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Introduction

artial differential equations (PDEs) occupy a central place in applied mathematics,

representing the mathematical framework within which a wide range of natural phe-
nomena and physical and engineering systems can be described. Thanks to its ability to relate
spatial and temporal variations of phenomena, PDEs have become indispensable tool in the
study of fields as diverse as mechanics of continuous media, fluid dynamics, heat diffusion, and
reaction and diffusion models. A large part of its importance lies in the fact that it enables
researchers to understand the complex behaviour of real systems and predict their evolution
over time.
Among the special types of partial differential equations, damped equations are of particular
interest, as they play a crucial role in modelling the effects of the gradual loss of energy within
a system. The introduction of damping terms into the equations enables a more accurate anal-
ysis of non-ideal dynamic situations, where phenomena such as vibration reduction, gradual
stabilisation, and extinction with time emerge. The study of damped equations is not only
limited to describing the behaviour of physical and mechanical systems, but extends to issues
of stability, existence, and extremes of solutions, making it a topic rich in both theoretical
results and practical applications.
The Euler-Bernoulli beam equation is an important classical model that describes the curva-
ture of elastic beams under different loads, and was developed in the 18th century by Leonhard
Euler and Daniel Bernoulli. As engineering applications and industrial techniques evolved,
this simple model was no longer sufficient to represent the behaviour of complex materials and
modern systems, and had to be developed to include more realistic effects such as memory,
viscosity and automated control.
One of the recent extensions of the model is the inclusion of a memory term that expresses the
response of a material depending on its deformation history, as in viscoelastic materials such
as polymers, which are characterised not only by their immediate response to forces, but also
by their past history. This effect is represented in the mathematical model by a time integral
term that expresses this temporal dependence.
Furthermore, output-dependent boundary feedback control is used as an effective mechanism

to stabilise the girder, where forces or moments are applied at the edges based on local mea-



INTRODUCTION

surements only without the need to monitor all internal points. This advanced theoretical
framework is of great importance in many applications such as aerospace engineering, flexible
robot arms, smart structures, and precision devices, as it provides high accuracy in control and
vibration prevention.

The main contribution of this work is to investigate the well-posedness and exponential stabil-
ity of the Euler—Bernoulli beam equation with a memory term and boundary output feedback
control. The memory term reflects the dependence of the material on its past deformations (for
more details, see [5] [7]). Our work is based on [17].

In this thesis, we consider the following problem:
t
Wit (2, 1) + Wagge (T, 1) — / R(t — T)Wgaae (x, 7) dT + g(wi(x,t)) =0, x€[0,L],t>0, (1)
0

where k represents the kernel of the memory term, g : R — R is a given function, v : Ry — R
the boundary control force applied at the and of the beam and w,,;(t) stands for the measured
signal of the system at time t.

with the following boundary condition and initial conditions:

w(0,t) = wy(0,t) = wye (L, t) =0, t>0,
rra(Lt) = [ Kt = Tama( L7 dr = 0(t),  £20,
w(z,0) = wo(z), wi(z,0)=1y1(z), z €0, L],

Wout (t) = wi(L, t).

This System describes the transverse vibration of an extensible beam clamped at x = 0 and
supported at x = L by a control force.

We propose an adaptive output feedback controller law of the form:

{U(t) = f(t)w(L, 1),
fi(t) =rwi(L,t), f(0)= fo, r>0.

This work is divided into three chapters:

Chapter 1: In this chapter, we introduce the fundamental mathematical tools and notations
required throughout this work. We begin by reviewing some essential functional spaces, which
provide the appropriate framework for analyzing partial differential equations. Next, we recall
several important inequalities and theorems which play a crucial role in the derivation of a priori
estimates and stability results. Finally, we present the Faedo-Galerkin method, the technique
used in proving the existence of weak solutions to PDEs.

Chapter 2: In this chapter, we begin by presenting the precise formulation of the problem
under consideration, incorporating a set of well-defined hypotheses to ensure the mathematical
rigor of the study. We then proceed to establish the existence and uniqueness of the solution
to the problem.

Chapter 3: This chapter is devoted to studying the exponential stability of the solution to the
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problem, providing a detailed analysis of how the solution behaves over time under the given

conditions.



Chapter 1

Functional Analysis Foundations for PDEs

In this chapter, we review some concepts from functional spaces, along with key inequalities

that will be used in subsequent chapters.

1.1 Some Functional Spaces

1.1.1 Banach Space

Definition 1.1.1. Let X be a vector space. A map ||| : X — Ry is called a norm if it satisfies

the following properties:
1. ||z]| =0 =0 (definiteness).
2. ||z|]| >0, Ve € X (Positivity).
3. |[\x|| = |M||z||, Vz € X and scalars A € K (Homogeneity).
4. x4yl <zl +llyll , Vz,y € X (Triangle inequality).
The pair (X, ||.||) is called a normed vector space.

Definition 1.1.2. Any complete normed vector space is called a Banach space. [11]

1.1.2 Hilbert Space

Definition 1.1.3. (Inner Product): Let H be a vector space. Inner product on H is a map
from H x H to K =R(or C), denoted by (-,-), which satisfies the following properties.

For every vectors x,y,z € H and scalar \ € K:

1. Positivity and definiteness

(x,x) >0 and (z,x) =0< 2z =0.
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2. Bilinearity (or sesquilinearity in the complex case)

(+ Az, y) = (z,9) + M2, 9),

(x,y + Az) = (z,y) + Xz, 2).

3. Symmetry

where the bar denotes complex conjugate.

Definition 1.1.4. (Hilbert space): A Hilbert space is a vector space H equipped with an
inner product, and complete with respect to the induced norm by the inner product.

So Hilbert space is a Banach space [18].

Remark 1.1.1. The inner product induces a norm defined as:

[zl = \/(z,z) ,Vz € H.

Proposition 1.1.1. Let x,y € H . Then

[{z )| < llzlllyll;

is called Cauchy Schwarz inequality.

Orthogonality

Definition 1.1.5. Two vectors u and v are said to be orthogonal if (u,v) = 0. An element
v €V is said to be orthogonal to a subset U CV if (u,v) =0 for every u € U.

Definition 1.1.6. Let U be a subset of an inner product space V. We define its orthogonal

complement to be the set
Ut={veV|(v,u) =0 forallu € U}.

The orthogonal complement of any set is a closed subspace.

Definition 1.1.7. Let V' be a finite-dimensional inner product space. A basis {vy,...,v,} of

V' s said to be an orthogonal basis if

(v;,v;) =0, forl<i#j<n.
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1.1.3 Space of Continuous Functions

Let x = (21,29, -+ ,2,) denote the generic point of an open set Q2 of R". Let f be a function

defined from €2 to R we designate by

0

()

the partial derivative of f with respect to z;, (1 <i < n).

Definition 1.1.8. We denote by C(2) the space of continuous functions defined on the domain

Q. Moreover, the norm on this space is
1fllce) = sup [ f(z)].
z€eQ

Definition 1.1.9. C*(Q) denotes the space of functions that are k-times continuously differ-
entiable on the domain §2; that is, all D*f are continuous on §2.

The norm on this space is defined by:

Hf”ck(ﬂ) = Z sup | D f(z)],

|a|§k e

where a is a multi-index and D*f denotes the corresponding partial derivative.
The space C*°(Q2) is the space of functions that are infinitely differentiable on Q; that is,

C>(Q) = ﬁ CH(Q).
k=0

The space Cg°(§2) is the set of all infinitely differentiable (smooth) functions with compact

support contained in ). That is,

Co () = {p € CF(Q) | supp(p) CC O}
Functions in C3°(2) are often called test functions.
1.1.4 Lebesgue Space L”

We denote by 2 an open domain in R", where n € N and let p € R with 1 < p < o0.

Definition 1.1.10. Let p € R where 1 < p < oco. We denote by LP(S2) the class of all

measurable functions f defined on € such that

J 1@ de < oo,

and we write
LP(Q) = {f : Q= R or C| f is measurable and / f(z)]P < oo}
Q

6
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Definition 1.1.11. Let p = co. The space L>(2) is defined as the vector space of all measur-
able functions f : Q2 — R or C, which are essentially bounded on €2, that is:

L>*(Q) = {f Q—=RorC ‘ f is measurable and Ik > 0 such that ; |f(z)] <k a.e.on Q }

Recall: A measurable function f is said to be essentially bounded on €2, if there exists a
constant k > 0 such that |f(z)| < k almost everywhere in Q.

Proposition 1.1.2. The norm in this space is defined by:

e = ([ 1f@Pas)’ for1<p < oc

[palpZ= :Slslzp\f(l’)! for p = oo.

Corollary 1.1.1. L*(Q) is a Hilbert space with respect to the inner product

(f,9) = /Qf(l’)g(x) dx.

Definition 1.1.12. We denote by L, .(2) the space of functions which are LP on any bounded

sub-domain of €.

1.1.5 Vector-Valued Function Spaces

Definition 1.1.13. Let a,b € R with a < b, and let X be a Banach space. For1 < p < oo, the
space LP((a,b); X) consists of all strongly measurable functions f : (a,b) — X such that

b 1/p
| £l 2o (apy;x) == (/ 1|5 dt) < 0.

For p = oo, the space L>((a,b); X) consists of all essentially bounded measurable functions
f:(a,b) = X, with

[ £l o ((a.0):x) == esssup || f(t) || x < o0.
te(a,b)

Equipped with their respective norms, LP((a,b); X) is a Banach space for all 1 < p < oo.

0
Lemma 1.1.1. If f € LP(a,b; X), of € LP(a,b; X), then the function f is continuous from

[a,b] to X( f € C(a,b; X)). o

1.1.6 Sobolev Space

Weak Derivatives

Definition 1.1.14. [6]/ We say that a function f € L, () has a weak partial derivative of

loc

order o, where o is a multi-indez, if there exists a function g € L;,.(Q) such that

| @ D) de = (~)°! [ gla)p(a)de, Vi € D),
7
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where D(Q) = C5° () is the space of test functions.
In this case, we write

Df =g,
and we say that g is the o™ weak derivative of f.

Sobolev Spaces W™*(Q)

Definition 1.1.15. Let m € N and L? Lebesgue space where 1 < p < oo, for an open domain
Q C R". The Sobolev space W™P () defined as:

Wme = {f € LP(Q) | D°f € LP(Q), Yo : |a| < m}

where € N", o] = a1 + g+ - - -+ v, the length of o, and D* f is the weak (or distributional)

partial derivative of f.

The norm in the Sobolev space is described as follows:

For1 <p< o

3=

Hfllwmm(mZIIfllmp:( ) IIDafHﬁpm))

0<|a|<m
For p = o0
1 llwree@) = 1 fllm,oo = max (D%l ).
Theorem 1.1.1. W™P(Q) is a Banach space [1].
Remark 1.1. In the Sobolev space W™P(Q)), we have the following special cases:
o Ifm =0, then W(Q) = L?(Q).
o Ifp=2, then W™(Q) = H™(Q).

Definition 1.1.16. The space H™(S2) is a Hilbert space with the inner product:

<fag>Hm(Q) = Z <Daf7Dag>'

0<|al<m
Theorem 1.1.2. W™P(Q) is separable if 1 < p < oo, and is uniformly conver and reflexive if

1 <p<oo. [1]

Sobolev Embedding Theorems

Definition 1.1.17. Let V and W be tow Banach spaces with V- C W. We say the space V is
continuously embedded in W and write V-— W, if

[ollw < clvllv, veV (1.1)



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

We say the space V' is compactly embedded in W and write V- —<— W, if (1.1) holds and each

bounded sequence in V' has a convergent subsequence in W .
If V — W, the functions in V are more smooth than the remaining functions in W.

Theorem 1.1.3. Let Q C R? be a non-empty, open and bounded domain with Lipschitz bound-
ary. Then the following Sobolev embedding results hold:

(a) [fl; < ]1), then
WHP(Q) — LY(Q)

for any q < p*, where

ko1

for any q < oco.

1
(c) [fl; > » then

where p
r:k—{J -1,
p
and p p p
Pl ten
B = b p p

d
any € (0,1), if}; e N.
In the one-dimensional case, with Q = (a,b) a bounded interval, we have
WEP(a,b) < Cla, b]

forany k>1 and p > 1.

Theorem 1.1.4. Let Q C R be a non-empty, open, bounded domain with Lipschitz boundary.
Then the following Sobolev embedding results hold:

(a) [fl; < ]1), then
Wk,p(Q) sy Lq(Q>7 fO']” all q < p*u

where

S
*

S =
|
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(b) [f: = ]1), then
WHFP(Q) s LI(Q), for all g < oo.

k1
(c) ]fg > e then
WEP(Q) s C™P(Q),

where

and p p p
- — | = f— ¢ N
\‘ J) prg )

d
any 5 € (0,1), z'f;9 e N.

Theorem 1.1.5. Let k and | be non-negative integers,k > 1, and p € [1,00]. Let @ C R? be a

non-empty open bounded Lipschitz domain. Then W*P(Q) < W'P(Q). [3]

Aubin-Lions Lemma

Let Xy, X and X; be three Banach spaces with X0 C X C X;. Assume that X is compactly
embedded in X and that X is continuously embedded in X7, assume also that X, and X; are

reflexive spaces. For 1 < p,q < 400, let
W={fel”0,T;Xy); [fe€Li0,T;X)}.

Then the embedding of W into LP(0,T’; X) is also compact.

1.1.7 Types of Convergence

Let X be a normed space, X' its dual space.

Definition 1.1.18. A sequence {x,} C X is said to converge strongly to x € X if
|lun —ullx =0 asn— oo.
This is also called convergence in norm and is denoted by
u, —u in X.
Definition 1.1.19. A sequence {x,} is said to converge weakly to x € X if
(f,xn) = (f,x) forall fe X,

and write x, — £ asn — 00.

10

(1.2)
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Definition 1.1.20. A sequence {f,} C X' is said to converge weak-* (or weak-star) to f € X'
if
folx) = f(x) forallz e X.

This is denoted by
fo>f in X'

Proposition 1.1.3. [13] Let x € X, let {x,} C X. Then:
(i) If x, — = in X, then x,, = = in X.
(ii) If x, — x in X, then the sequence {x,} is bounded in X.

Theorem 1.1.6. Suppose X is a reflexive Banach space. Then every bounded sequence {x,} C

X has a weakly convergent subsequence. [3]

Theorem 1.1.7. Let X be a separable Banach space (i.e., one which contains a dense countable
subset). Then, from any bounded sequence of elements of X', we can extract a subsequence which

weakly-* converges in X'.

1.2 Important Inequalities

Let 1 < p < 00; we denote by ¢ the conjugate exponent

1 1
4o =1
p q

1.2.1 Young’s Inequality

1 1
Let a and b be real numbers, and 1 < p,q¢ < oo such that — + — = 1. Then
P q

ab b
ab < — 4+ —
p q

This is known as Young’s inequality.

Young’s Inequality With n

1 1
Let be a,b > 0, and let 1 < p,q < oo such that — + — = 1. For n > 0 we have the inequality
p q

1
ab < na®? + 5 b1
(npq)

This is known as also Young’s inequality with 7.

Proof. see [6] O

11



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

1.2.2 Gronwall’s Inequality
Differential Form

Let &(t),n(t) and ~(t) be three continuous functions defined on [a, b] such that ¢ is differentiable

on Ja,b[. We assume that
§'(t) < n(t)s(t) +~(t), for all ¢ €la, b],

then, we have

é(t) < exp( [ n(s)ds)eta) + [ exp( [ ) ar)(s)ds.

Integral Form

Let &(t),n(t) be continuous in [0, 7], with  nondecreasing and ~ positive constant. If

€0 <n(t)+ [ €Gs)ds, Ve o.T)

then
£(t) <n(t)exp(vt), Vtel0,T].

1.3 Fubini’s Theorem

Let f be summable in [ = I; x I, C R" x R™. Then
1. f(x,-) € L*(Iy) for a.e. € I1, and f(-,y) € L'(I)) for a.e. y € L.
2. /I f(ay) dy € Ll([l)7 and ; f(l‘, )dl‘ € Ll([2)
2 1

3. the following formulas hold

/be(“"’y)dﬂfd?/:/h </12f(x,y)dy) dw:/h </1 f(x,y)da:> dy.

1.4 Leibniz’s Rule for Differentiation Under the Integral
Sign

Let the integral
b(t)
I(t) = /( ft)da
a(t

where f(x,t) and 2 are continuous on the rectangle [A, B] x [c, d], where [A, B] contains the
union of all the intervals [a(t),b(t)], and if a(t) and b(t) are differentiable functions on [c, d],
then

i[(t) = /a:)t)c‘ft (z,t)dz + f(b(t), )V (t) — f(a(t),t)d ().

12
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1.5 Faedo-Galerkin method

Definition 1.5.1. Let V' be a separable Hilbert space, and {V,,}

vector spaces satisffying the axioms

nen @ family of finite~dimensional

o V,CV, dimV, < oo,
o V, — Vwhen k — o0.

In the following sense: there exists V,, subspace dense in V', such that for all v € V', we can

find a sequence {v,}nen C Vi, satisfying
v, — v inV  when n — oo.
The space V,, is called a Galerkin approximation of order n.

The Scheme of the Method of Faedo-Galerkin

Let P to be the exact problem for which we want to show the existence of a solution in a
function space built on a separable Hilbert space V. Let u to be the unique solution of the
problem P.

After having made a choice of a Galerkin approximation V,, of V' it is necessary to define an
approximate problem P, in finite-dimensional space V,, having a unique solution w,,. Then, the
course of the study is then as follows:

Step 1 : We define the solution u,, of the problem P,.

Step 2 : We establish estimates on w,, (called a priori estimate) to show that w,, is uniformly
bounded.

Step 3 : By using the results that wu, is uniformly bounded, it is possible to extract from
{t, }nen a subsequence {u, },eny which has a limit in the weak topology of the space involved
in the estimations of step 2. Let u to be the obtained limit.

Step 4 : We show that u is the solution of the problem P.

Step 5 : Results of strong convergences.

The objective is to build an approximation process which ultimately provides us with a proof of
the existence of solution, this process amounts to approaching u,(z,t) as a linear combination

of functions of the bases v; such that

up(z,t) = zn:gbz(t)vz(x), (x,t) € Q2 x[0,T],

=1

where the ¢;(t) are then solutions to a system of n linear differential equations.

1.6 Stabilization method (Lyapunov functional)

To establish the desired stability results of the systems, we use the multiplier method. The

multiplier method is mainly based on the construction of an appropriate Lyapunov function

13
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L(t), which is equivalent to the energy of the solution. By the equivalence L ~ E, we mean

that there exist positive constants «, 5 > 0 such that
aB(t) < L(t) < BE(t), Vt>D0. (1.3)
To prove exponential stability, we show that L(t) satisfies the differential inequality
L'(t) < —yL(t), Vt>0, forsomey > 0. (1.4)

A simple integration of (1.4) over the interval (0, ), together with the equivalence (1.3), leads

to the desired exponential stability result.

1.7 Stabilization types

There are several types of stabilization, classified based on the rate at which the energy of the

system decays to zero as time progresses.

e Strong Stabilization: This refers to the situation where the energy of the system

decays to zero as time tends to infinity. That is
Et)—0 as t— oo.

This type of stabilization does not specify the speed of decay, only that the energy even-

tually vanishes.

e Exponential (Uniform) Stabilization: In this case, the energy decays exponentially
fast, which is the fastest type of stabilization. There exist constants o > 0 and C' > 0
such that

E(t) < Ce ™™, Vt>0.

This implies a uniform and rapid decay of the energy.

e Polynomial Stabilization: Here, the energy decays at a polynomial rate, which is

slower than exponential decay. There exist constants § > 0 and C' > 0 such that

E(t) < tC,

This behavior typically arises when exponential decay is not possible due to geometric or

damping limitations.

14



Chapter 2

Well-Posedness

In this chapter, we will prove the existence and uniqueness of the solutions to the Euler-Bernoulli

beam equation by using the Galerkin method.

2.1 Problem Presentation

Let [0, L], with L > 0, be an interval in R. Our objective is to investigate the existence and
uniqueness of the solution to the Euler-Bernoulli beam equation with a memory term and a
boundary output feedback control term.

The problem is mathematically modeled as follows: We seek a real-valued function w(z,t),

where z € [0, L] and t € R, that satisfies the following linear partial differential equation

t
wi (2, 1) + Weze (T, 1) — / K(t — T)Wegaa (T, 7) dT + g(wi(x,t)) =0, x€[0,L],t>0,

w(0,t) = we(0,t) = wee(L,t) =0, t>0,
rra(L,t) — | "ilt = Pman(LoT) dr = F(Bn(L, 1), £>0, (2.1)
w(z,0) = wo(z), wi(z,0)=wi(x), = €]l0,L] :

fit) = r(wi (L, 1), t>0, f(0)=fo>0, r>0.

The energy of the system (2.1) is given by
1 L
E(t) = 5/ wWi(z,t) + w2 (z,t) dx. (2.2)
0

In order to demonstrate the existence and uniqueness of the solution to the system (2.1), we

first present the essential notation and assumptions required for the proof.

Notation 2.1.1. Let L*(0, L) be the usual Hilbert space with the inner product

(.0 = [ F)g(e) dz,
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CHAPTER 2. WELL-POSEDNESS

and the norm
[fllzz = 111l
e Throughout this paper, we define the space

V ={we H*0,L) | w(0) = w,(0) = 0},

equipped with norm

lwllv = lloza |-

And the space

U={weVnH0,L)|we(L) =0},

equipped with norm
lwlly = [|weall + |Wezzz]|-

Remark 2.1.1. According to Poincaré’s inequality, |w||y and ||w||y are equivalent to the stan-
dard norms of H*(0, L) and H?(0, L), respectively.

e We now state the following hypotheses:
(H,) For any w(z,0) = wy(x) € U and wy(x,0) = w;(x) € L*(0, L), we have
w(0,0) = w,(0,0) = wy(L,0) =0, (2.3)

Wane(L,0) = fows(L,0). (2.4)

The functions x and g are assumed to satisfy the following conditions:
(Hy) For any k € WH*(0,00) N W*'(0, ), such that x(t) > 0 for all t+ > 0, and for some

Qaq, (o, (g, oy > 0, we assume

—a1k(t) < Ki(t) < —asgk(t), Vit > to,
|k ()] < ask(t); 0 <t <ty, (2.5)
0 < ky(t) < ayk(t), t>0,
and
t=1- [ n(r)ar=o. (2.6)
0

(H;) Let g : R — R be a continuously differentiable function. Assume that there exists a
constant # > 0 such that

g(0)=0 and (g(u)—g))(u—2v)> Blu—v|* forall u,v€R. (2.7)

e To simplify, we denote by ¢ the operator defined by
t

(Ko wa)(t) = /0 Kt — 7)||we (T) — Waa (V) ||? d, (2.8)

16



CHAPTER 2. WELL-POSEDNESS

such that

& owe)(t) = [ Wt = Dllwwe(r)  wue @2 dr + [ 5lt = 7) 5 foa(r) — weald) | dr

= (W owa)(t) +2 [ Uit — ) (W (7) — wan(£), —wamn () d

(K 0wt —2/% (t = 7){wm(7), wm(t)>d7+5t||wm ‘ ||2/t/<; (t—7)dr
— (K 0 ) +2/ (t = ) ar(r)s 0 (8)) dr — (me )2 / dT)
— K1) [|wa ()]

Thus, we have

[t = 7) a0 dr = ;(n i) (1) — 5 (5 0w (1)

(2.9)
b5 (@ [y dr) = Sn(o)loan (o)
eThe modified energy is defined by:
o) =B(0) + 5 (o)1) = e 02 [ (r)dr)
— Sl + 2 (o)1) + 3 (1- [ w) a7 e (1) (2.10)

2.2 Existence of the Solution

Considering the above hypotheses, we have the following theorem.

Theorem 2.2.1. Let wy € U,w; € L*(0, L). Suppose that assumptions (H1), (H2), and (H3)
are satisfied. Then, the problem (2.1) admits a unique solution w in the following sense: for

any T > 0, we have
we L*0,T;U), w, € L>*0,T;V),

Wit € LOO(()?T; LQ(OaL))7 f € Cl(O,T)

By applying the Sobolev embedding theorem, we deduce that the solution
weC(((0,L)x[0,T7).

Next, We will prove the theorem 2.2.1. By using Faedo-Galerkin method.

17



CHAPTER 2. WELL-POSEDNESS

2.2.1 Variational Form

Let £ € V. Multiplying the fundamental differential equation of the problem (2.1) by a function

¢, and integrating over the domain [0, L], we obtain

(€ () + (€, wanma (1)) — (£, /0 "Rt — P (7) A7) + (€, glwn(8))) = 0. (2.11)

By applying integration by parts twice, we obtain

(€, Wagaa (1)) = /0L5(x)wmm(x,t) dx
= {wm(%t)&(w)r— [wm(a: )& (x ] + / Eoa (2w (2, 1) do.

0

For £ € V and the boundary conditions, we get

<§7 wxamm(t)) = §<L)W:m:c(La t) + <§Z‘Z‘7 W;rx(t)>' (2'12)

On the other hand, by Fubini theorem, we have

(€ [ 5lt = Ty dr) = [ (o) ( /0 5t TV, 7) ) da
—/ / K(t — T)Wezaa (2, T) dT d
_/ / K(t = T)waago (2, 7) dx dr
~ ['utt -7 ( [ bt i) ar
= [t = ) a7 dr
=€(L) [ Wt = Teaa(L ) 7+ [ (0= ) o)

(2.13)
By substituting (2.12) and (2.13) in (2.11) then
(€ u(®) = [t = 7 €owona(r)) + 6(0) (a0 = [0 = Dhamaa( L)
+ (& 9(wi(®)) + (Caw W () = 0.
The problem (2.1) can be formulated as: Found the solution w(t) € V' such that
<§> th(t» + <€1‘xv wxx(t» - /O ’%(t B T) <§$Z‘a Wm:(T» + g(L)f(t)wt(L7 t) (2‘15)

+ (6 g9(wi(t)) =0, VEeV.
Now, we are ready to applying Fadeo-Galerkin approximation.
Let {¢;} be a complete orthogonal system of V', such that the initial data {wo,w;} € Span{&;, &2}

18



CHAPTER 2. WELL-POSEDNESS

For each n € N, we define the finite-dimensional subspace V,, = Span{&;,&s,- -+ ,&,} of V.

We look for an approximate solution of the form
wn(xv t) = Z ¢j(t)€j(z)7
j=1

where ¢;(t) are time-dependent coeflicients to be determined.
The function w"(z,t) is required to satisfy the following weak formulation: for every £ € V,,

the approximate equation must hold

0 (2.16)

{<§,w;<t>>+ (a3 (10) — [ 5t = )o@ (7)) i+ ECL) (2 (2,1
HEGWI(0) =0, VEEV,,

with condition

(2.17)

w(z,0) = wi(z) = wo(z) in U, wi(z,0) =wl(z) = wi(z)in V.

Equations (2.16) yield a system of ordinary differential equations with n unknown functions
¢;(t), where j =1,2,...,n.

By standard methods in differential equations, we can prove the existence of a solution to
equation (2.16) on some interval [0,,,). Then, using the first estimate below, this solution can

be extended to the entire interval [0,7"), where T' = oc.

2.2.2 Apriori Estimate I

Replacing £ by w}' in (2.16), we get

(wip(t), wi' (1)) + (wie (1), wip, (£)) — /Ot Kt — T)(Wee (T), Wie (1)) + {g(w)' (1)), wy' (1))
+ f1()(wi (L, 1) = 0,
then

1d

571 O + 5l (O + {g(wi (6), w7 (1))

= [l = () () i — P 0) @ (L, 1))

Counsider the function

h(e) = [ w(t = 1)l ), (6)
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CHAPTER 2. WELL-POSEDNESS

then

[ e = et )t ) dr = 5 ([ (e = ) r), w0 0) dr
— [ e = 1) (1), 0) dr = WO O (2.15)
Hence, we have

Sl O+ SO + g (p 0), o 0 = 5 ([ (e =)l r), w8 0)) dr

- /Ot et = T) (Wi (1), w3, (1) dr = K(0) wi (O] = F* (1) (W) (L,1)*  (2.19)

By using Cauchy—Schwarz inequality, then using assumption (2.5), and according to Young’s

inequality, we have

< allr, (O [ wtt = Dl (7] a7

< %Hwﬁm(t)HQ - ; (/Otw - T)||</J§Z:,c(7)|l2dT)2

< Sl O + 5 nllix0oo [ (=Dl (7)]?dr, (220

’/Ot Ke(t — 7) (Wl (T), Wl (1))dT

where o = a1 + 3.
By assumption (2.7), and inequality (2.20), we get
Shar s aaors ([ |
t— " d
SNt O + 5 e O + Bt O < % ([ 5t = 7)), w61 dr

2

DI O + S el [ 56 = Dlla(r)I dr = s(O)lw (0
— PO L) (221)

Integrating (2.21) over (0, 1)
t
)P ds+ [ 3wl ds + [ Bl (r)]?dr

s/o D[ o= et wiopar) do+ [ Sl ()l ar

[ Selliom [ (s =il drds = [ sO)wm )P dr = [ ) (L) dr
(2.22)

Then, we obtain

et O = I OV + eI — o O +28 [ ()P
<2 [l = )l (1), w0 (0) dr -+ (02 [0y — 26(0)) [ ()P dr = (7 (1)

FL(M0)”
(2.23)
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CHAPTER 2. WELL-POSEDNESS

By using Schwartz inequality and young’s inequality, we have

[ e = 7)), e (O | < )] [ (e = 7) ()l

1 t 3
< IOl oy ([ 5 = D] dr)

1 n t n
< %Ilwm(lf)ll2 +anfHLl(o,oo)||/<:\|Loo(o,oo)/0 ez (7)1 dr.
(2.24)

Combining the inequalities (2.23)and (2.24), we obtain

t 1 1
oo ()1 + llwgz (D17 + 26/0 e (I dr + —(f*(1))” < @i () + wF (0)1” + -l (D1

n

t n 2 2 2 ¢ m 2
+ 20181000 1Kl i=(000) [ NI dr 4 (02 + 16l 00y = 26(0)) [ fsia(r) 2 dr

1 n
b)) (225)
According to Gronwall’s Lemma, we get
1
o B + e (01 + = (f7(8))* < M, v >0,

where M is a constant that depends on the initial data wy,wy, fo.

Then .
lloop! (D117 =+ Jlewgse (811 + ;(f”(lt))2 < Ch. (2.26)

This implies that w;'(L,t) belongs to L*°(0,00). Consequently, the approximate solution w"

can be extended to the entire interval [0,7) with 7" = oco.

2.2.3 Apriori Estimate I

First of all, we estimate for w:(0) in the L:mnorm.
Let t = 0 and £ = wy;(0) in (2.16), then we get

(Wit (0), Wiz (0)) + (Wies (0), Wiy (0)) + wii (L, 0)f (0)wy (L, 0) + (wiz(0), g(wy (0))) = 0.

Since w(0,t) = w;(0,t) = wyy(L,t) = 0,wp € U, in view of the condition (2.4), we have

L
(a0 w2 (0) = [ lt(, 0y (2, 0) dx
L
- [wgtt('rﬂ O)sz ('I? 0)]0L - [wtriLE<x7 O)ngz<x7 0)]5 + /O WZ(J}7 O)W;L:E:vx<x7 0) de’

= — f7W(L, 0)wl (L, 0) 4 (wl(0).w™ . (0)).

rrrrx

(2.27)
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From the above inequality, we conclude that

it O + (wit(0), wiaaa (0)) + (wii(0), g i (0))) = 0. (2.28)

By Cauchy Schwartz, we obtain

et (01 < flwss (0)[[|ewfiaaa (O) ] + llwsz (O) [l (er (O))]I-

As a consequence of equations (2.7) and (2.16-2.17), one can find a constant Cy > 0, depending

only on the initial data wy and wy, such that
lwi(0)]] < Ca,  ¥n €N,

Now, we will estimate wy(t), and wye(t) in L*-norm.
Differentiating equation (2.16) with respect to time and setting { = wj;(t), we derive the

following
SR + 5 (I = [ = ) (1), 002 () 7 — m(O) (8 1)
R0 (0, w0+ (i (L )i, 1)+ 70 (L, 5) = 0.

From (2.18), we get

S+ 5 O = 5 ([ = 7)), wla0)) ) + R O (0), 70 6)

b [ R 7)) i (6)) = (0) 5 (0 (8), 2 (6)) + 0) O
+ (W (@ ()5 (0) + @ (L)L) + 1O, 0)* =0,

Then
MBI + 5 DI + RO O + {019 (@7 (1)), i (0) + (e (L. 1) (L1

PO R = 2 ([ W= D)0l ) dr) = [ = 7l (), wi(0) dr
n n d n n
- R,(O) <wa:r (t)7 wmxt<t>> + E(O)%«’umm (t)’ wzzt(t»
(2.29)
According to Cauchy Schwartz and young’s inequalities, and from assumption (2.5), we deduce
that for all ¢ > 0

2

[ R = D7), 0 dr| < S P+ 3000y [ = ()P dr (2:30)

Since ¢ € C*(R) and (w]'(t)) is bounded, there exists 3; > 0 depends on the initial data

wo, w1, fo such that

[{wi(B)g'(wr' (1), wi ()| < Brflwpy (B)]*. (2.31)
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Using (2.30) and (2.31), we integrate (2.29) over (0,t), we get

SO + S @I + (0) [l (DI d7 + 5 (@i (L, 1)

t t
< b [Tt ar + [ w0 - el i+ D [ )P

' t ) (2.32)
Sl ey [ (PP dr = #(0) [t (7). (7)) + K (0) (s (8), (1)
—/f Ywi (L, 7))* dr + C4,

where C; > 0 depends on the initial data.
By using Cauchy Schwartz and Young’s inequalities, we have that
0 n n t < H(0>2 n t 2 n t 2 233
R(0) (Wi (1), Wiy (1)) < I [lwie O + nllwie (O] (2.33)
t " ak(0))? pt Lo
<) [ el < COE [n @Pdren [lat o @3

and

t 2 t
) A= D7), (1) dr < a0 Il ) 15 ()P dr -+ el (D)
(2.35)
such that n > 0.
Thus from (2.32)-(2.35), we obtain

SIEOIP + S (I + 5(0) | ||wm<r>||2d7+z<wt (L) < 6 [ i) dr
a? 1 (a/i
+ <4n||’f||L1(o,oo)||'f||L°°(0,oo) + *||"f||%1(o,oo) +t / lwi (7)1 dr + 2n]|wl,, (7)||* dr

# (5 ) [ el ar + S o - /O £ (L)) dr + O
(2.36)

Choosing 1 > 0 sufficiently small and considering the first estimate, then we obtain

||wtt<t>||2+(2—2n) e (DI + 5(0) / et (DI dr + 2w (L)' < B [ leiy(r)Pdr

# (50 [t ar = [ @i
(2.37)
where C' > 0 depends on wy, w1, fo- By applying Gronwall’s inequality, we deduce that

ot ()12 + llwpoe (D17 + r(f71 (L, 1)) < M, Vit 20,
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where M’ is a constant that depends on the initial data wg,ws, fo.
Then
i (DN + llwiae 01 + 7 (wp (L, )" < O, (2.38)

where Cy > 0 depends on wy, wy, fo.

2.2.4 Passage to Limits

By estimates (2.26) and (2.38), we deduce that for all n € Nand T' > 0

(w") is bounded in L*(0,T;V)

(wy') is bounded in L*(0,T;V)

(wit) is bounded in L>(0, T; L*(0, L)) (2.39)
(w}'(L,t)) is bounded in L>(0,T)
(f")
(ff) =

f™) is bounded in L>(0,T)
It

(r(w(L,t))?) is bounded in L*(0,T)
Therefore, there exists a subsequence (w™) of (w"), such that

W™ S w weak-* in L®(0,T; V),

w" = w, weak-* in L°(0,T;V),

wit = wy - weak-* in L(0,T; L*(0, L)),
wi"(L,t) = wi(L,t)  weak-* in L>(0,T),
™= f weak-* in L™(0,7),

fm = f weak-*in L™®(0,7).

(2.40)

Due to the compact embedding V' <+ L*(0, L), we obtain a subsequence such that

W™ — w,; strongly in L*(0,T; L*(0, L)). (2.41)
According to (2.41), it follows that

g(w") = g(w) ae. inxze (0,L), t>0.

From (2.39), (2.40), and (2.41), and using the boundedness of the sequence (g(w;")) in
L*(0,T; L*(0, L)), we deduce by Lion’s Lemma that

g(w™) — g(wy) weakly in L*(0,T; L*(0, L)).
Furthermore, by the Sobolev embedding theorem and using (2.40), we obtain

fecC'o, 7], and fm(t)y™(L,t) — f(t)w(L,t) weakly in L*(0,T).
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These convergences are sufficient to pass to the limit in the nonlinear terms of equation (2.16).

Hence, the existence of global solutions in [0, 7] can be established.

2.3 Uniqueness of the Solution
Let w',w? be two solutions of problem (2.1), such that
w' e L™(0,T;U), w!eL>0,T;V), w,eL®0,T;L*0,L)), fori=1,2,

We put y = w' — w?, such that

(€0 + {€eas i®) = [ 6(E = 7)€z () d
+ (L, ) f(Oye(Ly 1) + (€ g(we(1)) =0, V€V,

By choosing £ = y;(t) as a test function, we obtain:

(0 1)) + (e Yoo () — [ (8 = ) i (0), poa (7))

+ f(0)yi (L) + (i, g(we(t))) = 0.

Using identity (2.9), we get

ST+ (50 3)®) + el (1= [ 5ty ar )]
= ROl O — SO — (g (D)
oW ou)®), Vit

We define the modified energy

26((1)) = IOl + (50 var) () + e O (1= [ () ).

According to the hypothesis in (2.5), we obtain

Integrating over (0,7), we get:

o(y(t) < ew(0)), and ¢(y(0)) =0, Vtel0,T].

Thus, ¢(y(t)) =0 for all ¢ € [0, 7], therefore y(t) = 0.

Hence, we obtain

25
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Chapter 3

Exponential Stability Result

In this chapter, we will prove the exponential stability of the solution to the Euler-Bernoulli
beam equation with memory and a boundary output feedback control term, using the multiplier

technique.

From theorem 2.2.1, we have that the problem (2.1) admits a unique solution satisfying
we L®(0,T;U), w € L(0,TV),
wy € L*°(0,T; L*(0, L)).
The derivative of the energy is given by
B() = —f@) (L 0P + [ 5t = 1)t (t),waalr)) dr = a0), ga(®)). (31)

Proof. We have
1
S lwea DI

The differentiation of the functional energy E(t) yields:

B(t) = gl +

B(6) = 5 5(0) = (310 + e O]

=(wi(t), wir()) + (Waa (1), Waar (1))
From the fundamental differential equation of the problem (2.1), we find
t
Wit = —Wagza —|—/0 R(t — T)Waaae (T)dT — g(wy). (3.2)

We multiply equation (3.2) by w; and integrate over the domain [0, L], we obtain

t

(wi(t), win(t)) = = (wi(t), Warea (1)) + (wi(?), / Rl = T)Waan (T) dT) = (Wi(1), g(wr(t))). (3:3)

0
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CHAPTER 3. EXPONENTIAL STABILITY RESULT

By applying integration by parts twice, we obtain

(@e(t), Wanaa(t)) = /0 (s (2, ) d

L

0

= {wmx(l‘a t)wr(, 1)

For
we L>(0,T;U), wy € L=(0,T;V),

and by the boundary conditions, we get

L L
W (T, V) wiz (2, t)] + / Wige (T, 1) wae (2, ) d.
0 0

(wi (1), Wezze (1)) = fF()(wi(L, 1)) + wi(L, 1) /Ot K(t — T)Waa (L, T) dT + (Wi (1), war (1)) . (3.4)

On the other hand, we have

(/ (t — T)Wepas(x, T) dT) dx

Ve(t — T)Wegas (T, T) dT dx

), [ 1t = et

IR
) e

K(t — T)Wagaz (T, T) do dT

(/ Wi (T, ) Wagae (T, T) d:c) dr

t—T
t—T

t), Wz (T)) dT.

=)
/
/
it
it

From (3.4), we find

(). |

t

(= TVaaa(7) ) = (L) [ "t — PYwnan(L, 7) dr

+ /Ot K(t - T> <th: (t)a wxw(7)> dr.

By substituting (3.4) and (3.5) in (3.3), we obtain

(we(t), wae(t)) = = () (@i (L, 1)* = (Wiaa(t), wao (1)) + /0 " {t = 7 raat), e (7)) dr

— (wi(t), glwi(t))).

Substituting (3.6) in E'(t), we get

E'(t) = —f(t)(w(L,1))* + /Ot Rl = T) (Wi (1), wea (7)) dT — (wi(1), g(wi(1)))-

Let us consider the derivative of the modified energy, defined by

pr(t) = —f () (wi(L,1))* = (g(wi(t)), wi(t)) + ;(Fu" O Wra ) (1) — ;H(t)!\wm(t)HQ-
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CHAPTER 3. EXPONENTIAL STABILITY RESULT

Lemma 3.1. We have

1. o(t) >0, and E(t) < (7 o(t).

Proof. we have from assumption (2.5) and (2.6)

1 1 1
(1) = Sl + & (k0 waa) (1) + £ lwneD)?
> 0.
Then
11 , 1 1 ,
Tot) = (I + 5 (k0 w)(B) + 5 laa(t)]
1 1 1
> Sllwr@I + S lwaa (O + o (k0 wes)(t)
2 20
> E(t).
By assumptions (2.5) and (2.7) we get ¢, <0, Vt > 1. O

Theorem 3.1. Let w be the solution given by Theorem 2.2.1 and ¢(t) be defined by (2.10).
Then

Jim (t) =0,
lim f(t) < \/2re(to) + (£ (to)?,

f(0) < \f2relto) + ()2, Vi =t
Now, We define the perturbed energy by
pe(t) = o(t) + (), (3.8)
L 1
where ¥(t) = 5/ w(z, t)wi(z,t) dr, with 0 < § < 3
0
Proposition 3.1. There exist a positive constant my > 0, such that
|0e(t) — ()] < emaip(t), V>0, Ve> 0.
Proof. For Vt > 0 and Ve > 0. We have

|pe(t) — ()] = e[y ()]

L 1
=€ / w(z, tw(z,t)dz|, 0<0< =,
0

2

L
<€ w(x, t)w(x,t)| de.
0
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Using Young’s inequality, we get
1 2 1 2
oelt) = o(0)] < &6 (Sl + S0

We have V C H?*(0,L) C L*(0, L). From sobolev embedding theorem, we obtain

1

[eelt) = (0] < & (Sl + 58 e O

/ 1 1
< emax(L,mp) (5 (O + 5 e 8)])

< emqp(t).
[
Proposition 3.2. There exist constants mq, mg > 0 and €, > 0 such that
d 2
1) < —emagp(t) + emy (1) (L, 1)
for all t >ty and for all € € (0, €].
Proof. Using (3.2), we deduce that
d
o0 =55 ([ vttty ae)
—(5/ (1)) dx—l—é/ (2, t)wy(x,t) dx
(3.9)

:5/ (wi(z,t))? dx—é/ w(T, t)Wagee (2, 1) da

+5/ w(z,t) / (t — T)Wagae(x, 7) dT d — (5/ w(z, t)g(wi(x, 1)) du.

By using integration by parts twice, and from w(0,t) = w,(0,t) = wy.(L,t) =0, and
we L*(0,T;U), we get

/OLw(x, Dwppzz (T, 1) dr = [w(x, )W (T, t)]g + [we(x, t)wes (z, t)]g + /OL(wm(x, )% da

= w(L, )waaa(L, 1) + /0 Y (e, 1)

And by Fubini’s theorem, we obtain

/OLw(x, t) (/Ot K(t — T)Wyae (T, T) dT) dr = /Ot K(t —T) (/OLw(ac, H)Wazae (T, T) dac) dr

t

— [kt =) ( 2, )wana(@, 7)) +/ o (2, ) dzaa (T, )dx) dr

0
t

=/ K(t—T1 ( (L, ) weae (L, ) 4 [wo (2, )wen (x, T)]& +/OL W (T, 1) Wee (2, T) dx) dr
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:/ (t—r ( (L, t)wyaa (L, T +/ W (T, V) wee (T, T) dx) dr
:/ (t — 7Y (L, )wpae (L, T dT—i—/ (t—7) (/Ome(x,t)wm(;r,T) dm) dr
=w(L,t) (/Ot K(t — T)Waaa (L, T) d7‘> + /OL Waa (T, 1) </0t K(t — T)wee(x, T) dT) dx.

By compensating in (3.9), we get

t

e 5/ i, 0)? d — 5w (L, 1) [WW(L n- [
—5/ (Wae(,1))? d$—1—5/ wmxt/(]t/f(t—rwmxT)dT (3.10)

—5/0 w(x, 8)g(wi(z, 1)) d.

K(t — T)wWegs (L, T) dT}

Let us estimate the terms of the equation (3.13), we start with the integral

J = / W (t (/ (t — T)wae (T )dT) dx.

From Fubini’s theorem, we have

1= [t =) ([ st )
= [/ =) ([ ) = ntptr ) ar+ [ =) [ s ae) a,

= "t — 1) ( / ¥ (na(7) = wan () (1) da:) ir.

Using Young’s inequality with n and p = g = 2, we get

and

/()L(wm(T) — Wap (1) )wee (1) d < /OL 4177(wm(7') — Wae(1))? 4 (W (1)) da.

From the assumtions (2.5), multiplying the both sides by x(t — 7), and integrating over (0,1),

we obtain
I's /Ot Rt =) </OL ler,](wzx(T) — ez (1))? + N(wee())? dx> dr

< /Ot Kt — 1) </0L 417](%1(7) (D)2 dx) dr + /Ot Kt —7) (/OL (@ (£)? d:v) i
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e}

From the assumtions (2.6), we have / k(1) < 1. Then
0

<t [\t -y ( [t —wm@))?dx) e [ e lt) de

1y
1 t 2 2
SMIIHIILw(o,o@/O K(t = T)|lwee (T) — waa ()12 AT + 0|wez () [|3-
Hence ) .
T < gl (0 we)(®) + allwse O + [ 6l =y drlons’. (310)

By Young’s inequality, we have

5 <6 [l ) lg(ea(e ) d

< &5 (@) + gt 7).

/()Lw(a:,t)g(wt(:v,t)) dx

From the assumptions on ¢, and by Sobolev Embedding theorem, we get

5| [ ettt 0) de| < 63 (el + ealla0)?).

then

0 /OLw(fC,t)g(Wt(%t))dx < Milwe ()1 + Ma|waa (£)]]*.

By combining (3.13) and (3.11), we get

5
Ye(t) <Ol (t)|]” — dw (L, t) f(t)we(L, ) — 6|was(£)]|” + 4*||/‘v||L°<>(o 00) (K © Wgg ) (T)
+ 6n|wse () |I* + 5/ 7) dr||wea () [|* 4+ My llwe(8)[|* + Ma|wes (t)]]
< (64 M) [l (D)2 + (5n 5+5/ dT+M2> PROIE

— dw(L,t) f(t)wi(L,t) + 7”’£”L°° 0,00) (K © Wiz ) (?)
<= 06(0)+ (3480 B+ (80 54 5 [ )7+ 00 O
)+

(L) f (tn(L (HKHMO@H) (ko o) 8). (3.12)

2

Hence, from (3.7) and (3.12), we deduce that
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Coult) = Tolt) + el

< —F0) (L 1) ~ {ge(®), wlt)) + 5 0 wer) (1) — Sr(D)lwa(D)]
i)+ (4 0 B0 + € (51— § 4§ [ n(r)dr 4 0 ) (O

) )
—edw(L,t) f(t)wi(L,t) + € (ZLTIHHHLoo(OpO) + 2) (K © wa ) (1),

and from (2.5)and (2.7)

) < —FI(L 1)) ~ Bl — (50 w)(t) — 580 |nel DI — edip(t)
be (50 ) Il e (51— 5+ 5 [ tryar +38) sl
- L)l 210)+ ¢ L limom) + 5 ) (w0 wne)0)
<o) - (5-¢(% +M1))||wt OF = (% = ¢( L lllmom + 5 ) (vowno)t)
( e (on- g 3 K ar 4 0 ) O = 10 (1= ) L)
+ 2f() w(L,t))? Vit > to. (3.13)
By setting
7= mm{ZMlQi 35" 5(2 2+O(|2|Z||Loo)’ (2Ms + 270 +K§tf)g (r)dr —0) ?} LN

where, € € [0,0] and (27 — £)d + 2M, > 0, from (3.13) and (3.14), we obtain

Gedt) < —be(t) + 5 )L 1) i > to. .15

Proof of theorem 3.1 . From proposition (3.1), we have

le(t) — @(t)] < emyp(t),

then
(1 —em1)p(t) < @c(t) < (ema + 1)e(t), (3.16)
thus, hence
2D < ot (3.17)
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by (3.15) and (3.17) ,we have

d —e6 5
—edt) < €m1€+ () + 56 FOWL, 1), Vit > to. (3.18)
—€d

we put k = , from Gronwall’s theorem, we get for all ¢ > ¢,
€emy + 1

(1) < exp(— /t: /{JdT)QDE<t0) + texp(— /Tt k:ds)(526]‘(7')(w(L,7'))2 dr

to

0

< exp(—h{t — to))gulto) + 5 [ exp(—h(t — 1) (r)(eo(L, ) dr
< exp(—kt) exp(kto)pe(to) + 526 /t: exp(—k(t — 7)) f(1)(w(L,7))*dr
< exp(—kt)p(to) + 526 sup |f(1)] /Ot exp(—k(t — 7)) (w(L,7))* dr. (3.19)

As in [8], we deduce that

t

[ exp(—k(t = D) (L) dr = [ exp(=k(e =)L) dr + [} exp(—k(t 7))L, 7)dr

< max exp(—k(t = 7)) [ (@(L,7))2dr + max exp(—k(t = 7)) [, (@(L, ) dr

<ow(- ) [felznpar s [wnp
< exp (—";) (/Oéw(L, ) dr + ;(W(L,TW dT>
<ow(-5 ) ([ i m2ar)

<o~ ) [Tettn)tar

Therefore, we obtain
de kt\ [ 9
plt) < exp(—kt)gclto) + 5 sup | f(B)|exp| =5 ) [ (w(L,7)dr,
2 t>0 2 0

By Theorem 2.2.1, together with the embedding U <« L?(0,7; L*(0,T)) and the fact that
w(L,t) € L*(0,00), we can pass to the limit as ¢ — oo to obtain the desired result

tlggo pe(t) = 0.
. 1 1
Let € € (0,&0] where g = min {51, }, so we have ¢ < ——.
2m1 2m1
From (3.16), we obtain

o(t), Vt>to.
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Therefore, we have

Jim o(t) = 0. (3.20)
Now, we consider ,
() = o(t) + 1 sz). (3.21)

Differentiating the above expression yields

d d d [ f2(1)
0 = e+ (52

= —FO (L)~ {ga®), (D) + 5 0wer) 1) = Sr@) e DI + - £ i)
= — () (wi(L,1))* = (glwe(t)), wi()) + ;( "o Wi ) (1) — ;H(t)\!wm(t)!\Q + if(t)r(wt(L, t))*
= —{gn(®), (D) + 5 (K 0 wa)(t) ~ pADllwea(1)
<o.
(3.22)
From (3.22), we have
supv(t) < Mj,
t>0
where Mj > 0 is a constant depending on the initial data, and for ¢ > ¢, we have
Pl1) + - F2(0) < plto) + o (1)
Thus when t — oo, we have
p(00) + 5-F(00) < plto) + 5= (1)
From (3.20)
f(o0) < \/27”90(%) + f2(to)-
Since f(t) is nondecreasing, we obtain
F(t) < \/2re(to) + f2(to), Vit > to. (3.23)
O

Theorem 3.2. Let w be the solution of problem (2.1), and let p(t) be the modified energy
defined by (2.10). Then, there ezist constants K > 0 and A > 0 such that

E(t) < Kexp(=At), Vt>t.

Proof. From (3.18), we see that

d —ed

—.(t) <
dt(p()_eml—i—l

eelt) + 5 FO(L D), N
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By integrating over (to,t) and using (3.23), we get

oe®) < wulto) =k [ @)+ 5 [ f) (L )P dr

t de t
< gilto) =k [ ) dr+ TSl [ (@(L)dr.

Since /oo(w(L, 7))*dr < k', we have
0

t o€
0ct) < pelto) =k [ o) dr+ TR

By Gronwall’s inequality, we get
0e(t) < (K7 + @e(ty)) exp(—kt), Vit > to.

1
For sufficiently small € € (0, —), using the proposition (3.1), we get
m

E(t) < €7 'p(t) < Kexp(—=At), Vit > to,

Kl + Qpe(tO)
1—emy

where K = ¢! and \ = k.
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Conclusion

The aim of this work is to conduct a qualitative analysis of the Euler-Bernoulli beam equation,
which is a partial differential equation that describes the bending of elastic beams under various
loadings. In this study, the model is extended by incorporating a viscoelastic memory term,
reflecting the material’s dependence on its deformation history, along with a boundary output
feedback control law.

This work is structured into three main chapters: The first chapter presents some fundamental
functional spaces and mathematical inequalities that will be used in the subsequent analysis.
In the second chapter, we introduce the mathematical formulation of the problem and prove
the existence of a solution using the Galerkin method. The third and final chapter is devoted
to studying the exponential stability of the solution through the construction of a suitable

Lyapunov functional and the application of the multiplier technique.
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Abstract

In this study, we address the Euler—Bernoulli beam equation incorporating a viscoelastic
memory effect and a boundary output feedback control term. The work begins with a
review of essential functional analysis concepts and fundamental inequalities, which
serve as foundational tools for the mathematical treatment of the problem. We then
establish the existence and uniqueness of the solution using the Galerkin approximation
scheme. Finally, by applying the multiplier technique, we prove that the energy of the
system decays exponentially over time.

Key words: Euler-Bernoulli Beam equation, Galerkin method, Output feedback control
term, Memory term, exponentiel stability.

Résumé

Dans cette étude, nous abordons I'équation de poutre d’Euler—Bernoulli en incorporant
un effet de mémoire viscoélastique et un terme de contrdle en rétroaction basé sur la sor-
tie aux frontieres. Le travail commence par une révision des concepts fondamentaux de
I’analyse fonctionnelle et des inégalités de base, qui constituent des outils essentiels pour
le traitement mathématique du probléme. Ensuite, nous établissons I'existence et I'unicité
de la solution a l'aide de la méthode d’approximation de Galerkin. Enfin, en appliquant la
technique du multiplicateur, nous démontrons que I'énergie du systéme décroit de facon
exponentielle au cours du temps.

Mots clés: Equation de la poutre d'Euler-Bernoulli, méthode de Galerkin, terme de con-

trole de rétroaction de sortie, terme de mémoire, stabilité¢ exponentielle.
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