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Symbols and acronyms

The different abbreviations and ratings used throughout this thesis are explained below:

(Q, F,F, P) Probability space.
(ﬁ, }A', IAF, ﬁ) Copy of the probability space (2, F,F, P).
Fi Filtration.
FV Filtration generated by W.
Fr Filtration generated by Y.
SDE Stochastic differential equation.
BSDE Backward stochastic differential equation.
R Real numbers.
N Natural numbers.
ODFE Ordinary differential equation.
U The set of the admissible control variables.
H The Hamiltonian function.
L? (F;RY) The Hilbert space.
£2(0,T,R") The set of all R™"-valued square-integrable F;-adapted processes.
L2(Q,R") | The set of all R"-valued square-integrable Fpr-measurable random variables.
Q- (Rd) The space of all probability measures.
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Introduction

tochastic optimal control is a field of mathematics that deals with the optimization
Sof control policies for systems that are subject to random disturbances or noise. It
extends the principles of optimal control theory to systems that evolve probabilistically
over time, rather than deterministically. Stochastic optimal control has a wide range of
applications, including: finance, mechanics, biology, electricity, chemistry, economics, etc.
One of the well-known approaches to solving the optimal control problem is the stochastic
maximum principle (SMP).
The stochastic maximum principle for McKean-Vlasov systems without partial observa-
tion has been explored by numerous researchers. For instance, Buckdahn et al. [3] devel-
oped the stochastic maximum principle for general mean-field systems using the method
of second-order derivatives concerning probability measures. Additionally, Carmona and
Delarue [4] introduced a new version of the stochastic maximum principle for nonlinear sto-
chastic dynamical systems of the McKean—Vlasov type and provided sufficient conditions

for the existence of an optimal control.

However, the aforementioned studies all assume that controllers have access to complete
information, an assumption that is not always realistic. In practice, controllers often have
access only to partial information. Consequently, it is logical to investigate these types
of optimal control problems under conditions of partial observation. There is extensive
literature on the subject of partially observed optimal control problems; see, for example,

1, 2, 15, [7, 16, 18, 9 10].



Introduction

The objective of this thesis is to study the necessary conditions (also referred to as the
stochastic maximum principle) as well as sufficient conditions of the partially observed
optimal control problem of forward-backward stochastic differential equations (FBSDEs
for short) of McKean-Vlasov type. More precisely, the parameters of the system and the
cost function are influenced by the current state of the solution process as well as of its
probability measures under the assumption that the control domain is necessarily convex.

This study is based on the work of Abba and Lakhdari [I].

We present our work as follows:

e In the first chapter, we introduce some helpful concepts from stochastic analysis and

differential calculus on Wasserstein space.

e In the second chapter, we present the necessary and sufficient conditions of optimality
for the partially observed optimal control problem of forward-backward stochastic

differential equations of McKean-Vlasov type.

e The last chapter is an application of our theoretical study, which is the partially

observed linear-quadratic control problem.
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Chapter 1

Stochastic analysis and differntial

calculus on Wasserstein space

In this chapter, we introduce some helpful concepts from stochastic analysis and differ-

ential calculus on Wasserstein space.

1.1  Stochastic processes

Let (2, F, P) be a probability space and T" be a nonempty index set. A stochastic process
is a set of random variables {X (¢) : t € T'} from (2, F, P) to R". For any w € € the map

t — X(t,w) is called a sample path.

1.2 Natural fitration

Consider the stochastic process X = (X;,¢ > 0) on the probability space (2, F, P). de-
noted by F;* for the natural filtration of X which is defined by F* = 6(X,,0 < s < 1).

Also, we called the filtaration generated by X.
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1.3 Brownian motion

A stochastic process (W (t),t > 0) is called a standard Brownian motion if:

o P[W(0) =0] = 1.

o ¢ — W(t,w) is continuous. P — p.s.

o Vs < t, W (t) — W(s)is normally distributed; center with variation (¢ — s) i.e

W(t) —W(s) ~ N(0,t — s).

e Vn V0 <ty < t; < ... < t,, the Variables(th — Wi s Wiy, — WtO,WtO) are inde-

pendents.

1.4 Martingale

Definition 1.4.1 (Martingale):{X;} is a martingale with respect to fitration {F;} if for
all t > s we have

2) X; 18 Fy—measurable.

i) B X:|] < oc.

W) B[X/F] = X,

i) and ii) above, and

E[Xt/f't] S Xt,E[Xt/ft} Z Xt P—as.

Proposition 1.4.1 Let X; be a stochastic process such that for any stopping time T, X,

15 integral and

E[Xo] = E[X7],
then X; is a martingale.

Definition 1.4.2 (Local martingale): An adapted process X, is a local martingale if

there exists a sequence of stopping times {1, } such that

5
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lim 7}, (w) = o0 P—a.s.

n—oo

and the stopped process X, 1S a martingale for all n.

1.5 Notations and spaces

Let T be a fixed strictly positive real number and (2, 7, F, P) be a complete filtered prob-
ability space equipped with two independent standard one-dimensional Brownian motions
W and Y. Also assume that F ={F;},., and F, := A" V FY VN, where N denotes
the totality of P-null set and F}" and F denotes the P-completed natural filtration gen-
erated by W and Y respectively. We denote by R™ the n-dimensional Euclidean space,
and by (-,-) (resp. | - |) the inner product (resp. norm). The set of the admissible control
variables is denoted by U.

Throughout what follows, we will use the following notations.

o L% (0,T,R") the set of all R"-valued square-integrable F;-adapted processes.

o L%2(Q,R") the set of all R"-valued square-integrable Fr-measurable random vari-

ables.

o L% (F;R?) is the Hilbert space with inner product (z,y), = E [z.y], z,y € L* (F;R?)

and the norm ||z||, = \/(z, x),.

o () (Rd) the space of all probability measures p on (Rd, B (Rd)) with finite second

moment, i.e, [p, |z|” 1t (dz) < oo, endowed with the following 2-Wasserstein metric:
x—yl” p(de,dy

for p, v € Qs (R?) , Dy(puy, o) = inf | ’ ﬂ

p€Qy(R*),p(RY) = 1, p (RY,-) = pa

A~

° (SAZ, f",]F, P) is a copy of the probability space (2, F,F, P).
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° (1/9\, Ei) is an independent copy of the random variable (1, a) defined on ((AZ, F , ﬁ, ]3> ,
such that

(¥, @) € L? (F;R?) x L? (F;R?) .
° (Q X (AZ, FeF JF® F , P®]3> is the product probability space, such that

(5, a) (w, @) = (9 (@), € (@)) for any (w, D) € Q x Q.

Let (ﬂt, Tty Ui 2,2) be an independent copy of (uy, 4, Y, 2, Zt, r¢) S0 that th:ﬁ@, Pyt:]%t,
P.,=P:, and Pgt:]ggt. We denote by E [] the expectation under probability measure P and

Py = PoX ! denotes the law of the random variable X.

1.6 Differentiability with respect to probability mea-
sures

In the following, we introduce the basic notations of mean-field theory (the differentiability
with respect to probability measures). The principal idea is to identify a distribution
e Qo (Rd) with a random variables 9 € L2 (f ; Rd) so that u = Py. To be more precise,
we assume that probability space (2, F,F, P) is rich enough in the sense that for every
e Qg (Rd) , there is a random variable ¥ € L2 (.7-" ; ]Rd) such that p = Py. It is well-
known that the probability space ([0, 1],510,1],dx), where dx is the Borel measure, has
this property.

Next, for any function f : Qo (Rd) — R, we induce a function f: L2 (.7-" ; Rd) — R such
that f(q?) = f(Py), ¥ € L? (F;R?). Clearly, the function  called the lift of f in the
literature, depends only on the law of ¥ € L2 (]—" ; Rd) and is independent of the choice of

the representative ).

Definition 1.6.1 (Diﬁerentéable function in Qo (Rd)) A function f : Qo (Rd) — R s

7



Chapter 1. Stochastic analysis and differntial calculus on Wasserstein space

said to be differentiable at pg € Qo (Rd) if there exists ¥y € IL? (.7-" ; ]Rd) with o = Py,
such that its lift ]7 s Fréchet differentiable at ¥y. More precisely, there exists a continuous

linear functional Df(ﬁg) ;L2 (.7:; Rd) — R such that

J (o +a) = F(99) = (DI (%o) ;@) + O(llally) = Daf (50) + O (lally), (1.1

where (-,-) is the dual product on L* (F;R?) , and we will refer to Do f (110) as the Fréchet

derivative of f at ug in the direction a.. In this case, we have

, with py = Py,.
=0

Duf (o) = (DF o), ) = & F (o + 1)

Note that by Riesz’s representation theorem, there is a unique random variable Ag €
L? (F;R?) such that <D]7(190),a> = (Ao, @), = E[(Ag,),], where @ € L? (F;R?).
Then there exists a Boral function h [pg] : RY — R?, depending only on the law pg = Py,
but not on the particular choice of the representative ¥y such that Ag = h o] (Jo) -

So, we can write equation as
F(Py) = [ (Pay) = (h[uo] (W), — Do)y + O ([0 — oll,), Vo € L* (F;R7).

We shall denote 0,,f (Py,, ) = h[uo] (x), 2 € R% Moreover, we have the following identi-

ties:

Df (90) = Ao = h [1to] (00) = ,uf (Poy, Do),

Daf (Pﬂo) - <auf (Pﬁmﬁo) ,04>,

where o = ¥ — ¥y, and for each p € Qo (R?),0,f (Py,-) = h|[Py](-) is only defined in a

Py (dx) — a.e sense, where j = Py.

Definition 1.6.2 We say that the function f € Cp* (Q2 (RY)) if for all ¥ € L* (F;RY),

8
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there exists a Py-modification of 9, f (Py,-) such that 0,f : Q2 (R?) x R — R? is bounded
and Lipchitz continuous. That is for some C' > 0, it holds that
1. |aﬂf (N’Jx)| S C7 V/,L S QQ (Rd) ,V.T € Rda

2. 10, f () = 0uf (4, 8)] < C (Do, ) + 2 — &), Vi, fo € Qo (RY) Ve, f € R,

Remark 1.6.1 Iff € (Cz’l (Qg (]Rd)) , the derivative 9, f (Py,-),d € L? (f; Rd) indicated

in the Definition 2.2 is unique.

Definition 1.6.3 Let U be a nonempty convex subset of R*. A controlv : Q x [0,T] — U

is called admissible if it is FY -adapted and satisfies sup E|v,|* < oo.
0<t<T
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Chapter §.2

Necessary and sufficient condition of
optimality
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Chapter 2

Necessary and sufficient conditions of

optimality

In this chapter, we study the necessary and sufficient conditions of optimality for our
system of McKean—Vlasov type, satisfied by a partially observed optimal control, assuming
that the solution exists. The proof is based on convex perturbation and on some estimates

of the state processes of the system and observed process.

We consider the following stochastic control system with general McKean—Vlasov FBSDEs
dw? =0 (ta x}tja Pxfa Ut) dt + g (t7 ZL‘;}, Pxfa Ut) th +o (ta l’ga P:v%’a Ut) thv
_dy;} = f (t7x;}7pwfuyzqtj7ny7Z;}7PZf72;}7P2t”7vt) dt — szth o Zz)d}/;ﬁ (21)
558 = o, y% =@ (.’L’?‘—;w,Px%) ;

where P,,, P,,, P,, and P;, denotes the law of the random variable z, y, z and Z respectively.

The coefficients of the controlled system ([2.1]) are defined as follows

b:[0,T]xRx@Qa(R)xU —=R, g,0:[0,T] x Rx Q2 (R) xU — R,
v:RxQ:(R) =R,

F:0TIXxRXxQ(R)xRx Q2 (R) xRxQ2(R) xR x Qs (R)xU — R.

11
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It is worth noting that the above forward-backward stochastic differential equation ([2.1])
of type McKean—Vlasov is very general, in that the dependence of the coefficients on the
probability law of the solution Py, Pyv, P,» and P could be genuinely nonlinear as an

element of the space of probability measures.

We assume that the state processes (z,y", 2", 2”) cannot be observed directly, but the
controllers can observe a related noisy process Y, which is the solution of the following

equation

dY, = £ (t, 20, Pyy) dt + dWy, 2.9

where ¢ : [0, 7] x R x Q3 (R) — R and W} is stochastic processes depending on the control

.

Inserting (2.2) into ({2.1)), we have

dzy = [b (t,mg, P, Ut) dt — o (t,xf, thv,Ut) & (t, xy, Pyg)} dt
_'_g (t, x?: Px;’avt) th +o (taxfa Pmiwvt) dY;&:

(2.3)
—dyy = f (t, vy, Pov,yis Byes 20, Py, 27 szj,vt) dt — zpdWy — z)dYs,
| 26 =0, ¥p = (2%, Puy).
Define dP" = ZdP with
t
Zt”:exp{/ﬁ s,ms,Pv dY ——/ ’f S7$S7Pv % ds },
0
where ZV is the unique F} -adapted solution of the SDE of McKean—Vlasov type
Az} = Z7¢ (t,x), P ) dYs,
t tf ( t t) t (2'4)

7y =1.

12
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The associated cost functional is also of McKean—Vlasov type, defined as

T
J(U) :EU |:/ l(t,l’;},ng,y2)7ny,Z?,sz,zz)yngarz}7pr't”ﬂ}t) dt
0

+ B [M (7, Pey) + 1 (45, Pyg)] (2.5)
where E¥ denotes the expectation with respect to the probability space (2, F,F, PV) and

M:RxQyR) >R, h:RxQR)—R,

L[0T XRXxQ(R) Xx RXx Qa(R) x Rx Q2 (R) xR xQ2(R) xR X Qs (R)xU — R.

Our partially observed optimal control problem of general McKean—Vlasov FBSDE is to
minimize the cost functional (2.5)) over v € U subject to (2.1) and (2.2)) ,i.e.,

minJ (v) .

veU

If an admissible control u attains the minimum, we call © an optimal control and (z, y, z, 2)

an optimal state, respectively. Obviously, cost functional (2.5 can be rewritten as

T
J(v)=E {/ Zl (t,xf,ng,yf,Pyg,zf,Pzg,éf,ng,vt) dt
0
+E [Z%M (x%, Pw%) +h (yg, Pyg)} ) (2.6)

Then the original problem ({2.5)) is equivalent to minimize (2.6|) over v € U subject to ([2.1)

and .

Let us impose some assumptions on the coefficients of the state and the performance cost

functional.

13
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2.1 Assumptions

Assumption (A1)

1. For any ¢ € [0, T], the functions b, g and ¢ are continuously differentiable in (x,v) and
they are bounded by C(1 + |z| + |v]). The function ¢ is continuously differentiable in x.

2. The functions f and [ are continuously differentiable in (z,y, z, Z,v), and they are
bounded by C'(1+|z|-+[y|+|2|+|z|+|v]) and C (1 + |z[2 + |y[? + |22 + |2]> + [v]*) respectively.
The derivatives of f and [ with respect to (z,v, 2, Z,v) are uniformly bounded.

3. The functions ¢ and M are continuously differentiable in x, and the function A is
continuously differentiable in y. The derivatives M,, h, are bounded by C(1 + |z|) and
C(1 + |y|) respectively.

4. The derivatives b,, b,, 9z, Gv, O, 0y, & are continuous and uniformly bounded.
Assumption (A2)
1. The functions b, g, 0, f,1,£, M, h,p € C;’l (@2 (R)).

2. The derivatives 9/*b, 0} g, 0}, 0F*¢, <85I, oLy, o 8Pf> (f,1) are bounded and Lip-

//«7#7“

chitz continuous, such that, for some C' > 0, it holds that

(i) For p=1b,g9,0,§, and Vu, i’ € Q2 (R) ,Vz, 2" € R,

0% p (t,z,p)| < C,

0P p (t, 2, 1) — OFp (t, 2/, )| < C(Dy (p, i) + | — 2'])

(17) For p = M, p, and Yu, i/ € Q2 (R),Vz, 2" € R,

05 p (z, )| < C,

|05 p (, 1) — 0 p (2, )| < C (D (py ') + | — 2']) 5

(1i) For p = f,1, and Y, i, pa, ph, fis, piy, fa, ity € Q2 (R) and Vo, 2’ y, ¢, 2,2/, 2,2 € R,

14



Chapter 2. Necessary and sufficient conditions of optimality

woMu oM

‘(aix,apy aPZ aPE) p(taxaulay7ﬂ27z”u3’z’ 'u4)) S 07

‘ <a517 851;’ 8,527 8/1;2> p (t7 Ty P, Y, H2, 2, 13, 2, M4)

- (alljla aiy’ 85Z7 852) P (ta xla :ulla y/7 :u,27 Zl?/'l’g’n Elvluill)
SCO(lo =24y =y + ]z = 2|+ 12 =2+ Dy (p1, 1)

+ Dy (p2, 415) + Da (s, ) + Do (p1a, 1)) -
Clearly, under assumptions (A1) and (A2), for each v € U, there is a unique solution
(r,y,2,2) € L% (0, T,R) x L% (0,T,R) x L% (0,T,R) x LZ (0,T,R) which solves

(

t

xy —xo—l—/ [b (s,xZ,ng,vs) —a(s,xg,ng,vs)f(s,x;’,PIg)} ds
to t
—f-/g(s,xZ,Px;{,US) dW8+/0(S7x15)7ng7vs) di/sa
0 0

T

yf—y%_/ f(S7xz7ng7y§7py37’z§7PZ§7T;)7PT;’7US) dt
t

T T
+/ z;’dWer/ z0dY,,
t t

To simplify our notations, we denote for &, c and ¥ = b, g,0

g(t) :g(tvxt?PZt)a w(t)zw(txt,meUt%
€x<t) - gaz (ta T, th) ) %(t) - % (t,.l"t, thvut) )

and the derivative processes

851§ (t) = afzé’ (ta /:L‘\ta Paf:t) 'It) ) 85177/} (t) = 65”# (tv /l'\ta P$t7 aty l't> )
8515 (tv /x\t) = aizg (tv Ty, P:B” Et) ) 6511/1 (tv /x\t) = aizw (ta T, P:E“ Uty a;\15) )

Similarly, we denote for ¥ = f,l and p = z,y, 2, Z, v

\Il<t) = \II(t7ajt7meytaPytvzta-PZuZt;PEuut)7
\ij(t) = \ij (t7xt7Pmt7yt7Pyt7Zt7Pztaztapitaut> .

15



Chapter 2. Necessary and sufficient conditions of optimality

Finally, we denote for ( = z,y, z, 2

alljglP (t) = allquj (t7§:\tvpmt7?jt7 Pyta/z\ta Pzzajz_\tvp’z'\tvﬂt; g) )

allquj <t72t> = 854\11 <t7$tathaytapyﬂztvPZt?ZtaPZwut;Zt) .

Now, we introduce the following variational equations which is a linear FBSDEs

(

dr; = [(bx () = 00 (1) £ (1) = 0 (£) & (1)) i + [by (£) — 00 () € (D)] vr
+ B0 (1,30 ] - B [0 (1, 7) 7] € (1) — o (0B [95€ (1.7) 3] | at
9. ()21 + B 98 (4,3) 3] + g, () v] awy
+ [aw (t)a} +E
—dy} = | £ ()2} + B[O F (130 F] + £, ()i + B |90 (4.5 51

L0+ B[O fE)E] + 05 +B o f (12) 3]

—

OPo (t,7,) 3] + o0 (1) vt} dy,

+ f, (t)v] dt — 2 dW, — ZLdY;,

l’é = 07 yil“ = Yz (:CT7 PIT) ZC% + E [aix(p ($T7 PmT? /x\t) 57\%“} )

\

(2.7)
and a linear SDE
4z} = |ZE (1) + Zi&e (0 o} + ZB [98¢ (1,7) 3] | a, 0
Zt=o.
Set ¥ = Z71Z!, using Itd’s formula, we have
_ 1 & [4P Sl it
a9, = |& (1) o} + B [9¢ (1. 7) 3] | W, 29

190:0.

16



Chapter 2. Necessary and sufficient conditions of optimality

Next, we introduce the following adjoint equations of McKean—Vlasov type

4

\

—dp = |ba(pu + B[00 ()] — 0 (1) & () pi— o () B [0€ (1) B
o, (V€O pr — EOB[Of0 ()R] + . () + B 009 (1) i

o,k + B |00 (k] +& 1) Qi +B[9f¢ () Q1] - £(Da:

day = | f,(0a + B |00 F (0G] 1, (1)~ B |91 )] | ae
A ! (2.10)
+ £ O a+BOfF (@) -1 (1) - B o1 (1)]] aw
F[f 00+ B8 (@] €0 a1 (1) - B[971(0)] | diF,
pr = M, (27, Poy) + B[00 M (T1, Poy, v7)]

—Pz (xTa P:ET) qr — E [859”90 (fTv PLETa :UT) qt:| s

do = —hy (3 Poo) — B [0 5 G, Py o)

It is clear that, under assumptions (A1) and (A2), there exists a unique (p, k, l?;,q) €
£2(0,T,R) x L% (0,T,R) x L% (0,T,R) x LZ(0,T,R) satisfying the FBSDE ({2.10) of

McKean—Vlasov type.

Remark 2.1.1 Note that the mean-field nature of FBSDE (2.10) comes from the terms

involving Fréchet derivatives 0/*b (t) , 0} g (t), 05 o (), 057& (t) and (851, oLy, o 8P5> (f,10),

/J«)y,"u

which will reduce to a standard BSDE if the coefficients do not explicitly depend on law of

the solution.

Now, we introduce the following BSDE involved in the stochastic maximum principle

—dPt = (t,a:t,th,yt,Py“ Zt,PZ“ Et,Pgt,ut) dt
~QudW; — QudW, (2.11)
PT = M(JZT,PIT).
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Chapter 2. Necessary and sufficient conditions of optimality

Under assumptions (A1) and (A2), it is easy to prove that BSDE (2.11)) admits a unique
strong solution, given by
T
Py = M(xTa PSL‘T) - / Z(S,IES, szaysa Py57zsa stazsapzsavs) ds
t
T T
+ / QsdWs + / QsdWs.
t t

Let us now, define the Hamiltonian H associated with the McKean—Vlasov stochastic

control problem (2.1)-(2.6) by

H(t,z, Py,y, Py, 2, P., %, Ps,v,p, ¢,k k, Q)

=p(b(t,x, Pp,v) — o (t,z, Pp,v)E(t, 2, Py))
—qf (t,x, Py, y, Py, 2, P.y Z, Poyv) + Q€ (t, 2, Py) (2.12)
+kg (t,z, Pp,v) + ko (t,z, Py, v)
+i(t,x, Py, y, Py, 2, P, Z, P;,v) .

The main result of this paper is stated in the following section.

2.2 Necessary conditions of optimality and some es-
timates

Suppose that « is an optimal control with the optimal trajectory (z,y, z, Z) of FBSDE
1D For any 0 < 0 <1 and v+ u € U, we define a perturbed control u? = u; + Ovy.
Our first result below, is related to the estimate of tajectory (z,y, z, Z) and the observation

Zy.

18



Chapter 2. Necessary and sufficient conditions of optimality

Lemma 2.2.1 Let assumptions (A1) and (A2) hold. Then, we have

limE | sup |J;f — xtﬂ =0,
0—0  |o<t<T

[ 2 r 2 2
lim[E | sup |yf —yt| +/ (}zf —zt| + ‘Ef — Zt| >ds} =0, (2.14)
6—0 L0<t<T 0
limE | sup |27 — Zﬂ =0. (2.15)
6—0 L0<t<T

(2.13)

Proof. We first prove (2.13)). From standard estimates and by using the Burkholder-

Davis-Gundy (BDG) inequality, we get

E [Sup |x§—x5}2] gE/Ot\be(s)—b(s)FdHE/Ot|o—9(s)§9 (5) — o(s)E (s)| ds

0<s<t

t t
+E/ 19°(s) —g(s)‘zds%—E/ |09(s) - 0(s)|2d$,
0 0
where
¢(vazupwguug) :¢0 (S)u f0r¢:b,g,a.

Then,

B [Osgggt\xz—xsf] SE/Otle(S) —b(s)|2d5+E/0t\g‘9(s) (€ (s) — £ (s))|"ds

+E/O €(s) (0 (s) — J(s))|2ds+E/0 ‘ge(s) —g(s)fds
+E/O |0(s) — o(s)|” ds.

From assumptions (A1) and (A2), we have

t
E [ sup |a:?_xtﬂ < CTE/ [\xﬁ—%ﬂr }]1))2 (P, Py,)
0

0<t<T

2] ds

t
+CT92E/ |vg|? ds. (2.16)
0
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Chapter 2. Necessary and sufficient conditions of optimality

Recall that for the 2-Wasserstein metric Dy (-, -), we obtain

1
Dy (P, P,,) = inf { [E & - fsﬂ * for all 7,7 € L2 (F;R),
with Py = Py and Py, = Pr},
1
< [E af — xsﬂ ? (2.17)
From ([2.16)), (2.17), and Definition 1.6.1, we get
2 ! 2
E [ sup }xf — xt| } < CTE/ sup |xf —xT‘ ds +M72~92.
0<t<T 0 ref0,s]

Then, from Gronwall’s Lemma, the result follows immediately by letting € go to zero.

Next, we prove ([2.14)). By applying It6’s formula to |yf — yt|2 and taking expectation, we

get

2 T 2 T 2
Bl —ul*+E [0 —=ffas+B [ |2
t t

= 2E/t (v —us) [f7 (s) = f (s)] ds,

=E ‘(,0 (1‘%7P$%> - §0<xT7PIT)

where
f (5.2, Pog,yls Pyg, 20, Pag, 20, Prg,ul) = f2(s).

Ygr ~so )

For each € > 0, and from Young’s inequality, we have

2 T 2 T 2
Mﬁ—%]+E/|£—%}@+E/|£—%|@
t t

6 2 1 g 6 2 ’ 6 2
§E‘gp<xT,PweT) — ¢ (vr, Pey) +EE/ ‘ys —ys{ ds—I—eE/ {f (S)—f(S)‘ ds.
t ¢

By applying the Lipschitz conditions on the coefficients ¢, f with respect to z,y, z, p and
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Chapter 2. Necessary and sufficient conditions of optimality

v, we obtain

2 T 2 r
E‘yf—yt‘ +E/ |z§—zs| ds—i—E/ {z —zs| ds
t t

T T
< EE/ }yg—ys\2ds+cgE/ Uyg—ys\2+ Dy (P, Py,) 2] ds
t t
T
+ CaE/ “zg _ Zs|2 + ‘]D)z (P, P.,) 2] ds
t
T
+05E/ [|z§_58|2+ Dy (Pss, P,) 2] ds +al. (2.18)
t

Here of is given by

ds + Ceb?.

T
2—|—C€E |:/ !«rg—x5|2—|—‘ﬂp2 (ng’sz) 2
t

a? = ‘90 (]I%,Pw%) - QD(ZCT,PIT)

Recall that for the 2-Wasserstein metric Dy(-, -), and by invoking (2.13) and sending 6 to

0, we get lima? = 0. Now, we take ¢ = 20 and replacing in (|2.18]), we obtain

6—0

E}yf—yt|2+%E/ |z —zs} ds + E/ ‘z —zs‘ ds

T
§QCE/ }yg—ys‘ ds—i—%E/ |yg—ys} ds—i—ozf.
t t

Finally, applying Gronwall’s lemma and letting 6 goes to 0, we obtain the estimate (2.14)).

Now, we proceed to estimate (2.15)). Applying It6’s formula to |Zf — Zt|2 and taking

expectation, we get
2 ! 2
B|Z - Z| < c/ 120 — 7, ds + CY, (2.19)
0

where 3 is given by
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Chapter 2. Necessary and sufficient conditions of optimality

Also, from assumptions (A1) and (A2), we have éintl)ﬁf = 0.

The proof of (2.15) follows directly by using Gronwall’s lemma and sending 6 to 0. O

Lemma 2.2.2 Under the assumptions (A1) and (A2), the following estimations holds

lim & [ sup }ffﬂ =0, (2.20)
6—0 0<t<T
2 T 2 |~0]?

limE[sup 1) +/ <|Ef| + 7| )dt] ~0, (2.21)
6—0 0<t<T 0

T, _ 2
E/ 7% dt = 0. (2.22)

0

Proof. We start by proving the first limit. For notational ease, we introduce the following

notations.

For t € [0,T], 0 > 0, we set

%fze_l(l'?—xt)—wtla @fzg—l(yf_yt)_ytl,
=0 (= z) =2, E =0 (2 —z) -2,

720 =071 (20 - 7)) — Z}.
We denote by

B =m0 (3 +al), B =+ M (E ),

~, ~\,0 _ ~0 _
y;\’ezyt—l—)\ﬁ@f—l—y,}), Z, =Z+ N0 <zt —|—zt1>,

'7;\’9 = (i’?’e, Pi?,e,ue) .
First, we have
( ~ ~ x x T ~ £g
dif = ([bf — o7& — o&F) XY + (BT — 0yl — EolT] + 0/{) dt + (gf:tfdt + 97" + ag) AW,

. + (o72ldt + i + af) dY;,

(2.23)
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Chapter 2. Necessary and sufficient conditions of optimality

where L 1 —
b = /0 by (t,%“’) Ay, b = /0 E {a[j’zb (t,%”, 7 ’9> ff] d,
or = /1% <t,’yt>"9> dx, ot = /11@ {8,1?0 (m?’e,j??) ﬁ} dA,
0 0
€r = /1530 <t,yj’9) d\, &t = /1IE {8{?5 (tﬂ?’a,iﬁ> :?] dA,
0 0
g = /lgm (tm?"g) d, gl = /IIE {3519 (m?ﬁ?%?) ;g} dA,
0 0
and

8= [ for (b2") =g @] dxat s+ [ [ (1227) = 00 0] e
+ /Ollﬁ [(a}?g (t,ry}e,iﬂ) — g (ti)) 55,}} A,

= [ [ (1) = e 0] aret + [ [ou (192) = u 0] are
+ [ B (opo (0 27) - oo (1) ) @t an

Noting that under assumptions (A1) and (A2), we get

/N

im B {[af | + [af|* + [ad]*] = 0.
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Chapter 2. Necessary and sufficient conditions of optimality

Applying [t6’s formula to }xt‘ we have

T
~012 ~ T T ] = x T x
Ehﬂ_QEA<ﬁﬂ@—%&—%§W$HW’—@ﬁ’—éﬁﬁ+a®ﬁ

T T
+E/\%@+%’+%\ﬁ+E/|@@+a +af|”dt
0

SCE/ 7 dt+/T (a2 + o+ |ad ] at

Finally, estimate (2.20]) now follows easily from the Gronwall inequality.

Let (yt ) 24 5 zt> be the solution of the following BSDE

At = [F770 + F17 + FT+ S+ F7 S FE AT ) e
+30AW, + ZdY,,

=07 [0 (% Py ) = ¢ (@r, Poy)| = 0 (w7, Por) o = B[00 (r, Pay, T7) 7]

where 79 satisfies SDE (2.23)), and

1
fr== [ 5 (60") i for p =z
0

A0 ~\,0 ~\,0 A0
P— (xt ,PE?,e,yt P~>\9 zt P~)\9 ) ¢ 7P§jv9=“t ),

1
t“”’z_/ IE [afpf (t’xt’ ,ﬁt’)Pt] dA, for p=z,y, 2,2,
0
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Chapter 2. Necessary and sufficient conditions of optimality

and T is given by

(t,XtAﬁ)_ £t d)\act /0 1

1 . 1 r —
AR EACICV e .- <85yf <t,X?’9,§?’9>
0o - - 0 L
1 - - 1 r —
+ / £ (620) = £ )] dast + / E (05# <t,x?’975?’9>
o | o 57
+/ f_ (tX?ﬁ) - f_ (t) d/\’zt / ]E (aizf <t7 ?9’§t7 >
0o - - 0 L
1 - 0 -
+/ fv (t,X?’ ) - fv (t) dAvt'
. L _
Due the fact that f=, f/%, f7, fiY, f7, fI*%, f7 and f/**

limE | T¢|” = 0.
6—0

Appying Itd’s formula to }g“jf ‘2, we have

2 T 2 T
E[%| +]E/ B4 ds+E/
t t

T
B[+ 28 [ 3 (FE g L
t

~0 2
Zs

ds

+ [+

By Young’s inequality, for each € > 0, we get

2 T 2 T
E|7| +E/ 17| ds+]E/
t t

o2 1 Tﬂg2
<E|7| +EE/ 92| ds
t

~0 2
Zs

ds

T
+5E/ ’( T ST U+ S+ S +f5’z+ff§f+f5’5+7f§>
t

25

f (taXtyft)) ﬁ}] dA

- (t,xt,yi)) ﬂ A
P (t,xt,EAt)) ’53] d\
— o (t,Xt,’zi» Ei} d\

are continuous, we have

(2.24)

IR o Tﬁ) ds.
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Chapter 2. Necessary and sufficient conditions of optimality

912 1 T ~0|2 r o~012 4 x|2
<E|7)] +EE/ 7| ds+CEE/ 777 ds+C€E/ [ ds
T 2t T ' T t2 T
+CEE/ | 49| ds+C€E/ |f57y\2ds+051@/ | 222 ds+C€]E/ | f1%|? ds
t t t t

T
+C€]E/
t

By the boundedness of f7, 1", 7, fi"Y, fz, fI*%, f7 and f{**, we obtain

~0
P
S ZS

2 T
ds + CEE/ |12 ds.
t

~0 2
Zs

2 r 2 r
E|7| +E/ 22| ds+E/ ds
t t

1 T 012 T~92 T
<|Z+C E/ |77 ds+CEE/ E4 ds+CEE/
t t t

T T
+E\%\2+CEE/ ]fffg\st—kC’gE/ 7% ds.
t t

~0 2
Zs

ds

Hence, in view of (2.20), (2.24)), the fact that f, f/** are continuous and bounded, by

Gronwall’s inequality, we obtain ([2.21]).

Now, we proceed to prove 1) It is plain to check that Zf satisfies the following equality
aZ{ = |Z0¢ (.o, Pg) + T0) Vi + Z, [57 + €] av,,
where

= [& (13 py)

1 —_— o~
o / E [a{?g (t,fjﬂ, P@,g,@ﬂ) 5:’?} d\,
0

26



Chapter 2. Necessary and sufficient conditions of optimality

and TY is given by

T = / [ <t 7 ,PM) —¢, (t)} d\a!
Ka o6 (t 5,?9,1349,1*9) —oP¢ (t,%t, Pgt,ft)> @1} A
#f,Py) —€(0)]

Taking into account the fact that £ and &* are continuous, we deduce

s [5

lim B[ T7[* = 0. (2.25)

-2
/| and taking expectation, we have

Then, applying It6’s formula to

2 T, __
: SOE/ :
0

Finally, by Gronwall’s inequality, estimates (2.20|) and recall to the Wasserstein metric,

E

T T
2dt+0E/ || dt+OE/ |§f’m|2dt+0E/ 7?7 dt.
0

the above convergence result (2.22]) holds.

Since v is an optimal control, then, we have the following lemma.

Lemma 2.2.3 Let assumptions (A1) and (A2) hold. Then, we have the following varia-

tional inequality

0<E [ZTMJ; (27, Poy) #h + Z0B [0 M (27, Poy, Br) ’x\;ﬂ
[Z IT; :BT + h’ (y07 Pyo) yO + E [8 h(QO; Pym yO)yO}i| (226)
T
+E/ )+ Z (Lo} +B[0f1(4,3)7] ) + Z (L0 + B0 (4,5 3] )
0

+Zt<lz )2+ B [0P1(,3) 3, ])+Zt(Z()zt+E[aPzz(t )2 D+Z,51() ] dt.
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Chapter 2. Necessary and sufficient conditions of optimality

Proof. Using Lemmas 3.2 and Taylor expansion, we have

0< 5 [7 ()~ 7 (u)]
%E [ZQM (xeT,Px%) — ZrM (27, Pyy)
+ ;E [ (%) = 1 (vo)]
v [ 1200 - zaw)]a
=1+ 1)+ I,

where 19 (t) —l<t xt,Pe,yt,Ps zt,Pe,zt,Pe,ut>.

Then, from the results of (|2 m, and -, we derive

I =g [20m (:rT, ) = ZeM (a1, Pyy)]
= gB[(2h— 20 1 (s8]
+ %E [ZT (20 + 2 (s = 1) Py ag sy ) (05— wr) d A}
; { <a:T A (3 = 1), Py n () fT) (34 — fT)] dA]

“[9pM (7, Poy)] + B [(Mm (27, Pay)) @b+ B [07 M (27, Pay, Fr) EITH .

Similarly, we have

fon
|
<5}

7 (v8 P2g) — 1 (oo, Pon)|
E [/01 h, (yo + X (Yo — wo) ,Pym(gg_%)) (5 — ) dA
E {/01 050k (o + A (30 = 50) + Py a(gg_go: o) (3 = o) | d)\}

* [y (0. Po)) v + B [0 50, P G0)T0) |

_

+
Dl D~ D

é
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Chapter 2. Necessary and sufficient conditions of optimality

and

T
Iy = %E { / (Z)1° (t) — ZL (1)) dt}
0
T
— B / [19tl(t) + )z + B[O (6, 7) T + 1,()y + B [0 (6, 5:) 7]

+ L)+ B [0 (4,2) 3] + ()7 + B [a}}z (t,z) %}] + lu(t)vt} dt.
Then, the variational inequality (2.26) can be rewritten as

0 <E" [MI (27, Poy) 2 (T) + B [0F* M (21, Py, Br) a}p]]
+ B [9rM (27, Per) + by (30, Poo) ' (0) + B [95D (g0, Py 50)50)| (2.27)
T
+E / [W(t) + LDy + B [0 (6,7) 3] + L,y +E[91(t,5:) 9]
0

+ L)z + B [0 (t,2) 3] + ()5 +E [affl (t, %) %ﬂ + lv(t)vt] dt.

Theorem 2.2.1 (Partial necessary conditions of optimality) Let assumptions (A1) and
(A2) hold. Let (z,y, z,z,u) be an optimal solution of our partially observed optimal control
problem. Then, there are (p,q,k,k) and (P,Q,Q) of F—adapted processes that satisfy
, respectively, and that for all v € U, we have

E* [H, () (s —w) /F ] > 0,a.e,a.s, (2.28)
where the Hamiltonian function
H (t) =H (ta T, wa Yt, Pyta Zt) Pzta zta PZta Ut Pty Gty kta ];’ta Qt) )

is defined by (2.12).
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Proof. Applying It6’s formula to p;z} and ¢y} such that,

qdo = _hy(y0>P ) - E [aPyh(@\O’Pyovy())] )
pr = MI (iL'T, P ) -+ E [an (iL’T, P:):T> I’T)}

— Pz (xT7 P$T) ar — [8PI (xTa PxT? xT) ZZ\T} )

and using Fubini’s theorem, we get

B [pra}] = B /0 [0 (b (£) — 0u(D)E(E)) 00 + T (8) vi + kago (£) ] dit
+ B /0 T [fx(t)qt +E[0l f () @] — L.(t) — E [0l (t)]] dt (2.29)

_Er /O ! ol [gx () Q+T [ajjzg (1) @tH dt

and

E* [qryr] + B [ y07Py0)+E[a h(y07Pyo7y0)H

/0th fv (t)vi+ fo (t) 2} + B[00 f (¢, xt)xtl]]dt
/Ty |:ly ) +E ol (t )]] dt—Eu/TZtl [lz (t)+E[85"l(t)H dt (2.30)
/ [lz +E [0 (t)H dt.

Now, applying It6’s formula to 1, P, and using also Fubini’s theorem, we have

E* [0 M (7)) = —E* /0 Y (t) dt

T AN
E* / Q& (W) a} + B9 ¢ (1,7 3] | dt. (2.31)
0
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Chapter 2. Necessary and sufficient conditions of optimality

From Egs. (2.29), (2.30]), and (2.31)), we obtain

B | M, (or, Pry) + B [0 M (a1, P.,)]|

+ B |hyv0. By) + B [07h(Gio Prys90)] + 97 M ()|
/OT [ — 0, ()] v + ke () v + kego (8) ve + /@nt (e) co (t,e) vy — qufo (t) vy | di
/ ' 94l (¢ / ' z] [lx(t) +B [0 (t)H dt (2.32)

YL zy +E[8Pvl()ﬂdt—E“/th1 [zz(t)+1@[afzz(t)]]dt

=0+ B o1 (1)]| at,
thus

B [Mm (27, Poy) + B [07 M (27, PwT)H

+B" By (40, Po) + B [0h(Go, Poo, 10)] + IrM (1)

/ H, ( / L (t)vedt — B /Tﬂtl (t)dt — B /T;c; [lx(t)+IAE [a}jwut)ﬂ dt
_ B /0 Yt [z (t)+ B[0P Z()]}dt—EU/Ong [zz(t)+E[asz(t)]]dt

_ g /OT 5 [15 (t) + B [0 (t)H dt.

This together with the variational inequality (2.27)) imply (2.28)), the proof is then com-

pleted. O

2.3 Sufficient conditions of optimality

In what follows, we will study that, under some additional convexity conditions, the above

necessary condition of partially observed optimal control in Theorem 3.4 is also sufficient.
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Chapter 2. Necessary and sufficient conditions of optimality

A function ¢ : R x @2 (R) — R is convex if, for every (z*, P*), (z¥, P?) € R x Q2 (R),
8", PY) = 6 (0%, PY) > 6 (2%, P2) (0 — a*) + B [0 (a7, P) (* — )] .

For this, we need an additional assumption condition (A3) as follows:
Assumption (A3)

1. The functions M, h are convex in (z, P,) and (y, P,) respectively.

where

HU (t) = H (t,xv, P;,yv,Pyv, Zv, PZU,Zv, sz,?}’pu’qu7 ku, ]_€U7QU) N

H* <t> =H (t,xu,P;’yU’Pyu’zujPZ“’EU,P2u7u7pu’qu7ku7]%“,Q“) :

Now, we can prove the sufficient conditions of optimality for our control problem of

McKean—Vlasov FBSDEs with jumps, which is the third main result of this paper.

Theorem 2.3.1 (Partial sufficient conditions of optimality) Suppose (A1),(A2) and (A3)

hold. Let Z° be FY -adapted, u € U be an admissible control, and (x,vy,z,%) be the corre-

sponding trajectories. Let (p, l{;,l;:,q) and (P,Q, Q) satisfy 1) and 1} respectively.
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Chapter 2. Necessary and sufficient conditions of optimality

Moreover, the Hamiltonian H is convex in (v, Py, y, Py, , z, P,, Z, P;,v), and
E* [H, (t) (ve —w) /F)] > 0,a.e,a.s,.
Then u is a partial observed optimal control for the problem (2.1)) — (2.6 subject to (2.4)).

Proof. For any v € U, we have

J(v) = J(u) =B [Z;M (24, Po) — Z{ M (x4, Poy) |
+E [h (yg,Pyé’) —h (yg’Pyé‘)]

+E / L — 2o (1) dt

where

1" (t)
1 (t)

v v v v
l(t7wt7Px§7yt7Pyg’7zt7Pz;’7z 7P2“7'Ut)7

[ (t>$?7px§‘7ytua Py?azzfa Pz;ﬂzuaPZ“?ut) .
By the convexity property of M and h, we get

E [Z3M (24, Pyy) — ZM (2%, Po)] > B((Zy — ZE8)M (2, Py )]

Tp

+ E[E (07 M (x4, Po) | (2 — ).

Similarly,

B (1 (45, Pug) = h (45, Pog) ] = B [y (455 Pg) (95 — )]

+E [fE [0,k (o, Py ] (wo — yé‘)} : (2.34)
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and

E/T (Z01° (1) — 2007 (£)) dt = E/T 20 (17 () — 1" () dt + E/T (2 — Z0) 1" (t) dt.
(2.35)

From ([2.33)), (2.34) and ([2.35]), we can write

J(0) = J(u) 2 B (M, (04, Py) (e — o)) + BB [0 M (2%, Py, 7)) (2 - 23]
+ B [hy (4, P) 6 — v))] + B |B [0Fh (s, Py 50)] (i — )|
+E/TZf I (t (t))dt+]E/T(Zt“—Z;‘)l“(t)dt

[( Z3}) ( Tl“(t)dtJrM(x%,Px;}))].

Noting that
qo = —hy(y07 P ) - E [3Pyh@\oa Pym y()):| )
pr = M, (J:Ta P, ) + E [aPz (mT’ PZET? ‘TT)}

—¢u (27, Poy) qr [3P (@1, Pop, 1) Qr]

we have

J() = J(u) = B[P (27 — wp)] + B [pe (21, Por) qr (w7 — 27)]

EUE [aPT (-/ET) P:ETJ l’T) /q\ ( - xT — K [q )]

+E“/OT(l”(t) I ())dtﬂa[ — 7% (/OTZU (t)dt + M (z%, Py ))]

Then, we can write

J(v) = J(u) = B*[pr (27 — o7)] + B*[ar (y7 — yr)]

—Emwwwm+WA[m04WMﬁ

+E [(Z{;—Zg‘;) </OT1“ (t)dt+M(:c§;,Pm%))} :
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Chapter 2. Necessary and sufficient conditions of optimality

Now, appliyng Ito’s formula respectively to p} (=} — '), ¢ (yy — y}') and P (Z) — Z}'),

and by taking expectations, we get

J(w) = J(u) > B / (H () — H" (1)) dt

T T
~E* | H"(t) () —x)dt — E" / E [0 H" (t)] (x} — x}') dt
0 0

T T
B [ H O B [ B [ )] (o - o) e
0
T T R
—E* [ H"(t) (2} — 2")dt —E" / E[07H" (t)] ( — 2) dt
T 0T R
—E* [ HY(t) (2 — z")dt — E“/ E[07H" (t)] (z — z) dt
0

— E* HY (t) (Ut - Ut> dt
By the convexity of the functional H in (x, P,,y, Py, z, P,, Z, P5,v), we have

J(v) — J(u) > E* THU (t) (vp — uy) dt

=K / Z}'E [H, (t) (ve — we) JF) ] dt.
0
Since Z;* > 0, and using condition ([2.28)), we have

J() = J(u) =0,

i.e., u is a partial observed optimal control.
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Chapter 3.3

Partially observed Linear-Quadratic
control problem

36



Chapter 3

Partially observed Linear—Quadratic

control problem

In this chapter, we examine a linear-quadratic control problem under partial observation.
By leveraging the findings from Chapter 2, we derive an explicit formula for the optimal
control.

Examine a one-dimensional linear quadratic control problem under partial observation:

Minimize the expected quadratic cost function

J(0()) =B / [Lha? 4 L2 (B [))? + L3y + LY (B [yi))? + L3o?] dt
+ B [Mya2 + M, (B [27])* + heyd] (3.1)

subject to

dY, = y,dt + dW, 3.9

Yo =0,

37



Chapter 3. Partially observed Linear-Quadratic control problem

and the state

(

dvy = (Alw; + A?E [xy] + Adv; — B2vy,) dt + BrdW; + B2dY;,

—dy, = (Dixy + D}E [z + D}y, + D{E [y] + D}z + DB [2] + D{Z; + DJE (7]

+ DY, + D} [r)] + DMv,) dt — z,dW, — ZdY,,

x(0) = xo, yr = dro7 + 0B [w7]

\

(3.3)
where

Atay + ATE [2] + AJv, = b (¢, 2}, Py, vy)

B} =g (t,x}, Pay,v)

B} = o (t,ay, Py, v)

Ve =& (t, 2}, P)
and

f (tax:ﬁ)apr>y§7pyfaZfapzfazzjvpéfvvt) = D/x, + D{E [z;] + D}y + D;E [y

+ D?z + DPE (2] + D!z, + DYE [z,] + Dwv,.

Here, all the coefficients A (-), A% (-), A3 (-),B'(-),B*(-),v(-), D' (-) are bounded and
deterministic functions for ¢ = 1,---,9, L’ (-) is positive function and bounded for j =
1,2,3,4,5 and M; (-), M5 (), h(-) are positive constants. Then for any v € U, Egs. (3.3)

and (3.2)) have unique solutions, respectively. Now, we introduce

t 1 t
Zy =exp{/ VsdYs — —/ !%\2018},
0 2 0

which is the unique FY -adapted solution of the SDE:

dZ; = Z;vdYs,
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and we define the probability measure P’ by dP’ = Z/dP.

In this setting, the Hamiltonian function is defined as

H(t7x7yﬁz7Z7T?U7p7q7k7]%7n7Q)
= p(Ajz + ATE (2] + Ajvy — Bfvi) — q (Diay + DPE ()] + D}y, + D/E [y,] + D}z
+ DSE 2] + D7z, + DR [z,] + D)v,) + kB} + kB?

+Qy + Lia? + L2 (B [x))” + Liy? + Lt (B [ys])® + Liv2.
(3.4)

Further due to Eqgs. (2.10) and (2.11)), the corresponding adjoint equations will be given

by
—dP, = (Ljz} + L (B [2))* + L3y + L (Bly)” + Liv7) dt
—Q1dW, — QudW, (3.5)
Pr = M(SE'T, PxT)a
and

(

—dp; = [Alps + A2E [ps] — D} q; — D?E [q;] + 2L} xy + 2L?E [24]] dt
—kydW, — kydW,
dg; = (Diq, + D{E[q/] — 2L}y, — 2LyE [y,]) dt + (DPq. + DYE [q.]) dW,
+[D7q, + D3E [q,]] dW, (3.6)
pr = 2Myxyp + 2MoE [

—p1o7 — $olE [w7]

qo = —2hYyo.

According to Theorem 2.2.1, the necessary condition for optimality (2.28)) will be

B" [peA} — D) + 2L}u /FY ] = 0. a.s.a.e.
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If u (+) is partial observed optimal control, then

1

3rs (ATE" [p/ 7] = DB [a/ 7)) (3.7)

Uy =

Finally, for the sufficient conditions, let v € U be a candidate to be optimal control.

We suppose that (%, v, Zz, E) is the solution to the FBSDE |D corresponding to u, and

(P, Q, Q) ,(p,q,k, k) are the solution corresponding to Egs. 1’ and 1' respectively.
It’s easy to verify that the functional H is convex in (z,y, z, Z). So, if u satisfies (3.7) and

the condition (2.28). Then by applying Theorem 2.2.2; we can check that u is an optimal

control of our partially observed linear-quadratic control problem of McKean—Vlasov type.
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Conclusion

n this thesis, we have studied the optimal control problem of McKean—Vlasov For-
Iward Backward Stochastic Differential Equations (FBSDEs) under partial observation.
By using the derivatives with respect to the probability law and integrating Girsanov’s
theorem with the classical convex variation technique, we derived both necessary and suffi-
cient conditions for optimality. In order to illustrate these conclusions, we used a partially

observed linear-quadratic control problem to apply the theoretical results.
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