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Introduction

P artial differential equations (PDEs) occupy a central place in applied mathematics,
representing the mathematical framework within which a wide range of natural phe-

nomena and physical and engineering systems can be described. Thanks to its ability to relate
spatial and temporal variations of phenomena, PDEs have become indispensable tool in the
study of fields as diverse as mechanics of continuous media, fluid dynamics, heat diffusion, and
reaction and diffusion models. A large part of its importance lies in the fact that it enables
researchers to understand the complex behaviour of real systems and predict their evolution
over time.
Among the special types of partial differential equations, damped equations are of particular
interest, as they play a crucial role in modelling the effects of the gradual loss of energy within
a system. The introduction of damping terms into the equations enables a more accurate anal-
ysis of non-ideal dynamic situations, where phenomena such as vibration reduction, gradual
stabilisation, and extinction with time emerge. The study of damped equations is not only
limited to describing the behaviour of physical and mechanical systems, but extends to issues
of stability, existence, and extremes of solutions, making it a topic rich in both theoretical
results and practical applications.
The Euler-Bernoulli beam equation is an important classical model that describes the curva-
ture of elastic beams under different loads, and was developed in the 18th century by Leonhard
Euler and Daniel Bernoulli. As engineering applications and industrial techniques evolved,
this simple model was no longer sufficient to represent the behaviour of complex materials and
modern systems, and had to be developed to include more realistic effects such as memory,
viscosity and automated control.
One of the recent extensions of the model is the inclusion of a memory term that expresses the
response of a material depending on its deformation history, as in viscoelastic materials such
as polymers, which are characterised not only by their immediate response to forces, but also
by their past history. This effect is represented in the mathematical model by a time integral
term that expresses this temporal dependence.
Furthermore, output-dependent boundary feedback control is used as an effective mechanism
to stabilise the girder, where forces or moments are applied at the edges based on local mea-
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INTRODUCTION

surements only without the need to monitor all internal points. This advanced theoretical
framework is of great importance in many applications such as aerospace engineering, flexible
robot arms, smart structures, and precision devices, as it provides high accuracy in control and
vibration prevention.
The main contribution of this work is to investigate the well-posedness and exponential stabil-
ity of the Euler–Bernoulli beam equation with a memory term and boundary output feedback
control. The memory term reflects the dependence of the material on its past deformations (for
more details, see [5] [7]). Our work is based on [17].
In this thesis, we consider the following problem:

ωtt(x, t) + ωxxxx(x, t)−
∫ t

0
κ(t− τ)ωxxxx(x, τ) dτ + g(ωt(x, t)) = 0, x ∈ [0, L], t > 0, (1)

where κ represents the kernel of the memory term, g : R→ R is a given function, v : R+ → R
the boundary control force applied at the and of the beam and ωout(t) stands for the measured
signal of the system at time t.
with the following boundary condition and initial conditions:

ω(0, t) = ωx(0, t) = ωxx(L, t) = 0, t ≥ 0,

ωxxx(L, t)−
∫ t

0
k(t− τ)ωxxx(L, τ) dτ = v(t), t ≥ 0,

ω(x, 0) = ω0(x), ωt(x, 0) = y1(x), x ∈ [0, L],

ωout(t) = ωt(L, t).

(2)

This System describes the transverse vibration of an extensible beam clamped at x = 0 and
supported at x = L by a control force.
We propose an adaptive output feedback controller law of the form:

v(t) = f(t)ωt(L, t),

ft(t) = rω2
t (L, t), f(0) = f0, r > 0.

This work is divided into three chapters:
Chapter 1: In this chapter, we introduce the fundamental mathematical tools and notations
required throughout this work. We begin by reviewing some essential functional spaces, which
provide the appropriate framework for analyzing partial differential equations. Next, we recall
several important inequalities and theorems which play a crucial role in the derivation of a priori
estimates and stability results. Finally, we present the Faedo-Galerkin method, the technique
used in proving the existence of weak solutions to PDEs.
Chapter 2: In this chapter, we begin by presenting the precise formulation of the problem
under consideration, incorporating a set of well-defined hypotheses to ensure the mathematical
rigor of the study. We then proceed to establish the existence and uniqueness of the solution
to the problem.
Chapter 3: This chapter is devoted to studying the exponential stability of the solution to the
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INTRODUCTION

problem, providing a detailed analysis of how the solution behaves over time under the given
conditions.
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Chapter 1
Functional Analysis Foundations for PDEs

In this chapter, we review some concepts from functional spaces, along with key inequalities
that will be used in subsequent chapters.

1.1 Some Functional Spaces

1.1.1 Banach Space

Definition 1.1.1. Let X be a vector space. A map ‖·‖ : X → R+ is called a norm if it satisfies
the following properties:

1. ‖x‖ = 0⇔ x = 0 (definiteness).

2. ‖x‖ ≥ 0 , ∀x ∈ X (Positivity).

3. ‖λx‖ = |λ|‖x‖, ∀x ∈ X and scalars λ ∈ K (Homogeneity).

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ , ∀x, y ∈ X (Triangle inequality).

The pair (X, ‖.‖) is called a normed vector space.

Definition 1.1.2. Any complete normed vector space is called a Banach space. [11]

1.1.2 Hilbert Space

Definition 1.1.3. (Inner Product): Let H be a vector space. Inner product on H is a map
from H ×H to K = R(or C), denoted by 〈·, ·〉, which satisfies the following properties.
For every vectors x, y, z ∈ H and scalar λ ∈ K:

1. Positivity and definiteness

〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0.

4



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

2. Bilinearity (or sesquilinearity in the complex case)

〈x+ λz, y〉 = 〈x, y〉+ λ〈z, y〉,

〈x, y + λz〉 = 〈x, y〉+ λ̄〈x, z〉.

3. Symmetry
〈x, y〉 = 〈y, x〉.

where the bar denotes complex conjugate.

Definition 1.1.4. (Hilbert space): A Hilbert space is a vector space H equipped with an
inner product, and complete with respect to the induced norm by the inner product.
So Hilbert space is a Banach space [18].

Remark 1.1.1. The inner product induces a norm defined as:

‖x‖ =
√
〈x, x〉 ,∀x ∈ H.

Proposition 1.1.1. Let x, y ∈ H . Then

|〈x, y〉| ≤ ‖x‖‖y‖,

is called Cauchy Schwarz inequality.

Orthogonality

Definition 1.1.5. Two vectors u and v are said to be orthogonal if (u, v) = 0. An element
v ∈ V is said to be orthogonal to a subset U ⊆ V if (u, v) = 0 for every u ∈ U .

Definition 1.1.6. Let U be a subset of an inner product space V . We define its orthogonal
complement to be the set

U⊥ = {v ∈ V | (v, u) = 0 for all u ∈ U}.

The orthogonal complement of any set is a closed subspace.

Definition 1.1.7. Let V be a finite-dimensional inner product space. A basis {v1, . . . , vn} of
V is said to be an orthogonal basis if

(vi, vj) = 0, for 1 ≤ i 6= j ≤ n.
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CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

1.1.3 Space of Continuous Functions

Let x = (x1, x2, · · · , xn) denote the generic point of an open set Ω of Rn. Let f be a function
defined from Ω to R we designate by

Dif(x) = fxi
(x) = ∂

∂xi
f(x)

the partial derivative of f with respect to xi, (1 ≤ i ≤ n).

Definition 1.1.8. We denote by C(Ω) the space of continuous functions defined on the domain
Ω. Moreover, the norm on this space is

‖f‖C(Ω) = sup
x∈Ω
|f(x)|.

Definition 1.1.9. Ck(Ω) denotes the space of functions that are k-times continuously differ-
entiable on the domain Ω; that is, all Dαf are continuous on Ω.
The norm on this space is defined by:

‖f‖Ck(Ω) =
∑
|α|≤k

sup
x∈Ω
|Dαf(x)|,

where α is a multi-index and Dαf denotes the corresponding partial derivative.
The space C∞(Ω) is the space of functions that are infinitely differentiable on Ω; that is,

C∞(Ω) =
∞⋂
k=0

Ck(Ω).

The space C∞0 (Ω) is the set of all infinitely differentiable (smooth) functions with compact
support contained in Ω. That is,

C∞0 (Ω) = {ϕ ∈ C∞(Ω) | supp(ϕ) ⊂⊂ Ω} .

Functions in C∞0 (Ω) are often called test functions.

1.1.4 Lebesgue Space Lp

We denote by Ω an open domain in Rn, where n ∈ N and let p ∈ R with 1 ≤ p ≤ ∞.

Definition 1.1.10. Let p ∈ R where 1 ≤ p < ∞. We denote by Lp(Ω) the class of all
measurable functions f defined on Ω such that

∫
Ω
|f(x)|p dx <∞,

and we write

Lp(Ω) =
{
f : Ω→ R or C | f is measurable and

∫
Ω
|f(x)|p <∞

}
.
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CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

Definition 1.1.11. Let p =∞. The space L∞(Ω) is defined as the vector space of all measur-
able functions f : Ω→ R or C, which are essentially bounded on Ω, that is:

L∞(Ω) =
{
f : Ω→ R or C

∣∣∣ f is measurable and ∃k ≥ 0 such that ; |f(x)| ≤ k a.e.on Ω
}
.

Recall: A measurable function f is said to be essentially bounded on Ω, if there exists a
constant k > 0 such that |f(x)| ≤ k almost everywhere in Ω.

Proposition 1.1.2. The norm in this space is defined by:

‖f‖Lp =
(∫

Ω
|f(x)|pdx

) 1
p

for 1 ≤ p <∞,

‖f‖L∞ = sup
Ω
|f(x)| for p =∞.

Corollary 1.1.1. L2(Ω) is a Hilbert space with respect to the inner product

〈f, g〉 =
∫

Ω
f(x)g(x) dx.

Definition 1.1.12. We denote by Lploc(Ω) the space of functions which are Lp on any bounded
sub-domain of Ω.

1.1.5 Vector-Valued Function Spaces

Definition 1.1.13. Let a, b ∈ R with a < b, and let X be a Banach space. For 1 ≤ p <∞, the
space Lp((a, b);X) consists of all strongly measurable functions f : (a, b)→ X such that

‖f‖Lp((a,b);X) :=
(∫ b

a
‖f(t)‖pX dt

)1/p

<∞.

For p = ∞, the space L∞((a, b);X) consists of all essentially bounded measurable functions
f : (a, b)→ X, with

‖f‖L∞((a,b);X) := ess sup
t∈(a,b)

‖f(t)‖X <∞.

Equipped with their respective norms, Lp((a, b);X) is a Banach space for all 1 ≤ p ≤ ∞.

Lemma 1.1.1. If f ∈ Lp(a, b;X), ∂f
∂x
∈ Lp(a, b;X), then the function f is continuous from

[a, b] to X( f ∈ C(a, b;X)).

1.1.6 Sobolev Space

Weak Derivatives

Definition 1.1.14. [6] We say that a function f ∈ L1
loc(Ω) has a weak partial derivative of

order α, where α is a multi-index, if there exists a function g ∈ L1
loc(Ω) such that

∫
Ω
f(x)Dαϕ(x) dx = (−1)|α|

∫
Ω
g(x)ϕ(x) dx, ∀ϕ ∈ D(Ω),

7



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

where D(Ω) = C∞0 (Ω) is the space of test functions.
In this case, we write

Dαf = g,

and we say that g is the αth weak derivative of f .

Sobolev Spaces Wm,p(Ω)

Definition 1.1.15. Let m ∈ N and Lp Lebesgue space where 1 ≤ p ≤ ∞, for an open domain
Ω ⊆ Rn. The Sobolev space Wm,p(Ω) defined as:

Wm,p = {f ∈ Lp(Ω) | Dαf ∈ Lp(Ω), ∀α : |α| ≤ m}

where α ∈ Nn, |α| = α1 +α2 + · · ·+αn the length of α, and Dαf is the weak (or distributional)
partial derivative of f .

The norm in the Sobolev space is described as follows:
For 1 ≤ p <∞

‖f‖Wm,p(Ω) = ‖f‖m,p =
 ∑

0≤|α|≤m
‖Dαf‖pLp(Ω)

 1
p

.

For p =∞
‖f‖Wm,∞(Ω) = ‖f‖m,∞ = max

0≤|α|≤m
‖Dαf‖L∞(Ω).

Theorem 1.1.1. Wm,p(Ω) is a Banach space [1].

Remark 1.1. In the Sobolev space Wm,p(Ω), we have the following special cases:

• If m = 0, then W 0,p(Ω) = Lp(Ω).

• If p = 2, then Wm,2(Ω) = Hm(Ω).

Definition 1.1.16. The space Hm(Ω) is a Hilbert space with the inner product:

〈f, g〉Hm(Ω) =
∑

0≤|α|≤m
〈Dαf,Dαg〉.

Theorem 1.1.2. Wm,p(Ω) is separable if 1 ≤ p <∞, and is uniformly convex and reflexive if
1 < p <∞. [1]

Sobolev Embedding Theorems

Definition 1.1.17. Let V and W be tow Banach spaces with V ⊆ W . We say the space V is
continuously embedded in W and write V ↪→ W, if

‖v‖W ≤ c‖v‖V , v ∈ V. (1.1)

8



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

We say the space V is compactly embedded in W and write V ↪→↪→ W , if (1.1) holds and each
bounded sequence in V has a convergent subsequence in W .
If V ↪→ W , the functions in V are more smooth than the remaining functions in W .

Theorem 1.1.3. Let Ω ⊂ Rd be a non-empty, open and bounded domain with Lipschitz bound-
ary. Then the following Sobolev embedding results hold:

(a) If k
d
<

1
p
, then

Wk,p(Ω) ↪→ Lq(Ω)

for any q ≤ p∗, where
1
p∗

= 1
p
− k

d
.

(b) If k
d

= 1
p
, then

Wk,p(Ω) ↪→ Lq(Ω)

for any q <∞.

(c) If k
d
>

1
p
, then

Wk,p(Ω) ↪→ Cr,β(Ω),

where
r = k −

⌊
d

p

⌋
− 1,

and

β =


d

p
−
⌊
d

p

⌋
, if d

p
/∈ N,

any β ∈ (0, 1), if d
p
∈ N.

In the one-dimensional case, with Ω = (a, b) a bounded interval, we have

Wk,p(a, b) ↪→ C[a, b]

for any k ≥ 1 and p ≥ 1.

Theorem 1.1.4. Let Ω ⊂ Rd be a non-empty, open, bounded domain with Lipschitz boundary.
Then the following Sobolev embedding results hold:

(a) If k
d
<

1
p
, then

Wk,p(Ω) ↪→↪→ Lq(Ω), for all q < p∗,

where
1
p∗

= 1
p
− k

d
.

9



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

(b) If k
d

= 1
p
, then

Wk,p(Ω) ↪→↪→ Lq(Ω), for all q <∞.

(c) If k
d
>

1
p
, then

Wk,p(Ω) ↪→↪→ Cr,β(Ω),

where
r = k −

⌊
d

p

⌋
− 1,

and

β =


d

p
−
⌊
d

p

⌋
, if d

p
/∈ N,

any β ∈ (0, 1), if d
p
∈ N.

Theorem 1.1.5. Let k and l be non-negative integers,k > l, and p ∈ [1,∞]. Let Ω ⊆ Rd be a
non-empty open bounded Lipschitz domain. Then Wk,p(Ω) ↪→↪→W l,p(Ω). [3]

Aubin-Lions Lemma

Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Assume that X0 is compactly
embedded in X and that X is continuously embedded in X1, assume also that X0 and X1 are
reflexive spaces. For 1 < p, q < +∞, let

W = {f ∈ Lp(0, T ;X0); f ′ ∈ Lq(0, T ;X1)} . (1.2)

Then the embedding of W into Lp(0, T ;X) is also compact.

1.1.7 Types of Convergence

Let X be a normed space, X ′ its dual space.

Definition 1.1.18. A sequence {xn} ⊆ X is said to converge strongly to x ∈ X if

‖un − u‖X → 0 as n→∞.

This is also called convergence in norm and is denoted by

un → u in X.

Definition 1.1.19. A sequence {xn} is said to converge weakly to x ∈ X if

〈f, xn〉 → 〈f, x〉 for all f ∈ X ′,

and write xn ⇀ x as n→∞.

10



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

Definition 1.1.20. A sequence {fn} ⊂ X ′ is said to converge weak-* (or weak-star) to f ∈ X ′

if
fn(x)→ f(x) for all x ∈ X.

This is denoted by
fn

∗
⇀ f in X ′.

Proposition 1.1.3. [13] Let x ∈ X, let {xn} ⊂ X. Then:

(i) If xn → x in X, then xn ⇀ x in X.

(ii) If xn ⇀ x in X, then the sequence {xn} is bounded in X.

Theorem 1.1.6. Suppose X is a reflexive Banach space. Then every bounded sequence {xn} ⊂
X has a weakly convergent subsequence. [3]

Theorem 1.1.7. Let X be a separable Banach space (i.e., one which contains a dense countable
subset). Then, from any bounded sequence of elements of X ′, we can extract a subsequence which
weakly-* converges in X ′.

1.2 Important Inequalities

Let 1 ≤ p ≤ ∞; we denote by q the conjugate exponent

1
p

+ 1
q

= 1

1.2.1 Young’s Inequality

Let a and b be real numbers, and 1 < p, q <∞ such that 1
p

+ 1
q

= 1. Then

ab <
ap

p
+ bq

q

This is known as Young’s inequality.

Young’s Inequality With η

Let be a, b > 0, and let 1 < p, q <∞ such that 1
p

+ 1
q

= 1. For η > 0 we have the inequality

ab < ηap + 1
(ηpq)

p
q

bq

This is known as also Young’s inequality with η.

Proof. see [6]

11



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

1.2.2 Gronwall’s Inequality

Differential Form

Let ξ(t), η(t) and γ(t) be three continuous functions defined on [a, b] such that ξ is differentiable
on ]a, b[. We assume that

ξ′(t) ≤ η(t)ξ(t) + γ(t), for all t ∈]a, b[,

then, we have
ξ(t) ≤ exp

(∫ t

a
η(s) ds

)
ξ(a) +

∫ t

a
exp

(∫ t

s
η(r) dr

)
γ(s) ds.

Integral Form

Let ξ(t), η(t) be continuous in [0, T ], with η nondecreasing and γ positive constant. If

ξ(t) ≤ η(t) + γ
∫ t

0
ξ(s) ds, ∀t ∈ [0, T ],

then
ξ(t) ≤ η(t) exp(γt), ∀t ∈ [0, T ].

1.3 Fubini’s Theorem

Let f be summable in I = I1 × I2 ⊂ Rn × Rm. Then

1. f(x, ·) ∈ L1(I2) for a.e. x ∈ I1, and f(·, y) ∈ L1(I1) for a.e. y ∈ I2.

2.
∫
I2
f(·, y) dy ∈ L1(I1), and

∫
I1
f(x, ·) dx ∈ L1(I2)

3. the following formulas hold
∫
I1×I2

f(x, y) dx dy =
∫
I1

(∫
I2
f(x, y) dy

)
dx =

∫
I2

(∫
I1
f(x, y) dx

)
dy.

1.4 Leibniz’s Rule for Differentiation Under the Integral
Sign

Let the integral
I(t) =

∫ b(t)

a(t)
f(x, t) dx

where f(x, t) and ∂f

∂t
are continuous on the rectangle [A,B]× [c, d], where [A,B] contains the

union of all the intervals [a(t), b(t)], and if a(t) and b(t) are differentiable functions on [c, d],
then

d

dt
I(t) =

∫ b(t)

a(t)

∂

∂t
f(x, t) dx+ f(b(t), t)b′(t)− f(a(t), t)a′(t).

12



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

1.5 Faedo-Galerkin method

Definition 1.5.1. Let V be a separable Hilbert space, and {Vn}n∈N a family of finite–dimensional
vector spaces satisffying the axioms

• Vn ⊂ V, dim Vn <∞,

• Vn → V when k −→∞.

In the following sense: there exists Vn subspace dense in V , such that for all v ∈ V , we can
find a sequence {vn}n∈N ⊂ Vn satisfying

vn −→ v in V when n −→∞.

The space Vn is called a Galerkin approximation of order n.

The Scheme of the Method of Faedo-Galerkin

Let P to be the exact problem for which we want to show the existence of a solution in a
function space built on a separable Hilbert space V . Let u to be the unique solution of the
problem P .
After having made a choice of a Galerkin approximation Vn of V it is necessary to define an
approximate problem Pn in finite-dimensional space Vn having a unique solution un. Then, the
course of the study is then as follows:
Step 1 : We define the solution un of the problem Pn.
Step 2 : We establish estimates on un (called a priori estimate) to show that un is uniformly
bounded.
Step 3 : By using the results that un is uniformly bounded, it is possible to extract from
{un}n∈N a subsequence {u′n}n∈N which has a limit in the weak topology of the space involved
in the estimations of step 2. Let u to be the obtained limit.
Step 4 : We show that u is the solution of the problem P .
Step 5 : Results of strong convergences.
The objective is to build an approximation process which ultimately provides us with a proof of
the existence of solution, this process amounts to approaching un(x, t) as a linear combination
of functions of the bases vi such that

un(x, t) =
n∑
i=1

φi(t)vi(x), (x, t) ∈ Ω× [0, T ],

where the φi(t) are then solutions to a system of n linear differential equations.

1.6 Stabilization method (Lyapunov functional)

To establish the desired stability results of the systems, we use the multiplier method. The
multiplier method is mainly based on the construction of an appropriate Lyapunov function

13



CHAPTER 1. FUNCTIONAL ANALYSIS FOUNDATIONS FOR PDES

L(t), which is equivalent to the energy of the solution. By the equivalence L ∼ E, we mean
that there exist positive constants α, β > 0 such that

αE(t) ≤ L(t) ≤ βE(t), ∀t > 0. (1.3)

To prove exponential stability, we show that L(t) satisfies the differential inequality

L′(t) ≤ −γL(t), ∀t > 0, for some γ > 0. (1.4)

A simple integration of (1.4) over the interval (0, t), together with the equivalence (1.3), leads
to the desired exponential stability result.

1.7 Stabilization types

There are several types of stabilization, classified based on the rate at which the energy of the
system decays to zero as time progresses.

• Strong Stabilization: This refers to the situation where the energy of the system
decays to zero as time tends to infinity. That is

E(t)→ 0 as t→∞.

This type of stabilization does not specify the speed of decay, only that the energy even-
tually vanishes.

• Exponential (Uniform) Stabilization: In this case, the energy decays exponentially
fast, which is the fastest type of stabilization. There exist constants α > 0 and C > 0
such that

E(t) ≤ Ce−αt, ∀t > 0.

This implies a uniform and rapid decay of the energy.

• Polynomial Stabilization: Here, the energy decays at a polynomial rate, which is
slower than exponential decay. There exist constants β > 0 and C > 0 such that

E(t) ≤ C

tβ
, ∀t > 0.

This behavior typically arises when exponential decay is not possible due to geometric or
damping limitations.

14



Chapter 2
Well-Posedness

In this chapter, we will prove the existence and uniqueness of the solutions to the Euler-Bernoulli
beam equation by using the Galerkin method.

2.1 Problem Presentation

Let [0, L], with L > 0, be an interval in R. Our objective is to investigate the existence and
uniqueness of the solution to the Euler-Bernoulli beam equation with a memory term and a
boundary output feedback control term.
The problem is mathematically modeled as follows: We seek a real-valued function ω(x, t),
where x ∈ [0, L] and t ∈ R+, that satisfies the following linear partial differential equation


ωtt(x, t) + ωxxxx(x, t)−
∫ t

0
κ(t− τ)ωxxxx(x, τ) dτ + g(ωt(x, t)) = 0, x ∈ [0, L], t > 0,

ω(0, t) = ωx(0, t) = ωxx(L, t) = 0, t ≥ 0,

ωxxx(L, t)−
∫ t

0
κ(t− τ)ωxxx(L, τ) dτ = f(t)ωt(L, t), t ≥ 0,

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x), x ∈ [0, L] ,

ft(t) = r(ωt(L, t))2, t > 0, f(0) = f0 > 0, r > 0.

(2.1)

The energy of the system (2.1) is given by

E(t) = 1
2

∫ L

0
ω2
t (x, t) + ω2

xx(x, t) dx. (2.2)

In order to demonstrate the existence and uniqueness of the solution to the system (2.1), we
first present the essential notation and assumptions required for the proof .

Notation 2.1.1. Let L2(0, L) be the usual Hilbert space with the inner product

〈f, g〉 =
∫ L

0
f(x)g(x) dx,
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CHAPTER 2. WELL-POSEDNESS

and the norm
‖f‖L2 = ‖f‖.

•Throughout this paper, we define the space

V =
{
ω ∈ H2(0, L) | ω(0) = ωx(0) = 0

}
,

equipped with norm
‖ω‖V = ‖ωxx‖.

And the space
U =

{
ω ∈ V ∩H4(0, L) | ωxx(L) = 0

}
,

equipped with norm
‖ω‖U = ‖ωxx‖+ ‖ωxxxx‖.

Remark 2.1.1. According to Poincaré’s inequality, ‖ω‖U and ‖ω‖V are equivalent to the stan-
dard norms of H4(0, L) and H2(0, L), respectively.

• We now state the following hypotheses:
(H1) For any ω(x, 0) = ω0(x) ∈ U and ωt(x, 0) = ω1(x) ∈ L2(0, L), we have

ω(0, 0) = ωx(0, 0) = ωxx(L, 0) = 0, (2.3)

ωxxx(L, 0) = f0ωt(L, 0). (2.4)

The functions κ and g are assumed to satisfy the following conditions:
(H2) For any κ ∈ W1,∞(0,∞) ∩W2,1(0,∞), such that κ(t) ≥ 0 for all t ≥ 0, and for some
α1, α2, α3, α4 > 0, we assume

−α1κ(t) ≤ κt(t) ≤ −α2κ(t), ∀t ≥ t0,

|κt(t)| ≤ α3κ(t); 0 ≤ t ≤ t0,

0 ≤ κtt(t) ≤ α4κ(t), t ≥ 0,

(2.5)

and
` = 1−

∫ ∞
0

κ(τ) dτ ≥ 0. (2.6)

(H3) Let g : R → R be a continuously differentiable function. Assume that there exists a
constant β > 0 such that

g(0) = 0 and (g(u)− g(v))(u− v) ≥ β|u− v|2 for all u, v ∈ R. (2.7)

•To simplify, we denote by � the operator defined by

(κ � ωxx)(t) =
∫ t

0
κ(t− τ)‖ωxx(τ)− ωxx(t)‖2 dτ, (2.8)
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such that

d

dt
(κ � ωxx)(t) =

∫ t

0
κ′(t− τ)‖ωxx(τ)− ωxx(t)‖2 dτ +

∫ t

0
κ(t− τ) d

dt
‖ωxx(τ)− ωxx(t)‖2 dτ

=(κ′ � ωxx)(t) + 2
∫ t

0
κ(t− τ)〈ωxx(τ)− ωxx(t),−ωxxt(t)〉 dτ

=(κ′ � ωxx)(t)− 2
∫ t

0
κ(t− τ)〈ωxx(τ), ωxxt(t)〉 dτ + d

dt
‖ωxx(t)‖2

∫ t

0
κ(t− τ) dτ

=(κ′ � ωxx)(t) + 2
∫ t

0
κ(t− τ)〈ωxx(τ), ωxxt(t)〉 dτ −

d

dt

(
‖ωxx(t)‖2

∫ t

0
κ(τ) dτ

)
− κ(t)‖ωxx(t)‖2.

Thus, we have
∫ t

0
κ(t− τ)〈ωxx(τ), ωxxt(t)〉 dτ =1

2(κ′ � ωxx)(t)−
1
2(κ � ωxx)′(t)

+ 1
2
d

dt

(
‖ωxx(t)‖2

∫ t

0
κ(τ) dτ

)
− 1

2κ(t)‖ωxx(t)‖2.
(2.9)

•The modified energy is defined by:

ϕ(t) =E(t) + 1
2

(
(κ � ωxx)(t)− ‖ωxx(t)‖2

∫ t

0
κ(τ) dτ

)
=1

2‖ωt(t)‖
2 + 1

2(κ � ωxx)(t) + 1
2

(
1−

∫ t

0
κ(τ) dτ

)
‖ωxx(t)‖2. (2.10)

2.2 Existence of the Solution

Considering the above hypotheses, we have the following theorem.

Theorem 2.2.1. Let ω0 ∈ U, ω1 ∈ L2(0, L). Suppose that assumptions (H1), (H2), and (H3)
are satisfied. Then, the problem (2.1) admits a unique solution ω in the following sense: for
any T > 0, we have

ω ∈ L∞(0, T ;U), ωt ∈ L∞(0, T ;V ),

ωtt ∈ L∞(0, T ;L2(0, L)), f ∈ C1(0, T ).

By applying the Sobolev embedding theorem, we deduce that the solution

ω ∈ C ((0, L)× [0, T ]) .

Next, We will prove the theorem 2.2.1. By using Faedo-Galerkin method.
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2.2.1 Variational Form

Let ξ ∈ V . Multiplying the fundamental differential equation of the problem (2.1) by a function
ξ, and integrating over the domain [0, L], we obtain

〈ξ, ωtt(t)〉+ 〈ξ, ωxxxx(t)〉 − 〈ξ,
∫ t

0
κ(t− τ)ωxxxx(τ) dτ〉+ 〈ξ, g(ωt(t))〉 = 0. (2.11)

By applying integration by parts twice, we obtain

〈ξ, ωxxxx(t)〉 =
∫ L

0
ξ(x)ωxxxx(x, t) dx

=
[
ωxxx(x, t)ξ(x)

]L
0
−
[
ωxx(x, t)ξx(x)

]L
0

+
∫ L

0
ξxx(x)ωxx(x, t) dx.

For ξ ∈ V and the boundary conditions, we get

〈ξ, ωxxxx(t)〉 = ξ(L)ωxxx(L, t) + 〈ξxx, ωxx(t)〉. (2.12)

On the other hand, by Fubini theorem, we have

〈ξ,
∫ t

0
κ(t− τ)ωxxxx(τ) dτ〉 =

∫ L

0
ξ(x)

(∫ t

0
κ(t− τ)ωxxxx(x, τ) dτ

)
dx

=
∫ L

0

∫ t

0
ξ(x)κ(t− τ)ωxxxx(x, τ) dτ dx

=
∫ t

0

∫ L

0
ξ(x)κ(t− τ)ωxxxx(x, τ) dx dτ

=
∫ t

0
κ(t− τ)

(∫ L

0
ξ(x)ωxxxx(x, τ) dx

)
dτ

=
∫ t

0
κ(t− τ)〈ξ, ωxxxx(τ)〉 dτ〈ωt

=ξ(L)
∫ t

0
κ(t− τ)ωxxx(L, τ) dτ +

∫ t

0
κ(t− τ)〈ξxx, ωxx(τ)〉 dτ.

(2.13)

By substituting (2.12) and (2.13) in (2.11) then

〈ξ, ωtt(t)〉 −
∫ t

0
κ(t− τ)〈ξxx, ωxx(τ)〉+ ξ(L)

(
ωxxx(L, t)−

∫ t

0
κ(t− τ)ωxxx(L, τ)d τ

)
+ 〈ξ, g(ωt(t))〉+ 〈ξxx, ωxx(t)〉 = 0.

(2.14)

The problem (2.1) can be formulated as: Found the solution ω(t) ∈ V such that

〈ξ, ωtt(t)〉+ 〈ξxx, ωxx(t)〉 −
∫ t

0
κ(t− τ)〈ξxx, ωxx(τ)〉+ ξ(L)f(t)ωt(L, t)

+ 〈ξ, g(ωt(t))〉 = 0, ∀ξ ∈ V.
(2.15)

Now, we are ready to applying Fadeo-Galerkin approximation.
Let {ξj} be a complete orthogonal system of V , such that the initial data {ω0, ω1} ∈ Span{ξ1, ξ2}.
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For each n ∈ N, we define the finite-dimensional subspace Vn = Span{ξ1, ξ2, · · · , ξn} of V .
We look for an approximate solution of the form

ωn(x, t) =
n∑
j=1

φj(t)ξj(x),

where φj(t) are time-dependent coefficients to be determined.
The function ωn(x, t) is required to satisfy the following weak formulation: for every ξ ∈ Vn,
the approximate equation must hold


〈ξ, ωntt(t)〉+ 〈ξxx, ωnxx(t)〉 −

∫ t

0
κ(t− τ)〈ξxx, ωnxx(τ)〉 dτ + ξ(L)fn(t)ωnt (L, t)

+〈ξ, g(ωnt (t))〉 = 0, ∀ξ ∈ Vn,
(2.16)

with condition

fnt (t) = r(ωnt (t))2 = r

 n∑
j=1

φjt(t)ξj(L)
2

,

fn(0) = fn0 ≥ 0,

ωn(x, 0) = ωn0 (x)→ ω0(x) in U, ωnt (x, 0) = ωn1 (x)→ ω1(x) in V.

(2.17)

Equations (2.16) yield a system of ordinary differential equations with n unknown functions
φj(t), where j = 1, 2, . . . , n.
By standard methods in differential equations, we can prove the existence of a solution to
equation (2.16) on some interval [0, tm). Then, using the first estimate below, this solution can
be extended to the entire interval [0, T ), where T =∞.

2.2.2 Apriori Estimate I

Replacing ξ by ωnt in (2.16), we get

〈ωntt(t), ωnt (t)〉+ 〈ωnxx(t), ωntxx(t)〉 −
∫ t

0
κ(t− τ)〈ωnxx(τ), ωntxx(t)〉+ 〈g(ωnt (t)), ωnt (t)〉

+ fn(t)(ωnt (L, t))2 = 0,

then

1
2
d

dt
‖ωnt (t)‖2 + 1

2
d

dt
‖ωnxx(t)‖2 + 〈g(ωnt (t)), ωnt (t)〉

=
∫ t

0
κ(t− τ)〈ωnxx(τ), ωntxx(t)〉 dτ − fn(t)(ωnt (L, t))2.

Consider the function
h(t) =

∫ t

0
κ(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ,
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then
∫ t

0
κ(t− τ)〈ωnxx(τ), ωntxx(t)〉 dτ = d

dt

(∫ t

0
κ(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ

)
−
∫ t

0
κt(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ − κ(0)‖ωnxx(t)‖2 (2.18)

Hence, we have

1
2
d

dt
‖ωnt (t)‖2+1

2
d

dt
‖ωnxx(t)‖2 + 〈g(ωnt (t)), ωnt (t)〉 = d

dt

(∫ t

0
κ(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ

)
−
∫ t

0
κt(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ − κ(0)‖ωmxx(t)‖2 − fn(t)(ωnt (L, t))2 (2.19)

By using Cauchy–Schwarz inequality, then using assumption (2.5), and according to Young’s
inequality, we have
∣∣∣∣∫ t

0
κt(t− τ)〈ωnxx(τ), ωnxx(t)〉d τ

∣∣∣∣ ≤ α‖ωnxx(t)‖
∫ t

0
κ(t− τ)‖ωnxx(τ)‖ dτ

≤ α2

2 ‖ω
n
xx(t)‖2 + 1

2

(∫ t

0
κ(t− τ)‖ωnxx(τ)‖2 dτ

)2

≤ α2

2 ‖ω
n
xx(t)‖2 + 1

2‖κ‖L
1(0,∞)

∫ t

0
κ(t− τ)‖ωnxx(τ)‖2 dτ, (2.20)

where α = α1 + α3.
By assumption (2.7), and inequality (2.20), we get

1
2
d

dt
‖ωnt (t)‖2 + 1

2
d

dt
‖ωnxx(t)‖2 + β‖ωnt (t)‖2 ≤ d

dt

(∫ t

0
κ(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ

)
+ α2

2 ‖ω
n
xx(t)‖2 + 1

2‖κ‖L
1(0,∞)

∫ t

0
κ(t− τ)‖ωnxx(τ)‖2 dτ − κ(0)‖ωmxx(t)‖2

− fn(t)(ωnt (L, t))2 (2.21)

Integrating (2.21) over (0, t)∫ t

0

1
2
d

ds
‖ωnt (s)‖2 ds+

∫ t

0

1
2
d

ds
‖ωnxx(s)‖2 ds+

∫ t

0
β‖ωnt (τ)‖2 dτ

≤
∫ t

0

d

dt

(∫ s

0
κ(s− τ)〈ωnxx(τ), ωnxx(s)〉 dτ

)
ds+

∫ t

0

α2

2 ‖ω
n
xx(τ)‖2 dτ

+
∫ t

0

1
2‖κ‖L

1(0,∞)

∫ s

0
κ(s− τ)‖ωnxx(τ)‖2 dτ ds−

∫ t

0
κ(0)‖ωmxx(τ)‖2 dτ −

∫ t

0
fn(τ)(ωnt (L, τ))2 dτ.

(2.22)
Then, we obtain

‖ωnt (t)‖2 − ‖ωnt (0)‖2 + ‖ωnxx(t)‖2 − ‖ωnxx(0)‖2 + 2β
∫ t

0
‖ωnt (τ)‖2 dτ

≤ 2
∫ t

0
κ(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ +

(
α2 + ‖κ‖2

L1(0,∞) − 2κ(0)
) ∫ t

0
‖ωmxx(τ)‖2 dτ − 1

r
(fn(t))2

+ 1
r

(fn(0))2.

(2.23)
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By using Schwartz inequality and young’s inequality, we have

|
∫ t

0
κ(t− τ)〈ωnxx(τ), ωnxx(t)〉 dτ | ≤ ‖ωnxx(t)‖

∫ t

0
κ(t− τ)‖ωnxx(τ)‖ dτ

≤ ‖ωnxx(t)‖‖κ‖
1
2
L1(0,∞)

(∫ t

0
κ(t− τ)‖ωnxx(τ)‖2 dτ

) 1
2

≤ 1
4η‖ω

n
xx(t)‖2 + η‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

∫ t

0
‖ωnxx(τ)‖2 dτ.

(2.24)

Combining the inequalities (2.23)and (2.24), we obtain

‖ωnt (t)‖2 + ‖ωnxx(t)‖2 + 2β
∫ t

0
‖ωnt (τ)‖2 dτ + 1

r
(fn(t))2 ≤ ‖ωnxx(0)‖2 + ‖ωnt (0)‖2 + 1

2η‖ω
n
xx(t)‖2

+ 2η‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

∫ t

0
‖ωnxx(τ)‖2 dτ +

(
α2 + ‖κ‖2

L1(0,∞) − 2κ(0)
) ∫ t

0
‖ωmxx(τ)‖2 dτ

+ 1
r

(fn(0))2. (2.25)

According to Gronwall’s Lemma, we get

‖ωnt (t)‖2 + ‖ωnxx(t)‖2 + 1
r

(fn(t))2 ≤MeCt, ∀t ≥ 0,

where M is a constant that depends on the initial data ω0, ω1, f0.
Then

‖ωnt (t)‖2 + ‖ωnxx(t)‖2 + 1
r

(fn(t))2 ≤ C1. (2.26)

This implies that ωnt (L, t) belongs to L∞(0,∞). Consequently, the approximate solution ωn

can be extended to the entire interval [0, T ) with T =∞.

2.2.3 Apriori Estimate II

First of all, we estimate for ωntt(0) in the L2-norm.
Let t = 0 and ξ = ωntt(0) in (2.16), then we get

〈ωntt(0), ωntt(0)〉+ 〈ωnxxtt(0), ωnxx(0)〉+ ωntt(L, 0)fn(0)ωnt (L, 0) + 〈ωntt(0), g(ωnt (0))〉 = 0.

Since ω(0, t) = ωx(0, t) = ωxx(L, t) = 0, ω0 ∈ U , in view of the condition (2.4), we have

〈ωnxxtt(0), ωnxx(0)〉 =
∫ L

0
ωnxxtt(x, 0)ωnxx(x, 0) dx

= [ωnxtt(x, 0)ωnxx(x, 0)]L0 − [ωntt(x, 0)ωnxxx(x, 0)]L0 +
∫ L

0
ωntt(x, 0)ωnxxxx(x, 0) dx

= −fn0 ωnt (L, 0)ωntt(L, 0) + 〈ωntt(0).ωnxxxx(0)〉.
(2.27)
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From the above inequality, we conclude that

‖ωntt(0)‖2 + 〈ωntt(0), ωnxxxx(0)〉+ 〈ωntt(0), g(ωnt (0))〉 = 0. (2.28)

By Cauchy Schwartz, we obtain

‖ωntt(0)‖2 ≤ ‖ωntt(0)‖‖ωnxxxx(0)‖+ ‖ωntt(0)‖‖g(ωnt (0))‖.

As a consequence of equations (2.7) and (2.16-2.17), one can find a constant C2 > 0, depending
only on the initial data ω0 and ω1, such that

‖ωntt(0)‖ ≤ C2, ∀n ∈ N.

Now, we will estimate ωtt(t), and ωxxt(t) in L2-norm.
Differentiating equation (2.16) with respect to time and setting ξ = ωntt(t), we derive the
following

1
2
d

dt
‖ωntt(t)‖2 + 1

2
d

dt
‖ωnxxt(t)‖2 −

∫ t

0
κ′(t− τ)〈ωnxxtt(t), ωnxx(τ)〉 dτ − κ(0)〈ωnxxtt(t), ωnxx(t)〉

+ 〈ωntt(t)g′(ωnt (t)), ωntt(t)〉+ r(ωnt (L, t))3ωntt(L, t) + fn(t)(ωntt(L, t))2 = 0.

From (2.18), we get

1
2
d

dt
‖ωntt(t)‖2 + 1

2
d

dt
‖ωnxxt(t)‖2 − d

dt

(∫ t

0
κ′(t− τ)〈ωnxx(τ), ωntxx(t)〉 dτ

)
+ κ′(0)〈ωnxx(t), ωnxxt(t)〉

+
∫ t

0
κ′′(t− τ)〈ωnxx(τ), ωnxxt(t)〉 dτ − κ(0) d

dt
〈ωnxx(t), ωnxxt(t)〉+ κ(0)‖ωnxxt(t)‖2

+ 〈ωntt(t)g′(ωnt (t)), ωntt(t)〉+ r(ωnt (L, t))3ωntt(L, t) + fn(t)(ωntt(L, t))2 = 0.

Then

1
2
d

dt
‖ωntt(t)‖2 + 1

2
d

dt
‖ωnxxt(t)‖2 + κ(0)‖ωnxxt(t)‖2 + 〈ωntt(t)g′(ωnt (t)), ωntt(t)〉+ r(ωnt (L, t))3ωntt(L, t)

+ fn(t)(ωntt(L, t))2 = d

dt

(∫ t

0
κ′(t− τ)〈ωnxx(τ), ωntxx(t)〉 dτ

)
−
∫ t

0
κ′′(t− τ)〈ωnxx(τ), ωnxxt(t)〉 dτ

− κ′(0)〈ωnxx(t), ωnxxt(t)〉+ κ(0) d
dt
〈ωnxx(t), ωnxxt(t)〉.

(2.29)
According to Cauchy Schwartz and young’s inequalities, and from assumption (2.5), we deduce
that for all t ≥ 0
∣∣∣∣∫ t

0
κ′′(t− τ)〈ωnxx(τ), ωnxxt(t)〉 dτ

∣∣∣∣ ≤ α2
4

2 ‖ωxxt(t)‖
2 + 1

2‖κ‖L
1(0,∞)

∫ t

0
κ(t−τ)‖ωnxx(τ)‖2 dτ. (2.30)

Since g ∈ C1(R) and (ωnt (t)) is bounded, there exists β1 > 0 depends on the initial data
ω0, ω1, f0 such that

|〈ωntt(t)g′(ωnt (t)), ωntt(t)〉| ≤ β1‖ωntt(t)‖2. (2.31)
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Using (2.30) and (2.31), we integrate (2.29) over (0, t), we get

1
2‖ω

n
tt(t)‖2 + 1

2‖ω
n
xxt(t)‖2 + κ(0)

∫ t

0
‖ωnxxt(τ)‖2 dτ + r

4(ωnt (L, t))4

≤ β1

∫ t

0
‖ωntt(τ)‖2 dτ +

∫ t

0
κ′(t− τ)〈ωnxx(τ), ωnxxt(t)〉 dτ + α2

4
2

∫ t

0
‖ωnxxt(τ)‖2 dτ

+ 1
2‖κ‖

2
L1(0,∞)

∫ t

0
‖ωnxx(τ)‖2 dτ − κ′(0)

∫ t

0
〈ωnxx(τ), ωnxxt(τ)〉+ κ(0)〈ωnxx(t), ωnxxt(t)

−
∫ t

0
fn(τ)(ωntt(L, τ))2 dτ + C1,

(2.32)

where C1 > 0 depends on the initial data.
By using Cauchy Schwartz and Young’s inequalities, we have that

κ(0)〈ωnxx(t), ωnxxt(t)〉 ≤
κ(0)2

4η ‖ω
n
xx(t)‖2 + η‖ωnxxt(t)‖2. (2.33)

∣∣∣∣κ′(0)
∫ t

0
〈ωnxx(τ), ωnxxt(τ)〉

∣∣∣∣ ≤ (ακ(0))2

4η

∫ t

0
‖ωnxx(τ)‖2 dτ + η

∫ t

0
‖ωnxxt(τ)‖2 dτ, (2.34)

and
∫ t

0
κ′(t− τ)〈ωnxx(τ), ωnxxt(t)〉 dτ ≤

α2

4η‖κ‖L
1(0,∞)‖κ‖L∞(0,∞)

∫ t

0
‖ωnxx(τ)‖2 dτ + η‖ωnxxt(τ)‖2 dτ,

(2.35)
such that η > 0.
Thus from (2.32)-(2.35), we obtain

1
2‖ω

n
tt(t)‖2 + 1

2‖ω
n
xxt(t)‖2 + κ(0)

∫ t

0
‖ωnxxt(τ)‖2 dτ + r

4(ωnt (L, t))4 ≤ β1

∫ t

0
‖ωntt(τ)‖2 dτ

+
(
α2

4η‖κ‖L
1(0,∞)‖κ‖L∞(0,∞) + 1

2‖κ‖
2
L1(0,∞) + (ακ(0))2

4η

)∫ t

0
‖ωnxx(τ)‖2 dτ + 2η‖ωnxxt(τ)‖2 dτ

+
(
α2

4
2 + η

)∫ t

0
‖ωnxxt(τ)‖2 dτ + κ(0)2

4η ‖ω
n
xx(t)‖2 −

∫ t

0
fn(τ)(ωntt(L, τ))2 dτ + C1,

(2.36)
Choosing η > 0 sufficiently small and considering the first estimate, then we obtain

1
2‖ω

n
tt(t)‖2 +

(1
2 − 2η

)
‖ωnxxt(t)‖2 + κ(0)

∫ t

0
‖ωnxxt(τ)‖2 dτ + r

4(ωnt (L, t))4 ≤ β1

∫ t

0
‖ωntt(τ)‖2 dτ

+
(
α2

4
2 + η

)∫ t

0
‖ωnxxt(τ)‖2 dτ −

∫ t

0
fn(τ)(ωntt(L, τ))2 dτ + C,

(2.37)
where C > 0 depends on ω0, ω1, f0. By applying Gronwall’s inequality, we deduce that

‖ωntt(t)‖2 + ‖ωnxxt(t)‖2 + r(fnt (L, t))4 ≤M ′eC
′t, ∀t ≥ 0,
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where M ′ is a constant that depends on the initial data ω0, ω1, f0.
Then

‖ωntt(t)‖2 + ‖ωnxxt(t)‖2 + r(ωnt (L, t))4 ≤ C2, (2.38)

where C2 > 0 depends on ω0, ω1, f0.

2.2.4 Passage to Limits

By estimates (2.26) and (2.38), we deduce that for all n ∈ N and T > 0


(ωn) is bounded in L∞(0, T ;V )

(ωnt ) is bounded in L∞(0, T ;V )

(ωntt) is bounded in L∞(0, T ;L2(0, L))

(ωnt (L, t)) is bounded in L∞(0, T )

(fn) is bounded in L∞(0, T )

(fnt ) = (r(ωnt (L, t))2) is bounded in L∞(0, T )

(2.39)

Therefore, there exists a subsequence (ωm) of (ωn), such that


ωm
∗
⇀ ω weak-* in L∞(0, T ;V ),

ωmt
∗
⇀ ωt weak-* in L∞(0, T ;V ),

ωmtt
∗
⇀ ωtt weak-* in L∞(0, T ;L2(0, L)),

ωmt (L, t) ∗
⇀ ωt(L, t) weak-* in L∞(0, T ),

fm
∗
⇀ f weak-* in L∞(0, T ),

fmt
∗
⇀ f weak-* in L∞(0, T ).

(2.40)

Due to the compact embedding V ↪→↪→ L2(0, L), we obtain a subsequence such that

ωmt → ωt strongly in L2(0, T ;L2(0, L)). (2.41)

According to (2.41), it follows that

g(ωmt )→ g(ωt) a.e. in x ∈ (0, L), t > 0.

From (2.39), (2.40), and (2.41), and using the boundedness of the sequence (g(ωmt )) in
L2(0, T ;L2(0, L)), we deduce by Lion’s Lemma that

g(ωmt ) ⇀ g(ωt) weakly in L2(0, T ;L2(0, L)).

Furthermore, by the Sobolev embedding theorem and using (2.40), we obtain

f ∈ C1[0, T ], and fm(t)ymt (L, t) ⇀ f(t)ωt(L, t) weakly in L2(0, T ).
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These convergences are sufficient to pass to the limit in the nonlinear terms of equation (2.16).
Hence, the existence of global solutions in [0, T ] can be established.

2.3 Uniqueness of the Solution

Let ω1, ω2 be two solutions of problem (2.1), such that

ωi ∈ L∞(0, T ;U), ωit ∈ L∞(0, T ;V ), ωitt ∈ L∞(0, T ;L2(0, L)), for i = 1, 2, f ∈ [0, T ].

We put y = ω1 − ω2, such that

〈ξ, ytt(t)〉+ 〈ξxx, yxx(t)〉 −
∫ t

0
κ(t− τ)〈ξxx, yxx(τ)〉 dτ

+ ξ(L, t)f(t)yt(L, t) + 〈ξ, g(yt(t))〉 = 0, ∀ξ ∈ V.
(2.42)

By choosing ξ = yt(t) as a test function, we obtain:

〈yt, ytt(t)〉+ 〈ytxx, yxx(t)〉 −
∫ t

0
κ(t− τ)〈ytxx(t), yxx(τ)〉 dτ

+ f(t)y2
t (L, t) + 〈yt, g(yt(t))〉 = 0.

(2.43)

Using identity (2.9), we get

1
2
d

dt

[
‖yt(t)‖2 + (κ � yxx)(t) + ‖yxx(t)‖2

(
1−

∫ t

0
κ(τ) dτ

) ]
= −1

2κ(t)‖yxx(t)‖2 − f(t)y2
t (L, t)− 〈yt, g(yt(t))〉

+ 1
2(κ′ � yxx)(t), ∀t ≥ t0.

(2.44)

We define the modified energy

2ϕ(y(t)) = ‖yt(t)‖2 + (κ � yxx)(t) + ‖yxx(t)‖2
(

1−
∫ t

0
κ(τ) dτ

)
. (2.45)

According to the hypothesis in (2.5), we obtain

d

dt
ϕ(y(t)) ≤ 0.

Integrating over (0, T ), we get:

ϕ(y(t)) ≤ ϕ(y(0)), and ϕ(y(0)) = 0, ∀t ∈ [0, T ].

Thus, ϕ(y(t)) = 0 for all t ∈ [0, T ], therefore y(t) = 0.
Hence, we obtain

ω1 = ω2.
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Chapter 3
Exponential Stability Result

In this chapter, we will prove the exponential stability of the solution to the Euler-Bernoulli
beam equation with memory and a boundary output feedback control term, using the multiplier
technique.

From theorem 2.2.1, we have that the problem (2.1) admits a unique solution satisfying

ω ∈ L∞(0, T ;U), ωt ∈ L∞(0, T ;V ),

ωtt ∈ L∞(0, T ;L2(0, L)).

The derivative of the energy is given by

E ′(t) = −f(t)(ωt(L, t))2 +
∫ t

0
κ(t− τ)〈ωtxx(t), ωxx(τ)〉 dτ − 〈ωt(t), g(ωt(t))〉. (3.1)

Proof. We have
E(t) = 1

2‖ωt(t)‖
2 + 1

2‖ωxx(t)‖
2.

The differentiation of the functional energy E(t) yields:

E ′(t) = d

dt
E(t) = d

dt

(1
2‖ωt(t)‖

2 + ‖ωxx(t)‖2
)

=〈ωt(t), ωtt(t)〉+ 〈ωxx(t), ωxxt(t)〉.

From the fundamental differential equation of the problem (2.1), we find

ωtt = −ωxxxx +
∫ t

0
κ(t− τ)ωxxxx(τ)dτ − g(ωt). (3.2)

We multiply equation (3.2) by ωt and integrate over the domain [0, L], we obtain

〈ωt(t), ωtt(t)〉 = −〈ωt(t), ωxxxx(t)〉+ 〈ωt(t),
∫ t

0
κ(t− τ)ωxxxx(τ) dτ〉 − 〈ωt(t), g(ωt(t))〉. (3.3)
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By applying integration by parts twice, we obtain

〈ωt(t), ωxxxx(t)〉 =
∫ L

0
ωt(x, t)ωxxxx(x, t) dx

=
[
ωxxx(x, t)ωt(x, t)

]L
0
−
[
ωxx(x, t)ωtx(x, t)

]L
0

+
∫ L

0
ωtxx(x, t)ωxx(x, t) dx.

For
ω ∈ L∞(0, T ;U), ωt ∈ L∞(0, T ;V ),

and by the boundary conditions, we get

〈ωt(t), ωxxxx(t)〉 = f(t)(ωt(L, t))2 + ωt(L, t)
∫ t

0
κ(t− τ)ωxxx(L, τ) dτ + 〈ωtxx(t), ωxx(t)〉. (3.4)

On the other hand, we have

〈ωt(t),
∫ t

0
κ(t− τ)ωxxxx(τ) dτ〉 =

∫ L

0
ωt(x, t)

(∫ t

0
κ(t− τ)ωxxxx(x, τ) dτ

)
dx

=
∫ L

0

∫ t

0
ωt(x, t)κ(t− τ)ωxxxx(x, τ) dτ dx

=
∫ t

0

∫ L

0
ωt(x, t)κ(t− τ)ωxxxx(x, τ) dx dτ

=
∫ t

0
κ(t− τ)

(∫ L

0
ωt(x, t)ωxxxx(x, τ) dx

)
dτ

=
∫ t

0
κ(t− τ)〈ωt(t), ωxxxx(τ)〉 dτ.

From (3.4), we find

〈ωt(t),
∫ t

0
κ(t− τ)ωxxxx(τ) dτ〉 = ωt(L, t)

∫ t

0
κ(t− τ)ωxxx(L, τ) dτ

+
∫ t

0
κ(t− τ)〈ωtxx(t), ωxx(τ)〉 dτ.

(3.5)

By substituting (3.4) and (3.5) in (3.3), we obtain

〈ωt(t), ωtt(t)〉 = −f(t)(ωt(L, t))2 − 〈ωtxx(t), ωxx(t)〉+
∫ t

0
κ(t− τ)〈ωtxx(t), ωxx(τ)〉 dτ

− 〈ωt(t), g(ωt(t))〉.
(3.6)

Substituting (3.6) in E ′(t), we get

E ′(t) = −f(t)(ωt(L, t))2 +
∫ t

0
κ(t− τ)〈ωtxx(t), ωxx(τ)〉 dτ − 〈ωt(t), g(ωt(t))〉.

Let us consider the derivative of the modified energy, defined by

ϕt(t) = −f(t)(ωt(L, t))2 − 〈g(ωt(t)), ωt(t)〉+ 1
2(κ′ � ωxx)(t)−

1
2κ(t)‖ωxx(t)‖2. (3.7)
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Lemma 3.1. We have

1. ϕ(t) ≥ 0, and E(t) ≤ `−1ϕ(t).

2. ϕt ≤ 0, ∀t ≥ t0.

Proof. we have from assumption (2.5) and (2.6)

ϕ(t) = 1
2‖ωt(t)‖

2 + 1
2(κ � ωxx)(t) + 1

2`‖ωxx(t)‖
2

≥ 0.

Then

1
`
ϕ(t) = 1

2`‖ωt(t)‖
2 + 1

2`(κ � ωxx)(t) + 1
2‖ωxx(t)‖

2

≥ 1
2‖ωt(t)‖

2 + 1
2‖ωxx(t)‖

2 + 1
2`(κ � ωxx)(t)

≥ E(t).

By assumptions (2.5) and (2.7) we get ϕt ≤ 0, ∀t ≥ t0.

Theorem 3.1. Let ω be the solution given by Theorem 2.2.1 and ϕ(t) be defined by (2.10).
Then

lim
t→∞

ϕ(t) = 0,

lim
t→∞

f(t) ≤
√

2rϕ(t0) + (f(t0))2,

f(t) ≤
√

2rϕ(t0) + (f(t0))2, ∀t ≥ t0.

Now, We define the perturbed energy by

ϕε(t) = ϕ(t) + εψ(t), (3.8)

where ψ(t) = δ
∫ L

0
ω(x, t)ωt(x, t) dx, with 0 < δ <

1
2 .

Proposition 3.1. There exist a positive constant m1 > 0, such that

|ϕε(t)− ϕ(t)| ≤ εm1ϕ(t), ∀t ≥ 0, ∀ε > 0.

Proof. For ∀t ≥ 0 and ∀ε > 0. We have

|ϕε(t)− ϕ(t)| = ε|ψ(t)|

= εδ

∣∣∣∣∣
∫ L

0
ω(x, t)ωt(x, t) dx

∣∣∣∣∣ , 0 < δ <
1
2 ,

≤ εδ
∫ L

0
|ω(x, t)ωt(x, t)| dx.
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Using Young’s inequality, we get

|ϕε(t)− ϕ(t)| ≤ εδ
(1

2‖ωt(t)‖
2 + 1

2‖ω(t)‖2
)
.

We have V ⊆ H2(0, L) ⊆ L2(0, L). From sobolev embedding theorem, we obtain

|ϕε(t)− ϕ(t)| ≤ εδ
(1

2‖ωt(t)‖
2 + 1

2m
′
1‖ωxx(t)‖2

)
≤ εδmax(1,m′1)

(1
2‖ωt(t)‖

2 + 1
2‖ωxx(t)‖

2
)

≤ εm1ϕ(t).

Proposition 3.2. There exist constants m2,m3 > 0 and ε1 > 0 such that

d

dt
ϕε(t) ≤ −εm2ϕ(t) + εm3f(t)(ω(L, t))2,

for all t ≥ t0 and for all ε ∈ (0, ε1].

Proof. Using (3.2), we deduce that

d

dt
ψ(t) =δ d

dt

(∫ L

0
ω(x, t)ωt(x, t) dx

)

=δ
∫ L

0
(ωt(x, t))2 dx+ δ

∫ L

0
ω(x, t)ωtt(x, t) dx

=δ
∫ L

0
(ωt(x, t))2 dx− δ

∫ L

0
ω(x, t)ωxxxx(x, t) dx

+ δ
∫ L

0
ω(x, t)

∫ t

0
κ(t− τ)ωxxxx(x, τ) dτ dx− δ

∫ L

0
ω(x, t)g(ωt(x, t)) dx.

(3.9)

By using integration by parts twice, and from ω(0, t) = ωx(0, t) = ωxx(L, t) = 0, and
ω ∈ L∞(0, T ;U), we get

∫ L

0
ω(x, t)ωxxxx(x, t) dx = [ω(x, t)ωxxx(x, t)]L0 + [ωx(x, t)ωxx(x, t)]L0 +

∫ L

0
(ωxx(x, t))2 dx

= ω(L, t)ωxxx(L, t) +
∫ L

0
(ωxx(x, t))2 dx.

And by Fubini’s theorem, we obtain

∫ L

0
ω(x, t)

(∫ t

0
κ(t− τ)ωxxxx(x, τ) dτ

)
dx =

∫ t

0
κ(t− τ)

(∫ L

0
ω(x, t)ωxxxx(x, τ) dx

)
dτ

=
∫ t

0
κ(t− τ)

(
[ω(x, t)ωxxx(x, τ)]L0 +

∫ L

0
ωx(x, t)ωxxx(x, τ) dx

)
dτ

=
∫ t

0
κ(t− τ)

(
ω(L, t)ωxxx(L, τ) + [ωx(x, t)ωxx(x, τ)]L0 +

∫ L

0
ωxx(x, t)ωxx(x, τ) dx

)
dτ
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=
∫ t

0
κ(t− τ)

(
ω(L, t)ωxxx(L, τ) +

∫ L

0
ωxx(x, t)ωxx(x, τ) dx

)
dτ

=
∫ t

0
κ(t− τ)ω(L, t)ωxxx(L, τ) dτ +

∫ t

0
κ(t− τ)

(∫ L

0
ωxx(x, t)ωxx(x, τ) dx

)
dτ

= ω(L, t)
(∫ t

0
κ(t− τ)ωxxx(L, τ) dτ

)
+
∫ L

0
ωxx(x, t)

(∫ t

0
κ(t− τ)ωxx(x, τ) dτ

)
dx.

By compensating in (3.9), we get

ψt(t) =δ
∫ L

0
(ωt(x, t))2 dx− δω(L, t)

[
ωxxx(L, t)−

∫ t

0
κ(t− τ)ωxxx(L, τ) dτ

]
− δ

∫ L

0
(ωxx(x, t))2 dx+ δ

∫ L

0
ωxx(x, t)

∫ t

0
κ(t− τ)ωxx(x, τ) dτ

− δ
∫ L

0
ω(x, t)g(ωt(x, t)) dx.

(3.10)

Let us estimate the terms of the equation (3.13), we start with the integral

J =
∫ L

0
ωxx(t)

(∫ t

0
κ(t− τ)ωxx(τ) dτ

)
dx.

From Fubini’s theorem, we have

J =
∫ t

0
κ(t− τ)

(∫ L

0
ωxx(t)ωxx(τ) dx

)
dτ

=
∫ t

0
κ(t− τ)

(∫ L

0
(ωxx(τ)− ωxx(t))ωxx(t) dx

)
dτ +

∫ t

0
κ(t− τ)

(∫ L

0
(ωxx(t))2 dx

)
dτ,

and
I =

∫ t

0
κ(t− τ)

(∫ L

0
(ωxx(τ)− ωxx(t))ωxx(t) dx

)
dτ.

Using Young’s inequality with η and p = q = 2, we get
∫ L

0
(ωxx(τ)− ωxx(t))ωxx(t) dx ≤

∫ L

0

1
4η (ωxx(τ)− ωxx(t))2 + η(ωxx(t))2 dx.

From the assumtions (2.5), multiplying the both sides by κ(t− τ), and integrating over (0, t),
we obtain

I ≤
∫ t

0
κ(t− τ)

(∫ L

0

1
4η (ωxx(τ)− ωxx(t))2 + η(ωxx(t))2 dx

)
dτ

≤
∫ t

0
κ(t− τ)

(∫ L

0

1
4η (ωxx(τ)− ωxx(t))2 dx

)
dτ +

∫ t

0
κ(t− τ)

(∫ L

0
η(ωxx(t))2 dx

)
dτ.
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From the assumtions (2.6), we have
∫ ∞

0
κ(τ) ≤ 1. Then

I ≤ 1
4η

∫ t

0
(κ(t− τ))2

(∫ L

0
(ωxx(τ)− ωxx(t))2 dx

)
dτ + η

∫ L

0
(ωxx(t))2 dx

≤ 1
4η‖κ‖L

∞(0,∞)

∫ t

0
κ(t− τ)‖ωxx(τ)− ωxx(t)‖2

2 dτ + η‖ωxx(t)‖2
2.

Hence
J ≤ 1

4η‖κ‖L
∞(0,∞)(κ � ωxx)(t) + η‖ωxx(t)‖2 +

∫ t

0
κ(t− τ) dτ‖ωxx(t)‖2. (3.11)

By Young’s inequality, we have

δ

∣∣∣∣∣
∫ L

0
ω(x, t)g(ωt(x, t)) dx

∣∣∣∣∣ ≤ δ
∫ L

0
|ω(x, t)| |g(ωt(x, t))| dx

≤ δ
1
2
(
‖ω(t)‖2 + ‖g(ωt(t))‖2

)
.

From the assumptions on g, and by Sobolev Embedding theorem, we get

δ

∣∣∣∣∣
∫ L

0
ω(x, t)g(ωt(x, t)) dx

∣∣∣∣∣ ≤ δ
1
2
(
c1‖ω(t)‖2 + c2‖ωt(t)‖2

)
.

then
δ

∣∣∣∣∣
∫ L

0
ω(x, t)g(ωt(x, t)) dx

∣∣∣∣∣ ≤M1‖ωt(t)‖2 +M2‖ωxx(t)‖2.

By combining (3.13) and (3.11), we get

ψt(t) ≤δ‖ωt(t)‖2 − δω(L, t)f(t)ωt(L, t)− δ‖ωxx(t)‖2 + δ

4η‖κ‖L
∞(0,∞)(κ � ωxx)(t)

+ δη‖ωxx(t)‖2 + δ
∫ t

0
κ(τ) dτ‖ωxx(t)‖2 +M1‖ωt(t)‖2 +M2‖ωxx(t)‖2

≤ (δ +M1) ‖ωt(t)‖2 +
(
δη − δ + δ

∫ t

0
κ(τ) dτ +M2

)
‖ωxx(t)‖2

− δω(L, t)f(t)ωt(L, t) + δ

4η‖κ‖L
∞(0,∞)(κ � ωxx)(t)

≤− δϕ(t) +
(

3δ
2 +M1

)
‖ωt(t)‖2 +

(
δη − δ

2 + δ

2

∫ t

0
κ(τ) dτ +M2

)
‖ωxx(t)‖2

− δω(L, t)f(t)ωt(L, t) +
(
δ

4η‖κ‖L
∞(0,∞) + δ

2

)
(κ � ωxx)(t). (3.12)

Hence, from (3.7) and (3.12), we deduce that
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d

dt
ϕε(t) = d

dt
ϕ(t) + ε

d

dt
ψ(t)

≤ −f(t)(ωt(L, t))2 − 〈g(ωt(t)), ωt(t)〉+ 1
2(κ′ � ωxx)(t)−

1
2κ(t)‖ωxx(t)‖2

− εδϕ(t) + ε

(
3δ
2 +M1

)
‖ωt(t)‖2 + ε

(
δη − δ

2 + δ

2

∫ t

0
κ(τ) dτ +M2

)
‖ωxx(t)‖2

− εδω(L, t)f(t)ωt(L, t) + ε

(
δ

4η‖κ‖L
∞(0,∞) + δ

2

)
(κ � ωxx)(t),

and from (2.5)and (2.7)

d

dt
ϕε(t) ≤ −f(t)(ωt(L, t))2 − β‖ωt(t)‖2 − α2

2 (κ � ωxx)(t)−
1
2κ(t)‖ωxx(t)‖2 − εδϕ(t)

+ ε

(
3δ
2 +M1

)
‖ωt(t)‖2 + ε

(
δη − δ

2 + δ

2

∫ t

0
κ(τ) dτ +M2

)
‖ωxx(t)‖2

− εδω(L, t)f(t)ωt(L, t) + ε

(
δ

4η‖κ‖L
∞(0,∞) + δ

2

)
(κ � ωxx)(t)

≤ −εδϕ(t)−
(
β − ε

(
3δ
2 +M1

))
‖ωt(t)‖2 −

(
α2

2 − ε
(
δ

4η‖κ‖L
∞(0,∞) + δ

2

))
(κ � ωxx)(t)

−
(

1
2κ(t)− ε

(
δη − δ

2 + δ

2

∫ t

0
κ(τ) dτ +M2

))
‖ωxx(t)‖2 − f(t)

(
1− δε

2

)
(ωt(L, t))2

+ δε

2 f(t)(ω(L, t))2, ∀t ≥ t0. (3.13)

By setting

σ = min
{

2β
2M1 + 3δ ,

2α2η

δ(2η + ‖κ‖L∞) ,
κ(t)

(2M2 + 2ηδ + δ
∫ t

0 κ(τ) dτ − δ)
,
2
δ

}
, t ≥ t0, (3.14)

where, ε ∈ [0, σ] and (2η − `)δ + 2M2 > 0, from (3.13) and (3.14), we obtain

d

dt
ϕε(t) ≤ −εδϕ(t) + δε

2 f(t)(ω(L, t))2, ∀t ≥ t0. (3.15)

Proof of theorem 3.1 . From proposition (3.1), we have

|ϕε(t)− ϕ(t)| ≤ εm1ϕ(t),

then
(1− εm1)ϕ(t) ≤ ϕε(t) ≤ (εm1 + 1)ϕ(t), (3.16)

thus, hence
ϕε(t)
εm1 + 1 ≤ ϕ(t), (3.17)
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by (3.15) and (3.17) ,we have

d

dt
ϕε(t) ≤

−εδ
εm1 + 1ϕε(t) + δε

2 f(t)(ω(L, t))2, ∀t ≥ t0. (3.18)

we put k = −εδ
εm1 + 1, from Gronwall’s theorem, we get for all t ≥ t0

ϕε(t) ≤ exp
(
−
∫ t

t0
k dτ

)
ϕε(t0) +

∫ t

t0
exp

(
−
∫ t

τ
k ds

)
δε

2 f(τ)(ω(L, τ))2 dτ

≤ exp(−k(t− t0))ϕε(t0) + δε

2

∫ t

t0
exp(−k(t− τ))f(τ)(ω(L, τ))2 dτ

≤ exp(−kt) exp(kt0)ϕε(t0) + δε

2

∫ t

t0
exp(−k(t− τ))f(τ)(ω(L, τ))2 dτ

≤ exp(−kt)ϕε(t0) + δε

2 sup
t≥0
|f(t)|

∫ t

0
exp(−k(t− τ))(ω(L, τ))2 dτ. (3.19)

As in [8], we deduce that

∫ t

0
exp(−k(t− τ))(ω(L, τ))2 dτ =

∫ t
2

0
exp(−k(t− τ))(ω(L, τ))2 dτ +

∫ t

t
2

exp(−k(t− τ))(ω(L, τ))2 dτ

≤ max
0≤τ≤ t

2

exp(−k(t− τ))
∫ t

2

0
(ω(L, τ))2 dτ + max

t
2≤τ≤t

exp(−k(t− τ))
∫ t

t
2

(ω(L, τ))2 dτ

≤ exp
(
−kt2

)∫ t
2

0
(ω(L, τ))2 dτ +

∫ t

t
2

(ω(L, τ))2 dτ

≤ exp
(
−kt2

)(∫ t
2

0
(ω(L, τ))2 dτ +

∫ t

t
2

(ω(L, τ))2 dτ

)

≤ exp
(
−kt2

)(∫ t

0
(ω(L, τ))2 dτ

)

≤ exp
(
−kt2

)∫ ∞
0

(ω(L, τ))2 dτ.

Therefore, we obtain

ϕε(t) ≤ exp(−kt)ϕε(t0) + δε

2 sup
t≥0
|f(t)| exp

(
−kt2

)∫ ∞
0

(ω(L, τ))2 dτ,

By Theorem 2.2.1, together with the embedding U ←↩ L2(0, T ;L2(0, T )) and the fact that
ω(L, t) ∈ L2(0,∞), we can pass to the limit as t→∞ to obtain the desired result

lim
t→∞

ϕε(t) = 0.

Let ε ∈ (0, ε0] where ε0 = min
{
ε1,

1
2m1

}
, so we have ε ≤ 1

2m1
.

From (3.16), we obtain
1
2ϕ(t) ≤ ϕε(t) ≤

3
2ϕ(t), ∀t ≥ t0.
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Therefore, we have
lim
t→∞

ϕ(t) = 0. (3.20)

Now, we consider
v(t) = ϕ(t) + f 2(t)

2r . (3.21)

Differentiating the above expression yields

d

dt
v(t) = d

dt
ϕ(t) + d

dt

(
f 2(t)

2r

)

= −f(t)(ωt(L, t))2 − 〈g(ωt(t)), ωt(t)〉+ 1
2(κ′ � ωxx)(t)−

1
2κ(t)‖ωxx(t)‖2 + 1

r
f(t)ft(t)

= −f(t)(ωt(L, t))2 − 〈g(ωt(t)), ωt(t)〉+ 1
2(κ′ � ωxx)(t)−

1
2κ(t)‖ωxx(t)‖2 + 1

r
f(t)r(ωt(L, t))2

= −〈g(ωt(t)), ωt(t)〉+ 1
2(κ′ � ωxx)(t)−

1
2κ(t)‖ωxx(t)‖2

≤ 0.
(3.22)

From (3.22), we have
sup
t≥0

v(t) ≤M ′
3,

where M ′
3 ≥ 0 is a constant depending on the initial data, and for t ≥ t0 we have

ϕ(t) + 1
2rf

2(t) ≤ ϕ(t0) + 1
2rf

2(t0).

Thus when t→∞, we have

ϕ(∞) + 1
2rf

2(∞) ≤ ϕ(t0) + 1
2rf

2(t0).

From (3.20)
f(∞) ≤

√
2rϕ(t0) + f 2(t0).

Since f(t) is nondecreasing, we obtain

f(t) ≤
√

2rϕ(t0) + f 2(t0), ∀t ≥ t0. (3.23)

Theorem 3.2. Let ω be the solution of problem (2.1), and let ϕ(t) be the modified energy
defined by (2.10). Then, there exist constants K > 0 and λ > 0 such that

E(t) ≤ K exp(−λt), ∀t ≥ t0.

Proof. From (3.18), we see that

d

dt
ϕε(t) ≤

−εδ
εm1 + 1ϕε(t) + δε

2 f(t)(ω(L, t))2, ∀t ≥ t0.
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By integrating over (t0, t) and using (3.23), we get

ϕε(t) ≤ ϕε(t0)− k
∫ t

t0
ϕε(τ) dτ + δε

2

∫ t

t0
f(τ)(ω(L, τ))2 dτ

≤ ϕε(t0)− k
∫ t

t0
ϕε(τ) dτ + δε

2 ‖f‖L
∞

∫ t

0
(ω(L, τ))2 dτ. (3.24)

Since
∫ ∞

0
(ω(L, τ))2 dτ ≤ k′, we have

ϕε(t) ≤ ϕε(t0)− k
∫ t

t0
ϕε(τ) dτ + δε

2 k
′‖f‖L∞ .

By Gronwall’s inequality, we get

ϕε(t) ≤ (K1 + ϕε(t0)) exp(−kt), ∀t ≥ t0.

For sufficiently small ε ∈ (0, 1
m1

), using the proposition (3.1), we get

E(t) ≤ `−1ϕ(t) ≤ K exp(−λt), ∀t ≥ t0,

where K = `−1K1 + ϕε(t0)
1− εm1

and λ = k.
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Conclusion

The aim of this work is to conduct a qualitative analysis of the Euler–Bernoulli beam equation,
which is a partial differential equation that describes the bending of elastic beams under various
loadings. In this study, the model is extended by incorporating a viscoelastic memory term,
reflecting the material’s dependence on its deformation history, along with a boundary output
feedback control law.
This work is structured into three main chapters: The first chapter presents some fundamental
functional spaces and mathematical inequalities that will be used in the subsequent analysis.
In the second chapter, we introduce the mathematical formulation of the problem and prove
the existence of a solution using the Galerkin method. The third and final chapter is devoted
to studying the exponential stability of the solution through the construction of a suitable
Lyapunov functional and the application of the multiplier technique.
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اिऻڪٌۘ
اܳٺ؞ڍل۰ ሒᇭ ુળ༲اܳٺ و اৎ৊ݠ۰َ ۰༥ݞይዧا اᄳᄟاாணة ଫଃٔ؊ّ ඔ൹ّ݄ݯ ؕ݁ ሒᇿިَଫଃً-لܹݠ أو ༟؇رݪ۰ ᄭᄟ݁أ؇د ཹྥٷ؇ول اᄴᄟراݿ۰، ۱ڍه ሒᇭ
ّأُڎ มฆܳوا اଫଐৎ৊ا࿩ਜ਼؇ت، وًأݥ ا৙৑ݿ؇ݿ٭۰ ሒᇿاᄴᄟا اܳٺ༲ܹ٭ܭ ৎ৊ڰ؇۱ࡗࡲ ஓ୾ݠاۏأ۰ اܳأ݄ܭ ਊಱڎأ اࠍ੆ڎودل۰. గጻዧۛݠ༥؇ت اෂීاۏأ۰
ೞಱاܳٺگݠ لگ۰ ޗݠ ً؇ݿٺ༱ڎام وو༡ڎا྘ཹٺ۬ اࠍ੆ܭ وۏިد ཹྦྷٴب ،ዻዧذ ًأڎ .ᄭႍၽލగጻዧ ل؇ݪ٭۰ ීෂا ۰੊أ؇ࠍৎ৊ا ሒᇭ أݿ؇ݿ٭۰ أدوات

اܳިڢب. ਵਦور ؕ݁ أ֡ݿِّ٭ً؇ ོྥٷ؇ڢݧ اܳٷޙ؇م ޗ؇ڢ۰ أن َޙ۳ُݠ اৎ৊ݯ؇؜ژ، ّگٷ٭۰ ّޚٴ٭ݑ ఈః༠ل ݆݁ وأଫଃ༠اً، .ඔ൹ී܋ ෂ؇༚

اᄳᄟاாணة، ༡ڎ اෂීاۏأ۰، اܳٺ؞ڍل۰ ሒᇭ ુળ༲اܳٺ ༡ڎ ،ඔ൹ී܋ ෂ؇༚ لگ۰ ޗݠ ،ሒᇿިَଫଃً-لܹݠ أو ނأ؇ع ᄭᄟ݁أ؇د : ڲء׫ոؼמ١ ոஈ࿦྾ت
. ๴ང৙৑ا ا৕৑ݿٺگݠار

Abstract

In this study, we address the Euler–Bernoulli beam equation incorporating a viscoelastic
memory effect and a boundary output feedback control term. The work begins with a
review of essential functional analysis concepts and fundamental inequalities, which
serve as foundational tools for the mathematical treatment of the problem. We then
establish the existence and uniqueness of the solution using the Galerkin approximation
scheme. Finally, by applying the multiplier technique, we prove that the energy of the
system decays exponentially over time.

Key words: Euler-Bernoulli Beam equation, Galerkin method, Output feedback control
term, Memory term, exponentiel stability.

Résumé

Dans cette étude, nous abordons l'équation de poutre d’Euler–Bernoulli en incorporant
un effet de mémoire viscoélastique et un terme de contrôle en rétroaction basé sur la sor-
tie aux frontières. Le travail commence par une révision des concepts fondamentaux de
l’analyse fonctionnelle et des inégalités de base, qui constituent des outils essentiels pour
le traitement mathématique du problème. Ensuite, nous établissons l'existence et l'unicité
de la solution à l'aide de la méthode d’approximation de Galerkin. Enfin, en appliquant la
technique du multiplicateur, nous démontrons que l'énergie du système décroît de façon
exponentielle au cours du temps.
Mots clés: Équation de la poutre d'Euler-Bernoulli, méthode de Galerkin, terme de con-
trôle de rétroaction de sortie, terme de mémoire, stabilité exponentielle.
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