence
of proximate trajectories. If this divergence increases exponentially over time, the system
exhibits a high sensitivity to initial conditions, which is characteristic of chaotic behaviour.

A positive Lyapunov exponent indicates chaotic behaviour, while negative or zero values
suggest stability or periodic motion. The integration of Lyapunov exponent analysis
and fractal dimension provides an effective means to characterise chaotic systems.
These methods are essential in chaos theory and have extensive applications in physics,
engineering, and various complex systems.
Paths to Chaos
A dynamic system generally possesses one or more ”control” parameters that affect
the attributes of the transition function. The value of the control parameter influences
the initial conditions, resulting in trajectories that may represent distinct dynamic regimes.
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The ongoing modification of the control parameters frequently leads to a progressive escalation
in the complexity of the system’s dynamic regime. Multiple scenarios illustrate the transition
from a fixed point to chaotic behaviour. The transition from a fixed point to chaotic behaviour
is characterised by discontinuous changes, commonly known as bifurcations, rather than
a smooth progression. A bifurcation signifies a sudden transition from one dynamic regime
to another, characterised by distinct qualitative differences. Three scenarios of transition
to chaos can be identified:

1. Intermittency Towards Chaos
Periodic motion remains stable until interrupted by turbulence bursts. With an increase
in the control parameter, the frequency of turbulence bursts escalates, ultimately resulting
in the predominance of turbulence.

2.The Period-doubling
This phenomenon is defined by multiple bifurcations. As stress escalates, the period of a forced
system doubles, subsequently quadruples, and then octuples, continuing in this manner.
The period doublings occur with increasing proximity, and as the period approaches infinity,
the system transitions into chaos.

3.Quasi-Periodicity
Occurs when a secondary system disrupts a previously periodic system. When the ratio
of the periods of two systems is irrational, the system is classified as quasi-periodic.
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Figure 1.5: Chaotic behavior of the Lorenz system (a) phase diagram on (x − y) plane; (b)
phase diagram on (x − y − z) plane; (c) the state varaible x, y, and z with time; (d) the
Lyapunov exponents with the initial values X(0) = (1,−1, 2).
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CHAPTER 2

HIDDEN ATTRACTORS AND HIDDEN
BIFURCATIONS

2.1 Introduction

Nonlinear dynamic systems research has recently uncovered crucial phenomena that
challenge traditional analytical methods. While conventional self-excited attractors can be
located through trajectories near unstable equilibria, hidden attractors whose basins do not
intersect with neighborhoods of equilibrium points remain elusive to standard computational
approaches. These hidden attractors represent significant regimes in system behavior that
cannot be detected through equilibrium analysis alone. The identification of hidden chaotic
attractors in Chua’s circuit by Kuznetsov et al. (2010) and Leonov et al. (2011)
invigorated research into hidden oscillations. Although numerous research have examined
Chua’s circuit over the years, they primarily focused on self-excited attractors [18, 19].
The necessity for efficient analytical and numerical techniques to investigate hidden attractors
persists as a fundamental challenge. This survey seeks to underscore recent progress in these
strategies, mirroring contemporary trends in both theoretical and computational approaches.
Menacer et al. [23] altered the paradigm of discrete parameters by inserting hidden
bifurcations, resulting in multiscrolls within a family of systems characterised by a continuous
bifurcation parameter. Subsequently, all traditional theories of dynamical systems and their
robust methodologies can be employed to investigate multiscrolls. This hidden bifurcation
theory is founded on the hidden attractor theory proposed by Leonov et al.

2.2 Hidden attractors

The analysis and synthesis of oscillating systems, in which the problem of the existence
of oscillations could be resolved with relative ease, received a lot of attention during the early
stages of the foundation of the theory of nonlinear oscillations, which took place in the first
half of the twentieth century. This was the time when the theory was being developed.
This strategy was supported by the investigation of periodic oscillations in a variety of practical
domains, including as biology, electronics, chemistry, and mechanics.

Definition 2.2.1 (self-excited) An attractor is called a self-excited attractor if its basin
of attraction intersects with any open neighborhood of an unstable fixed point see Fig. 2.1, [15].
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Example 2.2.1 In 1963, The Lorenz system was the first well-known example of a visualization
of chaotic attractor in a dynamical system corresponding to the excitation of chaotic attractor
from unstable equilibria [12].

Consider Lorenz system 
·
x = a(y − x),
·
y = x(c− z)− y,
·
z = xy − bz,

(2.1)

and make it’s simulation with standard parameters. a = 10, b =
8

3
, c = 28.

Figure 2.1: Self-excited Lorenz attractor with equilibrium points

Definition 2.2.2 (Hidden attractors) If an attractor’s basin of attraction does not cut off
with small regions of equilibria, it is referred to as a hidden attractor see Fig2.3.

Definition 2.2.3 hidden attractors are attractors in systems with out equilibria or with only
one stable equilibrium [15].

Remark 2.2.1 The hidden vs. self-excited classification of attractors was introduced
inconnection with the discovery of the first hidden Chua attractor.

Example 2.2.2 Consider the behavior of classical Chua circuit [Chua, 1992].
In the dimension less coordinates a dynamic model of this circuit is as follows [21]

·
x = a(y − x)− af(x),
·
y = x− y + z,
·
z = −(by + cy).

(2.2)
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Here the function

f(x) = α1x+
1

2
(α0 − α1)(|x+ 1| − |x− 1|). (2.3)

For simulation of this system, we use the following parameters, a = 15.6, b = 28, c = 0.016,

α0 = −8

7
, α1 =

5

7
.(see Fig. 2.2)
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Figure 2.2: Chua attractor in x− y plane
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2.2.1 Analytical-Numerical Method for Hidden Attractor
Localization

New concepts like self-excited and veiled attractors have been introduced[11, 18], and [20].
Self-excited attractors have basins of attraction near equilibrium points, while hidden
attractors do not. In systems without equilibria, with one stable equilibrium, or with infinite
stable equilibria, hidden attractors are attractors. Hidden attractors are hard to find because
their basins of attraction do not connect with local equilibria. The term ”hidden” comes from
computational complexity. Quantifying their existence was developed by Leonov et al. [17],
[19], and [20]. This method is for Chua attractors.

dX

dt
= PX + gΨ(rTX), X ∈ R3. (2.4)

Let P be a constant (n× n)-matrix, and let g and r be constant n-dimensional vectors.
The operation T denotes transposition, while Ψ(σ) represents a continuous piecewise-differentiable
scalar function, satisfying the condition Ψ(0) = 0. Define the coefficient k

∗
of harmonic

linearization such that the matrix
P0 = P + k

∗
grT . (2.5)

The system possesses a pair of purely imaginary eigenvalues, ±iω0, where ω0 > 0, while the
remaining eigenvalues exhibit negative real parts. It is assumed that such k

∗
exists. Reformulate

system (2.4) as
dX

dt
= P0X + gϕ(rTX). (2.6)

We define ϕ(σ) = Ψ(σ)−k∗
σ and introduce a finite sequence of functions ϕ0(σ), ϕ1(σ), · · · , ϕm(σ)

such that the graphs of neighboring functions ϕj(σ) and ϕj+1(σ), for j = 0, · · · ,m− 1, exhibit
slight differences. The function ϕ0(σ) is small, and we have ϕm(σ) = ϕ(σ).
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By employing a limited function, we can implement the method of harmonic linearization, also
known as the describing function method, for the system.

dX

dt
= P0X + ϕ0(rTX), (2.7)

and identify a stable nontrivial periodic solution X0(t).
To localize the attractor of the original system (2.6), we will numerically track the

transformation of this periodic solution. All points of this stable periodic solution reside with
in the domain of attraction of the stable periodic solution X1(t) of the system.

dX

dt
= P0X + ϕj(rTX). (2.8)

When j = 1, or moving from (2.7) to system (2.8) with j = 1, the instability bifurcation
that disrupts the periodic solution can be observed. In the initial scenario, one can determine
X1(t) numerically by using any point from the stable periodic solution X0(t) as the initial
condition for system (2.8) with j = 1. Beginning with this initial condition, the trajectory
attains the periodic solution X1(t) following a transient phase. Subsequent to the computation
of X1(t), one can derive a periodic trajectory X2(t) for system (2.8) with j = 2, initiated from
any point on the stable periodic solution X1(t). This process can be continued to obtain
a periodic solution for system (2.6), contingent upon the existence of such a solution.

Remark 2.2.2 In certain instances, obtaining such a solution may prove impossible due to
the observation of an instability bifurcation at a specific step, which undermines the periodic
solution.

To identify the initial condition X0(0) of the periodic solution, system(2.7) can be modified
through a linear nonsingular transformation. F (X = FY ) to the form :

·
y1 = −ω0y2 + b1ϕ

0(y1 + ut3Y3),
·
y2 = ω0y1 + b2ϕ

0(y1 + ut3Y3),
·
Y3 = A3Y3 +B3ϕ

0(y1 + ut3Y3).

(2.9)

In this context, y1 and y2 represent scalar values, while Y3 denotes a (n− 2)-dimensional
vector, B3 and u3 (n− 2)−dimensional vector, where b1 and b2 represent real numbers;
A3 is a (n− 2)×(n− 2) matrix, characterized by the property that all of its eigenvalues possess
negative real parts. It can be assumed, without loss of generality, that for the matrix A3, there
exists a positive number d2 such that d2 > 0.

Y t
3 (A3 + At3)Y3 ≤ −2d2 |Y3|2 , ∀Y3 ∈ Rn−2. (2.10)

In the scalar instance, let us introduce the characterizing function Φ of a real variable m:

Φ (m) =

2π/ω0∫
0

ϕ(cos(ω0t)m) cos(ω0t)dt. (2.11)

Theorem 2.2.1 [11]If a positive m0 such that

Φ(m0) = 0, b1
dΦ(m)

dm
|m=m0< 0, (2.12)

then for the initial condition of the periodic solution X0(0) = F (y1(0), y2(0), Y3(0))T at the
first step of algorithm we have

y1(0) = m0 +O(ε), y2(0) = 0, Y3(0) = On−2(ε), (2.13)

were On−2(ε) is an (n− 2)−dimensional vector such that all its components are O(ε).
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For the stability of X0(t) (where stability is defined such that for all solutions with initial
data sufficiently close to X0(0), the modulus of their difference with X0(t) remains uniformly
bounded for all t > 0) It is necessary to ensure that the following condition holds:

b1
dΦ(m)

dm
|m=m0< 0. (2.14)

To find k
∗

and ω0, one utilizes the transfer function W (λ) of system (2.4):

W (s) = rT (P − sI)−1g, (2.15)

where s represents a complex variable. The value of ω0 is ascertained from the equation
ImW (iω0) = 0. The values of and k

∗
are computed using the formula k

∗
= ReW (iω0)

−1.

2.2.2 Hidden Bifurcation

The number of scrolls or spirals produced in the phase space of all known multiscroll chaotic
attractors is determined by a fixed integer value. This value generally relies on one or more
discrete parameters that are explicitly integrated into the system’s framework.
The parameters regulate the system’s behavior in a piecewise manner, resulting in a stepwise
increase or modification in the number of scrolls. Despite extensive research on multiscroll
generation mechanisms, a comprehensive bifurcation analysis has not been performed in the
traditional sense, especially concerning the variation in the number or topology of scrolls
as a function of a continuous parameter.

This method was significantly altered by Menacer et al. [23], who proposed a novel approach
that moves away from dependence on discrete parameters. The authors proposed the concept
of hidden bifurcations within a family of systems, as described by equation (2.6),
where the number of scrolls can vary continuously as a function of a bifurcation parameter.
This new perspective is grounded in the concept of hidden attractors, a notion initially
proposed by Leonov et al. [18, 19].

Hidden attractor theory examines attractors whose basins of attraction do not overlap with
the neighborhoods of any equilibrium point, necessitating unconventional approaches for their
detection and analysis. This concept is extended to encompass hidden bifurcations that do not
correspond to observable changes in equilibria. Such hidden bifurcations are regulated by
a homotopy parameter ε, while the system parameters remain constant.
This additional parameter, absent from the initial problem, is well-suited to elucidate
the structure of the multispiral chaotic attractor.
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CHAPTER 3

APPLICATION

3.1 Introduction

The investigation of nonlinear dynamic systems has been significantly enhanced by
the analysis of chaotic phenomena, with Chua’s circuit serving as a quintessential example of
engineered chaos. The characterization of classical attractors and bifurcations in these systems
is well-established; however, the emergence of hidden attractor basins that do not intersect with
equilibrium neighborhoods, along with their corresponding hidden bifurcations, poses
significant theoretical and practical challenges.
This chapter examines the complex interactions between hidden attractors and hidden
bifurcations in Chua’s system, utilizing methodologies from nonlinear dynamics, bifurcation
theory, and computational simulations. The analytical-numerical method serves as an effective
means for identifying hidden attractors. This approach combines mathematical analysis to
clarify the system’s structure with numerical simulations that track trajectories from carefully
chosen initial conditions [16]. This method aims to identify trajectories that converge on
non-obvious attractors and to define the parameter ranges in which these complex behaviors
occur. This study applies the analytical-numerical method to continuous chaotic systems [19].
It explores the selection of appropriate initial conditions, identifies regions in phase space that
may harbor hidden attractors and bifurcations, and demonstrates the method’s importance in
advancing our understanding of nonlinear dynamics [26]. This method is essential for
applications necessitating the control and prediction of complex behaviors.

3.2 Hidden Attractor for Chua’s System

In 2010, researchers made a notable finding by identifying a concealed chaotic attractor in
Chua’s circuit [Kuznetsov et al., 2011]. [17]-[11]. This groundbreaking discovery signified
a significant progression in comprehending three-dimensional dynamic systems. The approach
for localizing this hidden chaotic attractor in Chua’s system will be illustrated later.
The researchers utilized the aforementioned method to effectively reveal this concealed
attractor. To forward this inquiry, we developed a revised iteration of Chua’s system:

·
x = a1(y − x)− a1f(x),
·
y = x− y + z,
·
z = −b1y.

(3.1)
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Here the function

f(x) = α1x+
1

2
(α0 − α1)(|x+ 1| − |x− 1|). (3.2)

This method can be employed to identify hidden attractors in Chua’s system, which exhibits
multiple spiral attractors produced by the the function (3.2). Examine the provided Chua’s
system is represented by equations (3.1) and (3.2). To achieve this, we reformulate system
(3.1)–(3.2) into the structure of (3.3).

dX

dt
= PX + gΨ(rTX), X ∈ R3. (3.3)

Here,

P =

−a1(α1 + 1) a1 0
1 −1 1
0 −b1 0

 , g =

−a10
0

 , r =

1
0
0



and Ψ(σ) = ϕ(σ).

Introduce the coefficent k∗ and small parameter ε, and represent system as (3.3)

dX

dt
= P0X + gεϕ(rTX), (3.4)

Where

P0 = P + k∗grT =

−a1(α1 + 1 + k∗) a1 0
1 −1 1
0 −b1 0

 , λP0
1,2 = ±iw0 , λP0

3 = −d1,

By nonsingular linear transformation X = FY system (3.3) is compressed into the form

dy

dt
= Qy + bεϕ(uTY ), (3.5)

Where

Q =

 0 −w0 0
w0 0 0
0 0 −d1

 , B =

b′1b′2
1

 , Y =

y1y2
Y3

 and u =

 1
0
−h


.

The transfer function WQ(s) of system ( 3.4 ) can be represented as
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WQ(s) =
−b′1s+ b′2w0

s2 + w2
0

+
h

s+ d1
.

Further, using the equality of transfer functions of systems (3.4) and (3.5), we obtain

WQ(s) = WP0 −→
−b′1s+ b′2w0

s2 + w2
0

+
h

s+ d1
=

−a1
p3 + p2(a1(α1 + 1) + 1) + p(a1(α1 + 1)) + b1

.

This implies the relations indicated below:

k∗ =
a− w2

0 − b
a

,

d1 = a+ w2
0 − b+ 1,

h =
a(b− d+ d2)

w2
0 + d2

,

b′1 =
a(b− w2

0 − d)

w2
0 + d2

,

b′2 =
a(1− d)(w2

0 + bd)

w0(w2
0 + d2)

.

Since system (3.4) can be reduced to the form (3.5) by the nonsingular linear transformation
X = FY , for the matrix F the following relations

Q = F−1PF,B = F−1g, CT = rTF, (3.6)

are true. The entries of this matrix are obtained by solving these matrix equations:

F =

F11 F12 F13

F21 F22 F23

F31 F32 F33


,

here

F11 = 1 , F12 = 0 , F13 = −h,

F21 = α1 + 1 + k∗ , F22 =
−w2

0

a1
, F23 = −h(a1(α1 + 1 + k∗)− d1)

a1w0

,

25



CHAPTER 3. APPLICATION

F31 =
a1(α1 + k∗)− w2

0

a1
, F32 =

a1b1(α1 + k∗) + a1b1 − w2
0

a1w0

,

F33 = h
a1(α1 + k∗)(d1 − 1) + d(1 + a1 − d1)

a1

We determine initial data for the first step of a multistage localization procedure for small
enough ε ,as

X(0) = FY (0) = F

m0

0
0

 =

m0F11

m0F21

m0F31

 . (3.7)

The starting condition for the system (3.1-3.2) is provided by this.

X0(0) = (x0(0) = m, y0(0) = m(1 + α1 + k∗), z0(0) = m
a1(1 + α1)− w2

0

a1
). (3.8)

Consider system (3.4) with the parameters

a1 = 8.4562, b1 = 12.0732, α0 = −0.1768, α1 = −1.1468. (3.9)

There are three equilibria in the system for the parameter values under consideration:
a locally stable zero equilibrium and two saddle equilibria. Let’s now employ the hidden
attractor localization process described above to Chua’s system (3.3) with parameters(3.2).
Calculate a beginning frequency and a harmonic linearization coefficient for this.

w0 = 3.2483, k∗ = 0.82006. (3.10)

Then, we compute solutions of system (3.4) with the nonlinearity ε(φ(x) − k∗x) sequentially
increasing ε from the value ε1 = 0.1 to ε10 = 1 with step 0.1. By (3.2) and (3.8), the initial
data can be obtained

x(0) = 0.3, y(0) = 0.1, z(0) = −0.1,

For the preliminary stage of a multi-step procedure. For ε = 0.1, the computation converges
towards the initial oscillation X1(t) after undergoing a transitory process. Furthermore,
the hidden set is computed for the original Chua’s system (3.3) through numerical methods
and the sequential transformation Xj(t) with an increasing parameter εj. Figs.(3.2, 3.2) and
Table. 3.2 presents this collection.

ε 0.1 0.5 0.95 1
Localization hidden cycle periodic one attractor original attractor
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Figure 3.1: Localization hidden attractors in Chua’s system where (a) ε = 0.1 ; (b) ε = 0.5;
(c) ε = 0.95; (d) ε = 1.
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Figure 3.2: localization of hidden attractor in Chua’s system
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3.3 Hidden Bifurcation in Chua’s System

The integer characteristic of the parameter c in the modified Chua circuit with a sine function
(3.11)-(3.12) restricts its continuous variation, thereby precluding the observation of bifurcation
of attractors from n to n+ 2 spirals as a function of parameter c. Additionally, non-integer real
values for c are not permissible. Menacer et al [23] introduced a novel method for identifying
hidden bifurcations by employing the central concepts of Leonov and Kuznetsov related
to hidden attractors, specifically through homotopy and numerical continuation, there by ad-
dressing this challenge. A supplementary bifurcation parameter ε is introduced while keeping
c constant [24].
A three-dimensional piecewise-linear nonlinear system of differential equations describes the
behaviour of Chua’s circuits. 

ẋ = α(y − f(x)),
ẏ = x− y + z,
ż = −βy.

(3.11)

where

f(x) =



b1π

2a1
(x− 2a1c1), if x > 2a1c1,

−b1 sin

(
πx

2a1
+ d1

)
, if − 2a1c1 < x < 2a1c1,

b1π

2a1
(x+ 2a1c1), if x ≤ −2a1c1

(3.12)

In this context, α, β, a1, b1, and d1 are parameters that are elements of R and will be defined
subsequently for various applications, whereas c1 is designated as an integer.
An n-spirals attractor is generated when

n = c1 + 1, (3.13)

where c and n ∈ N, and

d1 =

{
π, if n is odd,

0, if n is even.
(3.14)

This method is applicable for detecting hidden bifurcations in Chua’s system, which
demonstrates multiple spiral attractors generated through sine function dynamics. Analysis
should be conducted on the Chua’s system as defined by equations (3.11) and (3.12).
To proceed with this investigation, we transform the system represented in equations (3.11)–(3.12)
into the system outlined by equation (3.3).

dX

dt
= PX + gΨ(rTX), X ∈ R3, (3.15)

where

P =

 0 1 0
0 0 1
−α −β 0

 , g =

 0
0
r1

 , r =

1
0
0

 ,
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and ψ(σ) = ϕ(σ).

Introducing the coefficient k∗ and a small parameter ε, system (3.15) can be transformed
into the form of system (3.4) as follows:

dX

dt
= P0X + gεϕ(rTX), (3.16)

where

P0 = P + k∗grT =

−αk∗ α 0
1 −1 1
0 −β 0



ϕ(σ) = Ψ(σ)− k∗r = −αf(σ)− k∗r
.

The transfer function WP0(s) of the system (3.16) isgiven by

WP0(s) = rt(P − sI)−1 = α
s2 + s+ β

s3 + s2 + (β − α)s
.

For the parameter value α = 11 , β = 15 , using the formulas ImW (iw0) = 0 and
k∗ = −(ReW (iw0))

−1 , we calculated w0 = 2.1018 and k∗ = 0.03796 . Via the
nonsingular linear transformation X = FY the system (3.16) is reduced to the form

dy

dt
= QX +Bεϕ(CTY ), (3.17)

Where

Q = F−1PF,B = F−1g, CT = rTS. (3.18)

This implies

Q =

 0 −w0 0
w0 0 0
0 0 −d

 , B =

b′1b′2
1

 , Y =

y1y2
Y3

 , C =

 1
0
−h

 and F =

F11 F12 F13

F21 F22 F23

F31 F32 F33


The transfer function WQ(s) of system (3.17) can be represented as
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WQ(s) =
−b′1s+ b′2w0

s2 + w2
0

+
h

s+ d1
.

Further, using the equality of transfer functions of systems (3.16) and (3.17), we obtain

k∗ =
α− w2

0 − β
α

,

d1 = α + w2
0 − β + 1,

h =
α(β − d1 + d21)

w2
0 + d21

,

b′1 =
α(β − w2

0 − d1)
w2

0 + d21
,

b′2 =
α(1− d)(w2

0 + βd1)

w0(w2
0 + d2)

.

When the parameters of system (3.15) are fixed at , α = 11, β = 15, a1 = 2, b1 = 0.2, we obtain

k∗ = 0.03796, d1 = 1.4176, h = 26.686, b′1 = 15.686, b′2 = 3.1003

,

F =

 1 0 −26.686
0.03795 −0.19107 −2.4264
−1.3636 −0.27084 −25.674


.

According to Theorem 2.2.1, for sufficiently small ε, we proceed to compute the initial
condition for the first step of the multistage localisation procedure.

X(0) = FY (0) = F

m0

0
0

 =

m0F11

m0F21

m0F31

 . (3.19)

3.3.1 Numerical Results

Consider the system (3.11) and (3.12) with parameter values

α = 11, β = 15, a1 = 2, b1 = 0.2.

Now we apply the localization procedure described above to Chua’s system (3.15) with
multiple spiral attractors. For this purpose, we compute the following starting frequency w0

and a coefficient of harmonic linearization k∗:
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w0 = 2.1018

and
k∗ = 0.031084.

We proceed to calculate the solutions of system (3.16) with the nonlinearity
εϕ(x) = ε(Ψ(x) − k∗x). This involves incrementally increasing ε from 0.1 to 1 in steps of 0.1,
and subsequently decreasing it to 0.001 for the range between ε = 0.8 and ε = 1. By utilizing
(3.3), we derive the initial conditions for each integer value of c, as presented in Tables. 3.1 and
3.2, which serve as the first step in our multistage procedure for constructing the solutions.
If the stable periodic solution X0(t) (associated with a very small ε) near the harmonic one
is identified, all points of the stable periodic solution X0(t) reside within the domain of
attraction of the stable periodic solution X1(t) of the system. The solution X1(t) can be
determined numerically by analyzing one trajectory of system (3.15) with ε = 0.1 from the
initial point X0(0). After a transient process, the computational procedure converges to the
initial oscillation X1(t)
We proceed by incrementing the parameter j and applying the numerical procedure, which
yields the sequential transformation Xj(t) for the original Chua system (3.11) see Fig. 3.3.1.

ε Xj(0) x0 y0 z0
0.1 U1(0) = U0(tmax) 3.6802 0.2698 -4.8435
0.2 U2(0) = U1(tmax) 0.3087 -0.6999 -1.4931
0.3 U3(0) = U2(tmax) -2.1385 -0.6769 2.1216
0.4 U4(0) = U3(tmax) -2.6060 0.4095 4.2249
0.5 U5(0) = U4(tmax) 1.1538 0.7447 -0.5236
0.6 U6(0) = U5(tmax) -3.5796 0.2991 4.9740
0.7 U7(0) = U6(tmax) 2.0396 0.4259 -2.7065
0.8 U8(0) = U7(tmax) 0.9087 0.6024 -0.6149
0.86 U9(0) = U8(tmax) -4.7786 0.1893 5.5193

0.9785 U9(0) = U9(tmax) -4.3940 0.1998 5.3250
0.993 U10(0) = U11(tmax) 14.1756 0.1189 -12.4364

1 U11(0) = U14(tmax) 17.5635 -0.4620 -19.4035

Table 3.1: Initial condition according to the values of ε.

ε 0.8 0.86 0.9785 0.989 0.993 1
Number of spirals 1 spiral 3 spirals 5 spirals 7 spirals 7 spirals 7 spirals

Table 3.2: Values of parameter ε at the bifurcation points for c = 6 (7 spirals).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The increasing number of spirals of system (3.15) according to increasing ε values
for 7 scroll (c1 = 6). (a) 1 spiral for ε = 0.8 ; (b) 3 spirals for ε = 0.86; (c) 5 spirals for
ε = 0.9785; (d) 7 spirals for ε = 0.989 ; (e) 7 spirals for ε = 0.9994 ; (f) 7 spirals for ε = 1 .
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CONCLUSION

This thesis has investigated hidden attractors and hidden bifurcations in continuous chaotic
systems through theoretical analysis and numerical simulations. Our research establishes that
these phenomena fundamentally differ from classical chaotic dynamics as they lack connections
to equilibria that can be readily identified through standard linearization techniques. We have
demonstrated that hidden attractors can exist in systems with no equilibria or with exclusively
unstable equilibrium points, while hidden bifurcations represent qualitative transformations in
system behavior that often remain undetected by conventional bifurcation analysis methods.
The significance of this investigation lies in highlighting the necessity for developing advanced
mathematical frameworks and computational algorithms specifically designed to reveal these
hidden dynamical structures. Enhanced understanding of hidden attractors and bifurcations
opens new pathways for chaos control strategies and performance optimization across diverse
applications, including secure communication systems, nonlinear control engineering,
and complex electrical networks.
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[10] Anagnostopoulou, V., Pötzsche, C., Rasmussen, M. (2023). Nonautonomous bifurcation
theory. In Concepts and tools (Vol. 10). Springer Switzerland.

[11] G., A. Leonov. (2010).Effective methods for periodic oscillations search in dynamical sys-
tems. Appl. Math. Mech, 74; 37-73.

[12] Lorenz, E.N (1963). Deterministic nonperiodic flow, Journal of atmospheric sciences 20
(2), 130-141.

35



BIBLIOGRAPHY

[13] D., Dudkowski, S. Jafari, T.Kapitaniak, N. V. Kuznetsov, G., A. Leonov,
A.Prasad.(2016):Hidden attractors in dynamical systems. Physics Reports, 637; 1 -50.

[14] Pan, J., Wang, H., Guiyao, K., Feiyu, H. (2025). A Novel Lorenz-Like Attractor and
Stability and Equilibrium Analysis. Axioms, 14(4), 264.

[15] M., A. Kiselevaa, E. V. Kudryashova, N. V. Kuznetsova, O. A. Kuznetsova, G. A.Leonova,
M. V. Yuldashev, R. V. Yuldasheva.(2017):Hidden and self-excited attractors in Chua
circuit : synchronization and SPICE simulation.International journal ofparallel, emergent
and distributed systems.

[16] M., Kiseleva, N. Kuznetsov, G. Leonov. (2016): Hidden attractors in electromechanical
systems with and without equilibria, IFAC-PapersOnLine. 49(14), 51 - 55.

[17] G., A. Leonov, N. V. Kuznetsov. (2011): Localization of hidden Chua’s attractors.Phys.
Lett. A, 375; 2230 - 2233.

[18] G., A. Leonov, V.I. Vagaitaev, N. V. Kuznetsov. (2010): Algorithm for localizingChua
attractors based on the harmonic linearization method. Dokl. Math, D, 663-666.

[19] G., A. Leonov, N. V. Kuznetsov. (2011): Analytical numerical methods for investigation of
hidden oscillations in nonlinear control systems. Proc. 18th IFACWorldCongress, Milano,
Italy, August, 28; 2494-2505.

[20] G., A. Leonov, N. V. Kuznetsov, V.I. Vagaitaev. (2012): Hidden attractor in smoothChua
systems. Physica D, 241; 1482-1486.

[21] G., A. Leonov, N. V. Kuznetsov. (2013). Hidden Attractors in Dynamical Sys-
tems.International Journal of Bifurcation and Chaos, 23; 1330002 -330071.

[22] G., Leonov, N. Kuznetsov, T. Mokaev. (2015): Homoclinic orbits, and self-excitedand
hidden attractors in a Lorenz-like system describing convective fluid motion, TheEuropean
Physical Journal Special Topics. 224(8), 1421-1458.

[23] T., Menacer, R. Lozi, L .O Chua. (2016): Hidden bifurcations in the multispiral Chuaat-
tractor. International Journal of Bifurcation and Chaos,16(4); 1630039-1630065.

[24] M., Belouerghi, T. Menacer, R. Lozi. (2019):Hidden patterns of even number of spirals
of chua chaotic attractor unveiled by a novel integration duration based method,Indian
Journal of Industrial and Applied Mathematics. 3(4); 0973-1002.

[25] F., Zaamoune, T. Menacer, R. Lozi, G. Chen. (2019): Symmetries in hidden bifurcation
routes to multiscroll chaotic attractors generated by saturated function series,Journal of
Advanced Engineering and Computation, 3(4), 511-522.

[26] F., Zaamoune, T. Menacer. (2022): Hidden modalities of spirals of chaotic attractor via
saturated function series and numerical results. Analysis and mathematical physics. 12(5),
1664-1685.

[27] Faiza, Z., Tidjani, M. (2023). The behavior of hidden bifurcation in 2D scroll via saturated
function series controlled by a coefficient harmonic linearization method. Demonstratio
Mathematica, 56(1), 20220211.

[28] Zaamoune, F., Tidjani, M. (2024). Studying a Hidden Bifurcation and Finding Hopf Bi-
furcation with Generated New Saturated Function Series. International Journal of Applied
Mathematics and Simulation, 1(2).

36



BIBLIOGRAPHY

[29] A., Menasri. (2015): Chaos et bifurcations dans les systèmes dynamiques en dimensions
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Résumé

Cette thèse propose un examen complet des systèmes dynamiques continus, en se concentrant

sur les attracteurs cachés et les bifurcations cachées, organisé en trois chapitres interconnectés.

Le chapitre initial présente les concepts et caractéristiques essentiels des systèmes dynamiques,

catégorisant ensuite les points d'équilibre et examinant leur stabilité. La notion de cycles

limites est abordée comme un aspect fondamental du comportement dynamique. Le deuxième

chapitre explore le concept d'attracteurs cachés, en commençant par les attracteurs

auto-excités liés aux points d'équilibre instables. Il présente ensuite les attracteurs dissimulés

qui n'ont aucune association avec l'équilibre. Le chapitre délimite les bifurcations cachées et

introduit une méthode e�cace pour leur détection, illustrée par un cas pratique. Le chapitre

�nal met en ÷uvre la méthodologie proposée sur le système de Chua, e�ectuant une analyse

numérique et exécutant des simulations dans MATLAB pour corroborer les résultats. Le

chapitre se termine par la présentation et l'analyse des résultats numériques acquis.

Mot clés : Dynamique non linéaire, chaos, attracteurs cachés, bifurcation cachée, attracteur

étrange.

Abstract

This thesis provides a comprehensive examination of continuous dynamical systems, focusing

on hidden attractors and hidden bifurcations, organized into three interconnected chapters.

The initial chapter presents the essential concepts and characteristics of dynamical systems,

subsequently categorizing equilibrium points and examining their stability. The notion of limit

cycles is addressed as a fundamental aspect of dynamic behavior. The second chapter explores

the concept of hidden attractors, beginning with self-excited attractors linked to unstable

equilibrium points. It subsequently presents concealed attractors that lack any association with

equilibrium. The chapter delineates hidden bifurcations and introduces a pro�cient method for

their detection, exempli�ed by a practical case. The �nal chapter implements the proposed

method on the Chua system, doing a numerical analysis and running simulations in MATLAB

to corroborate the results. The chapter closes with the presentation and analysis of the

acquired numerical results.

Key-words : Nonlinear dynamics, chaos, hidden attractors, hidden bifurcation, strange

attractor.
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