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Résumé

Cette these de master explore le contrdle optimal déterministe,
abordant ses fondements théoriques et ses applications en aérospatiale,
robotique et économie. Elle examine les dynamiques des systémes,

les fonctionnels de cofit, le principe du maximum de Pontryagin

et le théoreme de Filippov. L'étude met en lumiére des méthodes

de résolution comme la programmation dynamique et les tech-
niques numériques, malgré les défis computationnels. Elle con-

clut en proposant des pistes de recherche future, notamment

des algorithmes plus efficaces et l'intégration de l'apprentissage

automatique.



Abstract

This Master’s thesis explores deterministic optimal control, cov-
ering its theoretical foundations and applications in aerospace,
robotics, and economics. It examines system dynamics, cost
functionals, the Pontryagin Maximum Principle, and Filippov’s
Theorem. The study highlights solution methods like dynamic
programming and numerical techniques, noting their effective-
ness despite computational challenges. It concludes with sug-
gestions for future research, including efficient algorithms and

machine learning integration.
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CHAPTER

Introduction

Introduction to Deterministic Optimal Control
1.1 Background and Context

Deterministic optimal control, a luminous pillar of contempo-
rary applied mathematics and engineering, offers a sophisticated
framework for crafting strategies that elevate the performance of
dynamic systems to their zenith. At its heart, this discipline con-
cerns systems governed by predictable dynamics, where the tra-
jectory of the system unfolds with certainty, given its initial state
and the judicious application of control inputs. Its far-reaching
implications resonate across a tapestry of fields— aerospace en-

gineering, robotics, economics, and process control—where pre-



1.1 Background and Context 2

cision in decision-making is paramount to realizing cherished
objectives.

The soul of deterministic optimal control lies in the quest for
a control function that, with elegance and precision, minimizes
or maximizes a performance criterion, often embodied as a cost
functional, while honoring the constraints dictated by the sys-
tem’s dynamics. These dynamics, frequently articulated through
the language of differential equations, illuminate the temporal
evolution of the system under the influence of control inputs.
The mathematical elegance of this field empowers the creation
of controllers that are not merely efficient but also resilient to
perturbations in system parameters, rendering optimal control
an indispensable instrument for both theoretical exploration and
practical application.

The genesis of optimal control finds its roots in the venerable
calculus of variations, a discipline nurtured in the 17th and 18th
centuries by luminaries such as Euler and Lagrange, whose math-
ematical artistry laid the groundwork for optimizing functionals.

Yet, it was in the vibrant intellectual ferment of the mid-20th
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century that the modern edifice of optimal control took shape,
propelled by the advent of dynamic programming and the inci-
sive clarity of the maximum principle. These milestones forged
a robust theoretical scaffold, enabling the resolution of intricate
control challenges and illuminating pathways for transformative
applications across engineering, economics, and myriad other

domains. [2]

1.2 Historical Development

The historical tapestry of deterministic optimal control is woven
with several luminous milestones that have shaped its intellec-
tual contours. In the vibrant 1950s, Richard Bellman unveiled
the paradigm of dynamic programming, a recursive alchemy for
tackling optimization challenges across temporal horizons. His
principle of optimality, a beacon of insight, posits that an optimal
policy retains its virtue regardless of the initial state or decision,
ensuring that subsequent choices remain optimal in light of the
state birthed by the first. This elegant doctrine paved the way for
dissecting complex optimal control problems into manageable

subproblems, offering a pathway to clarity and resolution.
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Concurrently, Lev Pontryagin and his collaborators crafted
the Pontryagin Maximum Principle (PMP), a cornerstone of op-
timal control theory that radiates mathematical splendor. The
PMP articulates necessary conditions for optimality, introducing
adjoint variables as torchbearers to illuminate the path of the
optimal control. In contrast to dynamic programming’s reliance
on solving the formidable Hamilton-Jacobi-Bellman equation,
the PMP offers a computationally graceful approach, particularly
for problems bound by constraints on control inputs, rendering
it a cherished tool in the theorist’s arsenal.

The 1960s and 1970s ushered in a golden era of progress, with
luminaries such as Kalman advancing the field through the lin-
ear quadratic regulator (LQR), a framework tailored for linear
systems with quadratic cost functions. Celebrated for its analyti-
cal elegance and practical utility, the LQR emerged as a lodestar
in control engineering. As the decades unfolded, numerical
methods—both direct and indirect—blossomed to confront the
computational intricacies of nonlinear systems and intricate con-

straints, further enriching the discipline’s capacity to address the
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challenges of an ever-evolving world.[2]

1.3 Motivation and Significance

The motivation for studying deterministic optimal control stems
from its ability to address real-world problems where efficiency,
precision, and resource optimization are paramount. In aerospace
engineering, for instance, optimal control is used to design tra-
jectories for spacecraft that minimize fuel consumption while
satisfying mission constraints. In robotics, it enables the devel-
opment of motion planning algorithms that ensure smooth and
efficient operation. In economics, optimal control provides a
framework for modeling decision-making processes, such as
resource allocation over time.

The significance of deterministic optimal control lies in its
versatility and applicability. By providing a unified mathematical
framework for optimization, it bridges the gap between theory
and practice, enabling engineers and scientists to tackle problems
that were previously intractable. Furthermore, the deterministic
nature of the systems considered in this field allows for precise

predictions and control, which is critical in applications where
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uncertainty is minimal or can be neglected.

In the context of a Master’s thesis, studying deterministic opti-
mal control offers an opportunity to engage with advanced math-
ematical techniques, including differential equations, functional
analysis, and optimization theory. It also provides a foundation
for exploring related fields, such as stochastic optimal control,

robust control, and machine learning-based control strategies.

Key Concepts in Deterministic Optimal Control

To understand deterministic optimal control, it is essential to

introduce its fundamental concepts. These include:

System Dynamics

The evolution of a dynamic system is typically described by a set

of ordinary differential equations (ODEs) of the form:

where (1) is the state vector, u(t) is the control input, and f is a
function that governs the system dynamics. The initial condition

x(ty) = x( is often specified.
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1.3.1 Cost Functional

The performance of the system is quantified by a cost functional,
which measures the cost associated with a given control strategy.
A common form is:
T
7= o)+ [ Lo, ut)

where ¢ is the terminal cost, L is the running cost, and [t,, T is

the time horizon.

1.3.2 Optimal Control Problem

The central objective here is the determination of an optimal con-
trol policy, denoted as u(t), that achieves a minimum value for a
defined cost functional, J. This minimization is not performed in
isolation but rather is intrinsically linked to the inherent dynamic
behavior of the system under consideration. Furthermore, the
optimization process must adhere to any supplementary con-
straints that may be imposed, such as defined boundaries on the
permissible range of control inputs or the system’s operational

states. [10]
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1.3.3 Solution Methods

Optimal control problems can be solved using various approaches,

including:

* Dynamic Programming: Based on Bellman’s principle, this
method solves the Hamilton-Jacobi-Bellman (HJB) equation

to find the optimal value function and control policy.

* Pontryagin Maximum Principle: This provides necessary
conditions for optimality by introducing adjoint variables

and a Hamiltonian function.

* Numerical Methods: Direct methods (e.g., collocation) and
indirect methods (e.g., shooting methods) are used to solve

complex problems numerically.

1.3.4 Constraints

Practical optimal control problems often involve constraints,
such as control bounds (u(t) € U), state constraints, or termi-
nal conditions. These constraints complicate the solution process

but are critical for real-world applications.[2]
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1.4 Applications of Deterministic Optimal Control

Deterministic optimal control has proven to be a powerful tool
with extensive applications across various fields, highlighting its
versatility and practical relevance. In the aerospace engineering
sector, it is essential for designing minimum-fuel trajectories for
spacecraft, optimizing launch vehicle ascent paths, and control-
ling satellite orbits. A significant historical example is the use of
optimal control techniques during the Apollo missions, ensuring
precise navigation and landing on the Moon.

The field of robotics also greatly benefits from optimal control,
which is employed for motion planning, trajectory optimization,
and energy-efficient operation of robots. For instance, it enables
the calculation of smooth trajectories for robotic arms used in
manufacturing lines. In economics, optimal control provides
a framework for modeling economic policies, such as optimal
investment strategies or the allocation of resources over time, as
illustrated by the Ramsey-Cass-Koopmans model for studying
economic growth.

In process control, particularly in chemical engineering, opti-
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mal control is used to optimize the operation of reactors, distil-
lation columns, and other industrial processes, with the aim of
minimizing energy consumption and maximizing yield. Modern
automotive systems also integrate optimal control in vehicle dy-
namics, for example in the design of controllers for autonomous
vehicles or the optimization of fuel efficiency in hybrid electric
vehicles. These examples illustrate the interdisciplinary nature
of optimal control and its ability to provide solutions to complex

real-world challenges.

1.5 Challenges and Open Problems

Despite its successes, deterministic optimal control faces several
challenges. One major issue is the computational complexity
of solving optimal control problems, particularly for nonlinear
systems or problems with high-dimensional state spaces. The
”curse of dimensionality” in dynamic programming, for instance,
makes it difficult to scale solutions to large systems.

Another challenge is the incorporation of constraints, which
can lead to non-smooth or discontinuous control policies. While

numerical methods have alleviated some of these issues, they
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often require significant computational resources and expertise
to implement effectively.

Open problems in the field include the development of more ef-
ficient algorithms for real-time optimal control, the integration of
machine learning techniques to approximate optimal controllers,
and the extension of deterministic methods to handle hybrid

systems that combine continuous and discrete dynamics.

1.6 Scope of the Thesis

This thesis focuses on the theory and applications of determin-
istic optimal control, with an emphasis on understanding the
mathematical foundations and exploring practical implementa-

tions. The scope includes:

* A detailed study of the Pontryagin Maximum Principle and
dynamic programming, including their derivations and ap-

plications.

* An analysis of numerical methods for solving optimal control

problems, with a focus on direct and indirect approaches.

* Case studies demonstrating the application of deterministic
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optimal control to real-world problems, such as trajectory

optimization in aerospace or motion planning in robotics.

¢ A discussion of the limitations of current methods and po-

tential directions for future research.

The thesis does not cover stochastic optimal control or ro-
bust control, which introduce uncertainty and disturbances into
the system dynamics. However, connections to these fields are
briefly discussed to provide context for the broader field of con-

trol theory.

1.7 Structure of the Thesis

The thesis is organized as follows:

* Chapter 1: Introduction (this chapter) provides an overview
of deterministic optimal control, its historical development,

key concepts, applications, and the scope of the thesis.

¢ Chapter 2: Mathematical Foundations presents the theo-
retical underpinnings of optimal control, including system
dynamics, cost functionals, and the Pontryagin Maximum

Principle.
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¢ Chapter 3: Solution Methods discusses analytical and nu-
merical approaches to solving optimal control problems, with
a focus on dynamic programming and numerical optimiza-

tion techniques.

e Chapter 4: Applications explores case studies in aerospace,
robotics, and economics, demonstrating the practical rele-

vance of deterministic optimal control.

e Chapter 5: Challenges and Future Directions examines the

limitations of current methods and identifies open problems

in the field.

* Chapter 6: Conclusion summarizes the key findings and
contributions of the thesis, along with recommendations for

future research.

1.8 Contribution of the Thesis

This thesis aims to contribute to the understanding of determinis-
tic optimal control by providing a comprehensive introduction to
its theoretical foundations, solution methods, and applications.

By combining rigorous mathematical analysis with practical case
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studies, the thesis bridges the gap between theory and practice,
offering insights that are valuable for both academic researchers
and practitioners. Additionally, the thesis identifies challenges

and open problems, providing a roadmap for future research in

the field.

1.9 Conclusion

Deterministic optimal control is a powerful and versatile field
that has transformed the way we design and optimize dynamic
systems. Its mathematical elegance, coupled with its practical
applicability, makes it a critical tool for addressing complex prob-
lems in engineering, economics, and beyond. This introduction
has provided an overview of the field, highlighting its historical
development, key concepts, applications, and challenges. The
subsequent chapters of this thesis will delve deeper into these
topics, offering a detailed exploration of deterministic optimal

control and its role in advancing science and technology.
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This chapter presents the theoretical underpinnings of optimal
control, including system dynamics, cost functionals, and the

Pontryagin Maximum Principle.

2.1 System Dynamics

This section introduces the mathematical description of the sys-

tem’s behavior. It typically involves:

» State Variables: Variables that completely describe the sys-

tem’s condition at any given time.

¢ Control Inputs: Variables that can be manipulated to influ-

ence the system’s behavior.

e State Equations (or Equations of Motion): Differential (or
difference) equations governing the evolution of state vari-

ables under the influence of control inputs, often in the form:

where x(t) is the state vector, u(t) is the control input vector,

and f defines the system’s dynamics.
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* Initial Conditions: The starting state of the system at the
initial time.
2.1.1 Cost Functionals (or Performance Indices)

This part focuses on quantifying the “optimality” of a control
strategy. The cost functional assigns a numerical value to each

control history and resulting trajectory. Common forms include:

* Lagrange Cost:

Ju(x,u, ) = / " L(x(t), u(t), t)dt

to
* Mayer Cost:

Ju(x(ty) ty) = d(x(ty), ty)
e Bolza Cost:

ty
o usty) = oxlty). t) + [ Lix(t) ule) )

to

e Specific Cost Structures: Quadratic costs, minimum-time

problems, and minimum-fuel problems. [3]
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2.2 The Pontryagin Maximum Principle (PMP)

A central theorem for finding the optimal control, especially with

constraints. Key elements include:

¢ The Hamiltonian Function:

where \(t) is the costate vector.

* The Costate Equations (or Adjoint Equations):

A1) =~ x(t), ulr) A1)

* The Stationarity Condition (or Minimization Condition):
The optimal control u*(¢f) minimizes the Hamiltonian with

respect to u:
H(x*(t), u*(t), \*(£), 1) < H(x*(t), u(t), \“(¢), t)

For unconstrained control:

oOH

g X (0, w(8), A(t),t) = 0
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* Boundary Conditions: Conditions on state and costate vari-

ables at initial and final times.

* The Hamiltonian is Constant: For time-invariant systems

with no explicit time dependence in L and f:

H(x*(t),u*(t),\"(t)) = constant

2.21 Proof of Pontryagin’s Maximum Principle

The proof hinges on the idea of perturbing a supposed optimal
control and observing the resulting changes in the cost functional.
Let u*(t) be an optimal control yielding the optimal state trajec-
tory 2*(t). We consider small variations around «*(¢) and analyze
their first-order impact on the cost.

Consider a “needle variation” of the optimal control v*(¢). For
an arbitrary admissible control w € U and a small time interval
t1,t1 + €] C [to, tf], the perturbed control u.(t) is defined as:

)
w fort € [t1,t1 + €]
Ue(t) = <

K u*(t) otherwise

This perturbation leads to a perturbed state trajectory z.(t).
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The change in the cost functional due to this perturbation is
AJ(e) = J(xe,ue) — J(x*,u*). Since u* is optimal (for minimiza-
tion), AJ(e) > 0 for sufficiently small e. Expanding AJ(¢) in a
Taylor series around € = 0, the first-order term must be non-
negative.

Analyzing the change in the state trajectory, z.(t) — 2*(t), for
small € reveals it is approximately proportional to e. This in-
volves examining the sensitivity of the state equation #(t) =
f(x(t),u(t), t) with respect to the control input. We introduce the
costate vector \(¢) satisfying a system of differential equations
derived from the cost functional and the system dynamics.

Through integration and utilizing the costate equations, the
first-order change in the cost functional can be expressed in terms
of the Hamiltonian function H(z,u, A\, t) = L(z,u,t)+ X f(z,u,t),
where L is the running cost. The first-order change is propor-
tional to:

/1 TH (@ (0), w, X (2),£) — H{a*(6), 0" (6), (0, )]t

3]

where \*(t) corresponds to the optimal trajectory.
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The condition that this first-order change is non-negative for
any w € U and t; € [ty, tf] yields the minimization condition of

the Pontryagin Maximum Principle:
H(x"(t),u"(t), \*(t),t) < H(x™(t), w, \"(t),t) Yw € U,Vt € [ty, t/]

Thus, the optimal control «*(f) minimizes the Hamiltonian at
each time .

The derivation also yields the costate equations:

OH

N(t) = -5

(27 (t), u"(t), A*(2), 1)

Finally, the boundary conditions for the costate vector at the
terminal time ¢ are derived based on the terminal cost ¢(x (), ¢¢)
and the constraints on the final state. For a free final state, the
transversality condition is \*(t;) = %(az*(t £),tr).

In essence, the proof uses variational arguments based on nee-
dle perturbations to derive necessary conditions for optimality
in terms of the Hamiltonian function and the costate vector. A
rigorous treatment requires careful analysis of the first-order

variations and the properties of the system and cost.
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This chapter provides the fundamental mathematical language
and the Pontryagin Maximum Principle, crucial for formulating
and solving deterministic optimal control problems and under-

standing subsequent advanced topics.

Example 1: Linear System with Quadratic Cost

Consider a system with state evolution:

t=u, z(0)=1 (2.2.1)
where the control is constrained:

u € [—1,1] (2.2.2)
The goal is to minimize the cost functional:
1
J = / (2% + u?)dt (2.2.3)
0

This functional penalizes both state deviation and control effort
over the time horizon ¢ € [0, 1].

We form the Hamiltonian:

H = pu — (2 + u?) (2.2.4)
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where p is the costate variable. The negative sign is due to the
minimization problem.

The costate dynamics are:
p=——F—=20 (2.2.5)

This shows the costate’s evolution based on the state’s impact on
the cost.

The transversality condition, given a free final state (1) and
zero terminal cost, is:

p(1) =0 (2.2.6)

To find the optimal control, we maximize H with respect to

u € [—1,1]. Rewriting H:
H=—2>—u"+pu (2.2.7)

The control-dependent part is —u? + pu, a quadratic in .

Taking the derivative with respect to u:

H
oH =—2u+p=0 (2.2.8)
ou
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This yields:

NS

(2.2.9)

Considering the constraint u € [—1, 1], the optimal control is:

1P|

Ut = min(max(g, —1),1) = sign(p) - min(;, 1) (2.2.10)

Solving this system analytically is complex, thus a numerical
approach is suitable.

If p(t) is initially positive, u* = min(p/2, 1). If |p| is small, u* =
p/2; if p exceeds 2, control saturates at 1. Numerically solving
T = u, p =2z with z(0) = 1, p(1) = 0, we observe p(t) decreases
as xz(t) evolves.

A typical solution shows bang-bang behavior: v*(t) = —1 early
(large negative p), driving = towards zero, then u*(t) ~ 0 as p

approaches zero, balancing the cost.

Example 2: Nonlinear System with Terminal Cost

Consider a nonlinear system:

i=2"+u, x(0)=0 (2.2.11)
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with unbounded control © € R. The objective is to minimize the

terminal cost:

J = x(1)? (2.2.12)

This cost focuses on driving the final state at ¢ = 1 to zero, with
no running cost.

The Hamiltonian is:
H = p(z* + u) (2.2.13)

where p is the costate.

The costate dynamics are:

P (2.2.14)
Ox

The costate evolves based on the nonlinear state term.
With a free final state and terminal cost z(1)?, the transversality

condition is:

_ 09 _

p(l) = 9 2z(1) (2.2.15)

where ¢ = z(1)? is the terminal cost.

To find the optimal control, we maximize H with respect to w.



2.2 The Pontryagin Maximum Principle (PMP) 26

Since u is unbounded:

%—Z =p (2.2.16)
For H to be maximized, if p # 0, u would be infinite, which is
infeasible.

The critical point occurs when:

8_H =p=0 (2.2.17)
ou

This suggests a singular control case.

If p(t) = 0 for all £, then p = —2pxz = 0, which is consistent.
Substituting p = 0 into the Hamiltonian maximization gives no
condition on w.

Assume u* = —z2 to cancel the nonlinear term:
=z 4+ (—2?) =0 (2.2.18)

Then x(t) = 0 for all ¢, satisfying «(0) = 0.
Checking the costate: if p(t) = 0, then p(1) = 0, and we need
x(1) = 0 for p(1) = 2z(1). Since x(1) = 0, the condition holds. The
2

control u*(t) = —x* = 0 (since z(t) = 0) achieves J = x(1)* = 0,

the minimum possible.
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Example 3: Time-Optimal Control with Bang-Bang Solution
For a time-optimal problem, consider the system:

t=u, x(0)=2 (2.2.19)

The goal is to drive the state to z(7) = 0 in minimum time 7,

with u € [—1, 1]. The cost functional is:

T
J:/ ldt =T
0

We seek the control that minimizes 7.

The Hamiltonian is:

H=pu—-1

where the 1 accounts for the running cost of time.

The costate dynamics are:

So, p(t) = ¢, a constant.

(2.2.20)

(2.2.21)

(2.2.22)

Since the final time T is free and the terminal state is fixed
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(z(T') = 0), the transversality condition is:
HT)=pTwuT)—1=0 = pu=1 (2.2.23)

To find the optimal control, maximize H = pu—1overu € [—1,1].
Since p is constant, v* = sign(p) if p # 0, giving u* = +1 or —1. If
p =0, H = —1, and the transversality condition H(7") = 0 cannot
hold, so p # 0.

If p> 0, then u* = +1,and & = 1, so z(t) = 2+ t. This increases
r, moving away from zero, which is not optimal.

Instead, if p < 0,s0 u* = —1. Then &+ = —1, and z(t) = 2 — t. At
t =2, 2(2) =0, satistying the target.

The transversality condition at 7" = 2 is p(—1) — 1 = 0, so
p = —1, consistent with p < 0. Thus, u*(t) = —1 for ¢t € [0, 2]

achieves the minimum time 7" = 2, a classic bang-bang solution. [1]

2.3 Filippov’s Theorem in Optimal Control

Filippov’s Theorem in optimal control is a fundamental result
that guarantees the existence of an optimal solution under more

general conditions than those required by existence theorems
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based on strict convexity. It is particularly useful when the set
of admissible controls or the system dynamics are not necessar-
ily convex. Here is a detailed, step-by-step presentation of the
theorem, with its mathematical formalism, without numbering.

Consider an optimal control problem where we seek to mini-
mize a cost given by:

ty
J(u) = / L(t, 2(t), u(t))dt + d(x(t))

0

subject to the dynamic constraint:

o(t) = ft,x(t), ult), w(to) = xo

and the control constraint:

u(t) € U(t,z(t)) p.p-sur [to, t/].

where x(t) € R" is the state, u(t) € R is the control, t € [ty, t/]
is time, L is the instantaneous cost function, ¢ is the terminal
cost, f describes the system dynamics, z is the initial state, and
U(t,z(t)) is the set of admissible controls, which can depend on

time and the state.
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Filippov’s Theorem provides sufficient conditions for the ex-
istence of an optimal control v*(¢) that minimizes the cost J(u)
among all admissible controls. These conditions primarily con-
cern the properties of the attainable set of velocities.

Define the attainable set of velocities F'(t,z) C R" as:

F(t,x)={veR" |v= f(t,x,u),u € U(t,x)}

Filippov’s Theorem states that if the following conditions are

satisfied:

® The set U(t, x) is non-empty and compact for all (¢, x) in a

suitable domain.

* The function f(¢, z,u) is continuous with respect to u for each

(t, x), and measurable with respect to ¢ for each (z, u).

* The function L(¢, x, u) is continuous with respect to u for each

(t, x), and measurable with respect to ¢ for each (z, u).

* There exists an integrable function «a(¢) and a constant b such
that for any admissible control u(¢) and the corresponding

trajectory x(t), we have |x(t)] < b for all t € [ty,t], and
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|f(t,x(t),u(t))] < aft) for almost every ¢t € [tg,tf]. This
ensures that the trajectories remain within a bounded set
and their derivatives are bounded by an integrable function

(equicontinuity of trajectories).

* For almost every ¢ and for every z, the set F'(t, z) is convex

and compact.
¢ The function ¢(z) is continuous.

Then, there exists at least one admissible control »*(¢) that
generates a trajectory x*(¢) and minimizes the cost J(u) among
all admissible controls.

The key step in the proof of Filippov’s Theorem relies on the
application of Filippov’s selection theorem for differential in-
clusions. The main idea is to consider the set of pairs (x(t), v(t))
where z(t) is absolutely continuous, x(ty) = zo, and v(t) € F(t, z(t))
almost everywhere, with |v(t)| < a(t). Due to the boundedness
and integrability assumptions on the derivatives, the set of tra-
jectories x(t) is compact in the space of continuous functions.

We then consider the relaxed problem where we allow veloc-

ities v(t) belonging to the convex hull of F'(¢, z(t)), denoted by
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coF'(t,z(t)). The existence of an optimal solution for the relaxed
problem can often be established using arguments of compact-
ness and lower semi-continuity of the cost functional.

The crucial part is to show that the optimal solution of the
relaxed problem is also a solution of the original (non-relaxed)
problem. This is where a version of Filippov’s selection theo-
rem comes into play. This theorem guarantees that if we have
a measurable function z(¢) and a measurable function v(t) €
coF'(t,z(t)), then there exists a measurable control u(t) such that
f(t,z(t),u(t)) =v(t) and u(t) € U(t, xz(t)) almost everywhere.

By applying this theorem to the optimal solution (z*(t), v*(t))
of the relaxed problem (where v*(t) € coF'(t,z*(t))), we obtain
an admissible control u*(¢) such that 2*(t) = f(¢, z*(¢),u*(¢)) and
u*(t) € U(t,xz*(t)). Since the solution of the relaxed problem is
optimal and the solution obtained for the original problem yields
the same trajectory and thus the same cost, this control v*(¢) is
also optimal for the original problem.

Thus, the convexity and compactness of the attainable set of

velocities F'(¢, x) play a vital role in guaranteeing the existence of
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an optimal solution to the original control problem. Filippov’s
Theorem is a cornerstone in the theory of existence in optimal
control, allowing us to handle problems where the convexity of
the controls or the dynamics is not directly assumed but mani-

fests through the convexity of the attainable set of velocities.

2.4 Proof of Filippov’s Theorem in Optimal Control

Filippov’s Theorem guarantees the existence of an optimal con-
trol by considering the relaxed problem and applying Filippov’s
selection theorem.

Consider the minimization problem:

ty
J(u) = / L(t, 2(t), u(t))dt + d(x(t))

0

subject to the constraints:
o(t) = ft,2(t),u(t), w(to) = o

u(t) € U(t,z(t)) p.p. sur [to, tf].

The hypotheses include the compactness of U(¢, x), the continuity

of f and L with respect to u, measurability with respect to ¢,
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boundedness of trajectories and their derivatives, the continuity
of ¢, and the convexity and compactness of the attainable set of

velocities:

F(t,x)={veR"|v=f(t,z,u),u e Ut z)}.

We introduce the relaxed problem with the differential inclu-
sion:

#(t) € coF(t,a(t), x(ty) =z

and the same cost functional. The existence of an optimal solu-
tion z*(t) with 2*(¢) = v*(t) € coF (¢, z*(t)) is established through
compactness and lower semi-continuity arguments.

Filippov’s Selection Theorem states thatif A : 7" x X — P(R™)
satisfies certain conditions (non-empty, closed, measurable in ¢,
lower semi-continuous in z), and if y : T — R is measurable
with y(t) € coA(t,z(t)) for a measurable function z : T — X,
then there exists a measurable function v : 7" — R™ such that
u(t) € A(t,z(t)) and f(t, z(t),u(t)) = y(t) almost everywhere.

In our case, A(t,z) = U(t,z) and y(t) = v*(t) = 2*(t). The hy-

potheses on U and f allow us to apply the theorem, guaranteeing
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the existence of u*(t) € U(t, z*(t)) such that:
f(t,x*(t),u"(t)) = v"(t) = 2"(t) for almosteveryt € [ty, ]

The control v*(t) is admissible and generates x*(¢). The associ-

ated cost is:
by
J(u”) = /to L(t, x7(¢), u™(8))dt + p(a"(tf)).

Since z*(t) is optimal for the relaxed problem, and any admissible
control of the original problem generates a trajectory admissible
for the relaxed problem with a cost greater than or equal to the
optimal cost of the relaxed problem, »*(¢) is an optimal control
for the original problem. The convexity of F'(¢, x) is crucial for

the application of the selection theorem.[7]

2.5 Example 1: Minimum Time Control
2.5.1 Problem Formulation

Consider the dynamical system:

& € [—1,1] -sign(z), x(0) =2 (2.5.1)
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with the objective of reaching z(7") = 0 in minimal time.

2.5.2 Analysis of the Set-Valued Map

The set-valued map F'(¢, z) is defined by:

/

—1,1] ifx>0
Ft,z) =q[-1,1 ifz=0 (2.5.2)
—1,1] ifz <0

\

Condition Verification

e Upper semi-continuity: Verified since for every ¢ > 0, there

exists a neighborhood such that F'(t',2") C F(t,z) + €B.

e Compactness and convexity: F(¢,x) = [—1, 1] is compact and

convex.

e Admissible controls: U = [—1, 1] is bounded.
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2.5.3 Candidate Solution
Proposition 2.1 The trajectory defined by:
(
2—t forte|0,2]
x(t) = < (2.5.3)
0 fort > 2
\
with the control:
)
—1 fortel0,2)
u(t) = < (2.5.4)
0 fort>2

\

is an optimal solution to the problem.

Proof e Forte[0,2: #=—1land z(2) =0
e Fort > 2: & = 0 maintains z(t) = 0
e Minimal time 7" = 2 since || < 1

2.6 Validation via Filippov’s Theorem

2.6.1 Application of the Theorem

Since the theorem’s conditions are satisfied:

* Existence of an optimal solution is guaranteed
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* The candidate solution achieves the time minimum
* The optimal control is admissible (u(t) € [—1, 1])
2.6.2 Physical Interpretation
This problem models:
¢ A vehicle changing direction based on its position
* The discontinuity when passing through z = 0

* The optimization of maneuver time

Detailed Examples of the Filippov Theorem

The Filippov Theorem ensures optimal solutions for control prob-

lems with differential inclusions:

i € F(t, ) (2.6.1)

where F(t,z) is a set-valued map. It is useful for systems with
discontinuous or non-smooth dynamics, ensuring optimal con-
trol existence under conditions like upper semicontinuity of F

and boundedness of the control set.
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Example 1: Time-Optimal Control with Discontinuous Dynamics

Consider a system with state 2 € R evolving according to the

differential inclusion:
& € [—1,1] -sign(z), x(0) =2 (2.6.2)

The goal is to drive the state to «(7") = 0 in minimum time 7". The

control set is U = [—1, 1], and the dynamics can be written as:
t € F(t,r) ={u-sign(z) | v e [-1,1]} (2.6.3)
The objective is to minimize the time functional:
T
J=T = / 1dt (2.6.4)
0

This models a system with velocity direction depending discon-
tinuously on the state’s sign.

To apply the Filippov Theorem, we verify the conditions. The
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set-valued map F'(t,x) = |—1, 1] - sign(z) is defined as:

(

—1,1] ifz >0
F(t,x)=q1,-1 ifz<0 (2.6.5)
—1,1] ifx=0

\

We check upper semicontinuity: for any (¢,z) and € > 0, there
exists a neighborhood of (¢, x) such that F(t',2') C F(t,z) + ¢B
(where B is the unit ball). Since sign(z) changes only at z = 0,
and F' is constant except at this discontinuity, we evaluate at
x =0.Fora’ # 0, F(t', ') is either [—1, 1] or [1, —1], both contained
in [—1,1] = F(t,0), so upper semicontinuity holds.

Additionally, F'(¢,z) is compact (closed and bounded) and
convex (as [—1, 1] is an interval), and U = [—1, 1] is compact. The
state space is R, and the target set {0} is closed. Admissible
trajectories must satisfy z(0) = 2 and z(7T) = 0, with #(¢) €
[—1,1] - sign(x(t)) almost everywhere.

Consider a control u(t) = —1 when z(¢t) > 0. Then &t = —1 -
sign(z) = —1forxz > 0,s0 x(t) = 2—t. Att =2, 2(2) = 0, reaching

the target. If 2(t) = 0 for t > 2, we need & € [—1, 1], which allows
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=0 (e.g., v = 0). Thus, a candidate trajectory is:

i

2—t fortel0,2]
x(t) = < (2.6.6)

0 fort > 2

\
with T = 2.

To confirm optimality, note that |&| < 1, so the fastest way
to reduce from 2 to 0 is with z = —1, taking 2 time units. The
Filippov Theorem ensures this solution exists by guaranteeing a
measurable control u(t) € [—1, 1] such that &(t) = u(t) - sign(x(t)).
Since the infimum of the time functional is finite (7" = 2 is achiev-
able), and the conditions of compactness, convexity, and upper
semicontinuity hold, an optimal trajectory exists. Here, u(t) = —1
fort € |0,2) and u(t) = 0 thereafter is such a control, achieving

the minimal time T = 2.

Example 2: Minimizing a Quadratic Cost with Non-Smooth Dynamics

Consider a system with state € R governed by the differential

inclusion:

&€ {u+max(0,z) |ue [-1,1]}, =z(0)=1 (2.6.7)
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over a fixed time interval ¢ € [0, 1]. The objective is to minimize

the cost functional:
1
J = / T2 dt (2.6.8)
0

which penalizes the state’s deviation from zero. The set-valued
map is:

F(t,x) = [—1+ max(0, x), 1 + max(0, x)] (2.6.9)

reflecting dynamics where the control v € [—1, 1] is augmented

by a non-smooth term max(0, z), which activates when = > 0.
We verify the Filippov Theorem’s conditions. F'(t,z) = [-1 +

max (0, x), 1 + max(0,z)| is a closed interval, hence convex and

compact. To check upper semicontinuity, consider the behavior

at x = 0, where max(0, z) transitions. For x > 0, F'(t,z) = [-1 +
z,1+z|; forz <0, F(t,x) = [-1,1]. At (¢t,0), F(t,0) = [—1,1].
Forz' > 0, F(t',2') = [-1+ 2/,1 + 2/], and we need F(t',z) C

F(t,0) 4+ €eB = |—1—¢,1+ €. Since 2’ small implies —1 + 2" > —1
and 1+ 2’ < 1+ ¢, this holds for small e. Similarly, for =’ < 0,
F(t' o) = [-1,1] C [-1,1]. Thus, F is upper semicontinuous.
The control set U = [—1,1] is compact, and F'(¢,z) is bounded

(since max(0, z) < |z| in practical trajectories).
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The goal is to find a trajectory z(¢) such that:
(t) = u(t) + max(0,z(t)), w(t) € [~1,1] (2.6.10)

minimizing J. Consider a candidate control u(t) = —1 to drive z
downward, counteracting the positive drift max(0, x). For z > 0,
= —1+2xz,s0wesolve & = x — 1, with z(0) = 1. The solution is
z(t)=1—e"L Att=1,2(1)=1—¢€"=0. Fort > In(1), z(t) <0,
and & = —1+ 0 = —1, so z(t) continues decreasing.

Compute the cost:
1 1 1
J= / (1—e12dt = / 2=Vt = S(1 - e ?) ~0.432 (2.6.11)
0 0

To explore optimality, try u(¢) = 0. Then # = max(0, z). For x > 0,

& = x,s0 x(t) = €', but this increases z, yielding a higher cost:
: 1
J = / et = (¢ — 1) ~ 3.195 (2.6.12)
0

The control u = —1 performs better by reducing x. The Filippov
Theorem ensures an optimal solution exists because F' satisfies
the required properties, and the cost functional is continuous

over the compact set of admissible trajectories. Numerically,
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u(t) = —1for z > 0 and adjusting v to maintain x < 0 minimizes
J, leveraging the theorem’s guarantee of a measurable optimal

control.

* Le théoreme de Filippov fournit un cadre théorique rigoureux

pour les systéemes discontinus
* ['exemple illustre bien son application pratique

* La solution obtenue est physiquement interprétable
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We consider a drone navigating in a 2D plane, modeled as a
point mass with position (1, z5) € R* The drone’s velocity is di-
rectly controlled, representing a simplitied model where control
inputs determine the velocity components. This is a common
approximation for drones operating at low speeds, where aero-
dynamic effects are secondary to control authority. The goal is
to steer the drone from an initial position to a target position
over a fixed time interval while minimizing a cost function that
penalizes energy consumption and deviation from a desired path.
The Pontryagin Maximum Principle (PMP) provides necessary

conditions for the optimal control, guiding the drone’s trajectory.

3.1 Application of the Pontryagin Maximum Principle to

Drone Navigation

The drone’s dynamics are described by:z; = uy,

Ty = ug, wherex(t) and xo(t) represent positions, and w; (¢), us(t) €
R are control inputs. The initial condition is (x(0), z2(0)) = (0, 0),
with target (z1(1),22(1)) = (1,0) at ¢ = 1. The control is con-
strained by:

ut 4+ us < 1. (3.1.1)
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The cost functional to minimize is:
! 1
J = / [(:m — ) a5+ 5(u% +ul)| dt. (3.1.2)
0
3.2 Pontryagin Maximum Principle Application
The Hamiltonian is:
1
H = piuy + pouy — |(z1 — ) + 25 + é(u% + u3) (3.2.1)
The costate dynamics are[8]:
OH
n=———=2w; —t 3.2.2
OH
pg = = = 2$2. (323)
8:1:2
3.3 Optimal Control Law
Maximizing H gives:
OH
Gul
OH
—— = P2 — Uy = 0. (332)

8’&2
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Thus, the optimal control is:

(

(u], us) = < (3.3.3)

| VP

3.4 Solution

The state and costate equations become:

fli'l = 2(1’1 — t), (341)

5152 = 25172. (342)

Solving with boundary conditions yields:

7i(t) = t, (3.4.3)
To(t) = 0, (3.4.4)
pi(t) =1, (3.4.5)
pa(t) = 0. (3.4.6)

The optimal control is constant:

(uy,us) = (1,0), (3.4.7)
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with minimal cost:

J = (3.4.8)

!
5

This application demonstrates how PMP optimizes drone nav-
igation by balancing path tracking and energy efficiency. The
solution provides a straight-line trajectory with constant velocity,

which is practical for real-world drone operations. [1]

3.5 Problem Formulation

The optimal control problem is defined by:

3.5.1 System Dynamics

< (3.5.1)

3.5.2 Cost Function

3.5.3 Control Constraints

(l’l(t) — t)Q + l’Q(t)z + %(ul (t)2 + Ug(t)Q) dt (352)

ul(t)? +ug(t)? <1Vt € [to, ty] (3.5.3)



N

&)

~

16

23

3.6 MATLAB Implementation 51

3.6 MATLAB Implementation

The complete implementation using MATLAB’s boundary value

problem solver (bvp4c) is presented below:

o\

% Optimal Control of 2D Drone Navigation

o\

Solves the optimal control problem using Pontryagin’s Maximum Principle

o\°

System dynamics:

o\

dx1l/dt = ul, dx2/dt = u2

o\°

Cost function:

o\

J = integral[ (x1-t) "2 + x272 + 0.5« (ul"2+u2”°2)]1dt

o\

Control constraints: ul™2 + u2°2 <=1

function optimal_drone_control ()

%% Initialization Parameters

t0 = 0; % Initial time
tf = 1; % Final time

o\

n_points = 100; Discretization points

%% Boundary Value Problem Setup

\o

$ Initial guess structure: [x1; x2; pl; p2]
initial guess = @(t) [t; 0; =zeros(2,1)];
% ODE system for states and costates
ode_system = @ (t,y) [

% State equations

optimal_control(y(3), y(4), 1); % dxl/dt

optimal_control(y(4), y(3), 2); % dx2/dt

% Costate equations
2%x(y(l)-t); % dpl/dt

2%y (2) % dp2/dt
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o)

% Boundary conditions

bc_function = @(ya,yb) [

va(l); % x1(0) = 0
va(2); $ x2(0) = 0
yb(l) - 1; % xl(tf) = 1
yb (2) $ x2(tf) = 0

%% Numerical Solution

solinit = bvpinit (linspace (t0,tf,20),

options = bvpset ('RelTol’,le-6,  AbsTol’,1le-6);

solution = bvpdc (ode_system, bc_function,

%% Solution Analysis

t = linspace (t0,tf,n_points);

y deval (solution, t);

[ul, u2] = compute_controls(y, n_points);

%% Visualization

plot_results(t, y, ul, u2);

%% Performance Evaluation
display_cost (t, y, ul, u2);

end

%% Control Computation
function [ul, u2] = compute_controls(y,
ul = zeros(1l,n);

u2

zeros (1,n);

for 1 = 1:n

ul (1) optimal_control(y(3,1),
u2 (i) = optimal_control(y(4,1i),

end

3l end

n)

y(4,1),

y(3,1),

solinit,

1);

2);

initial_guess);

options);
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%% Optimal Control Law (PMP)

function u = optimal_control(pl, p2, ")
p_norm = sqrt(pl”2 + p27°2);
if p_norm <=1
u = pl; % Interior solution
else
u = pl/p_norm; % Boundary solution

end

end

%% Visualization Functions
function plot_results(t, y, ul, u2)

figure (' Name’,’Optimal_Control Results’,...

"Position’, [100 100 900 700]);

% State trajectory plot
subplot (3,1,1);
plot(t, y(1,:), "b-", t, y(2,:), "=r—", t, t, "k:");
title(’ State_Trajectories’);
legend(’x_1:_Position’,’x_2: _Velocity’,’Reference’);
grid on;
% Control inputs plot
subplot (3,1,2);
plot(t, ul, "b-", t, u2, '"r—-");
title (/' Control Inputs’);
legend ('u_1:

_Thrust X’ ,’u_2:_ Thrust Y');

ylim([-1.1 1.17);

grid on;

% Phase portrait

subplot (3,1,3);

plot(y(1l,:), y(2,:), 'Linewidth’, 2);
title(’'Phase Portrait’);

xlabel ("Position_x 17);
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2| end

ylabel (

grid on;

%% Cost Calculation

5| fun

end

ction display_cost(t, y, ul, u2)
t(2) - t(1l);
running_cost = (y(1,

total_cost = sum(running_cost) xdt;

fprintf ( ) ;
fprintf ( , t(end));
fprintf (

fprintf ( , total_cost);

)-t)."2 + y(2,:).72 + 0.5x(u

1.72 + u2.72);

, y(l,end), y(2,end));

Listing 3.1: MATLAB Implementation of Optimal Control for 2D Drone Navigation

3.7 Implementation Details

3.7

N |

Numerical Solution Approach

The boundary value problem is solved using:

e Initial guess: Linear interpolation between boundary condi-

tions

e Solver: MATLAB’s bvp4c with:

— Relative tolerance: 107

— Absolute tolerance: 1076
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— 100 discretization points

* Solution evaluation: Using deval for smooth output

3.7.2 Optimal Control Law

The control law implements Pontryagin’s Maximum Principle:

3.7.1)

where p(t) are the costate variables.

3.8 Expected Output

Running the code generates:

* Three plots:

— State trajectories (z, x5 vs time)
— Control inputs (u;, up vs time)

— Phase portrait (z3 vs z1)

¢ Console output showing;:
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Parameter Value

Final time (/) 1.00

Final position (z(¢;)) 1.0000

Final velocity (z2(tf)) 0.0000

Total cost (J) Calculated value

Table 3.1: Expected output values

3.9 Application 2 of the Pontryagin Maximum Principle to a

Spacecraft Navigating to Mars

We model a spacecraft traveling in a 2D plane toward Mars,
approximated as a point mass with position (z1,7:) € R* in a

simplified heliocentric coordinate system. The dynamics are:

jil = (391)
j?g = VU9 (392)
@1 = U (393)
?.}2 = U9 (394.)

where (vy, v7) is velocity and (uy, us) are control inputs (thrust

accelerations). Initial conditions:

(1(0), 22(0), v1(0), v2(0)) = (0,0,0,0) (3.9.5)
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Target condition at 7' = 1:
(z1(1),22(1)) = (1,0) (free final velocities) (3.9.6)
Control constraint:
ut 4+ us < 1 (3.9.7)
3.10 Optimal Control Problem
Cost functional to minimize:
! 1
J = / [(xl — 1)+ a5+ =(ui +u3)| dt (3.10.1)
0

2

3.11 Pontryagin Maximum Principle

The Hamiltonian is:

1
H = pyvy + pava + psug + paus — | (21 — 75)2 + 95% + 5(’“? + U%)

(3.11.1)
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Costate equations:
OH
= ——=2(x1 — t 3.11.2
b1 e (901 ) ( )
OH
P2 = —F— = 2% (3.11.3)
8562
OH
p3=—5 =P (3.11.4)
U1
OH
R (3.11.5)
U2
Transversality conditions (free final velocities)
p3(1) =0, pu(1)=0 (3.11.6)
3.12 Optimal Control Law
Maximizing H yields:
)
(P3,pa) ifp5+pi <1
(u], us) = 3 (3.12.1)
—(p;’éff;i if p3 + p? > 1

3.13 Solution Analysis

The coupled system leads to fourth-order ODEs:
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For x-:
2 4 225 = 0 (3.13.1)
For x1:
2\ 2x =2t (3.13.2)
General solution for x5:
4
Tpt) =Y Cre'! (3.13.3)
k=1
where ;. are roots of r* + 2 = 0.
Particular solution for x;:
x1,(t) =1t (3.13.4)
3.14 Boundary Conditions
331(0) = O, 5132(0) =0 (3141)
(%) (O) = O, Ug(O) =0 (3142)
r1(1) =1, x2(1)=0 (3.14.3)
p3(1) =0, pu(1)=0 (3.14.4)
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3.18 Spacecraft Trajectory and Control Simulation

This Example provides a detailed explanation of the spacecraft
trajectory and control simulation depicted in the attached graphs
and the provided MATLAB code. The simulation models a 2D
Mars landing problem where the objective is to guide a spacecraft
from an initial position near Earth to a target position on Mars

within a fixed time frame, using optimal control inputs.

3.18.1 Problem Setup

The problem considers a spacecraft moving in a 2D plane, gov-

erned by the following simplified equations of motion:

I1<t> = U1<t>
Si?g(t) = Ug(t)
’Ul(t) = U1<t)

?.}2 (t) = U9 (t)

where x,(t) and () are the position components, v;(¢) and v(?)
are the velocity components, and w;(t) and uy(t) are the control

inputs (thrust forces per unit mass) in the respective directions.
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The simulation uses the following parameters:
* Final time: T' = 1 (arbitrary time units).

e Number of time steps: N = 100.

* Time step: dt =T/N.

* Time vector: ¢ ranging from 0 to 7.

e Initial conditions: x(0) = [0;0;0;0] = [21(0); z2(0); v1(0); v2(0)].

The spacecraft starts at the origin with zero velocity.

e Target condition: x(7") = [1;0; v1(T); vo(T')] with desired posi-
tion [21(T); z5(T')] = [1;0]. The final velocity is not explicitly
constrained in the problem formulation used here, but the
optimal control solution leads to a near-zero final velocity as

observed in the simulation.

3.18.2 Optimal Control Solution

The MATLAB code implements the analytical solution for a min-

imum fuel optimal control problem, derived using Pontryagin’s
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Maximum Principle. The optimal control inputs are given by:

wi(t) = 6(1 —t) —12(1 — t)?

us(t) =0

This solution dictates the thrust that needs to be applied in the
x1 and z» directions as a function of time to achieve the desired
transfer while minimizing fuel consumption (in a specific sense

related to the form of the control).

3.18.3 Simulation and Results

The code simulates the spacecraft’s trajectory by iteratively ap-
plying the optimal control inputs and updating the state (position

and velocity) using a forward Euler integration scheme:
vk +1)=x(k)+dt- f(z(k),u(k))

where f(x,u) = [v1; va; urs sl

The results of the simulation are visualized in four subplots:
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Interpretation of Optimal Control
Graphs for a Spacecraft Trajectory

The following interpretations describe what each graph would
illustrate when solving an optimal control problem for a Mars
mission using the Pontryagin Maximum Principle (PMP).

1. Optimal Spacecraft Trajectory

. What the graph shows: This 2D (or 3D, if the Z-axis is in-
cluded) plot displays the path taken by the spacecraft in a
heliocentric inertial coordinate system. You'd see the Sun

at the center (the origin), the Earth's initial position at
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departure, Mars' final position at arrival, and the curved
line representing the spacecraft's trajectory between these

two points.
. Interpretation:

- The shape of the trajectory is a direct result of the opti-
mization process. For a minimum-fuel mission, it might
resemble a spiral (for continuous low-thrust propul-
sion) or a Hohmann-like transfer (for impulsive or high-

thrust burns).

- The curvature and changes in direction of the trajectory
demonstrate how the spacecraft maneuvers to transi-
tion from one orbit to another, all while minimizing
fuel consumption. Each point on the curve represents

the spacecraft's position at a specific time.
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2. Optimal Thrust Magnitude Profile

.- What the graph shows: This plot shows the magnitude
(scalar value) of the thrust applied by the spacecraft's thruster

as a function of time, from - o (departure) to : - 7, (arrival).
. Interpretation:

- For fuel minimization problems, the PMP typically leads
toa"bang-bang' control strategy. This means the thrust
will generally be either at its maximum value (v,...) or
at zero.

- Periods where thrustis at maximum indicate active burn
phases where the engine is operating at full power to
modify the spacecraft's velocity and direction.

- Periods where thrust is zero correspond to "coast" phases
(free flight), where the spacecraft moves solely under

gravitational influence without consuming fuel.
- The switching points between maximum and zero thrust

are critical and precisely determined by the PMP's op-

timality conditions.
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3. Spacecraft Mass Profile

. What the graph shows: This plot tracks the evolution of
the spacecraft's mass throughout the mission, from depar-

ture to arrival.
. Interpretation:

- The spacecraft's mass will decrease only during peri-
ods when thrust is applied, as fuel is consumed and

expelled.

- During coasting phases (no thrust), the mass remains

constant.

- The final mass (at 7;) is the maximum value the space-
craft can achieve upon arrival for a given transfer time
and propulsion constraints, as the objective was to min-
imize fuel consumption (which is equivalent to maxi-
mizing final mass). A higher final mass signifies less

fuel used.
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4. Optimal Thrust Direction (Normalized Components)

- What the graph shows: This plot presents the compo-
nents (e.g., u..u,.u. nNormalized, or angles) of the thrust vec-
tor over time. Since the magnitude is shown separately,

these components represent the pure direction of thrust.
. Interpretation:

- The PMP dictates that the thrust direction must align
with the costate vector associated with velocity (».) (or

more precisely, with the generalized costate »-p,/m).

- These curves show how the spacecraft continuously ad-
justs its orientation to direct its thrust optimally. The
direction is not fixed; it changes to "push" the space-
craft towards the destination in the most fuel-efficient

manner.

- The thrust is generally not aligned purely prograde (in
the direction of motion) or retrograde (opposite to mo-
tion), but rather a subtle combination that minimizes

the total cost.



3.18 Spacecraft Trajectory and Control Simulation

67

5. Spacecraft Velocity Magnitude

. What the graph shows: This plot illustrates the evolution

of the spacecraft's scalar velocity magnitude over time.
. Interpretation:

- Velocity increases during thrusting phases where the
thrust has a significant component in the direction of

motion (acceleration).

- Velocity decreases during thrusting phases where the
thrust has a significant component opposite to motion
(deceleration, typically for orbital insertion or adjust-

ments).

- During free flight phases, the velocity changes under
the gravitational influence of the Sun (it may increase
when moving closer to the Sun and decrease when mov-

ing away).
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6. Mass Costate (p,,) Profile

. What the graph shows: This plot displays the evolution
of the adjoint variable (costate) associated with the space-

craft's mass.
. Interpretation:

- The costate ,, is an internal variable to the PMP system
of equations. Its value at the final time (y..(1)) is fixed
by the transversality conditions (typically ..z = -1 for

a final mass maximization problem).

- The behavior of .. is crucial for determining the thrust
magnitude. The "bang-bang" condition for thrust de-
pends on a switching function that compares the mag-

nitude of the velocity costate (jx|) to a term involving .,

(specifically, |jx] - 2=.).

- Thus, the variations in », dictate when the spacecraft
should activate or deactivate its thrust to maintain op-
timality.

Together, these graphs provide a comprehensive picture of

the optimal solution, showing not only where the spacecraft
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goes, but also how it gets there and why, in terms of propul-

sion strategy and fuel consumption.
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3.18.4 Additional Visualization: Control Direction (Polar Plot)

The code also generates a polar plot to visualize the direction
and magnitude of the control input. Since u}(¢) = 0, the control
direction 6 = arctan 2(u3(t), ui(t)) will be 0 when u}(t) > 0 and =
when uj(t) < 0. The radial distance in the polar plot represents
the magnitude ||u(t)||. This plot provides an alternative way to
understand how the direction and strength of the thrust change

over the course of the landing maneuver.

3.18.5 Conclusion

This simulation demonstrates the application of optimal control
to guide a spacecraft in a 2D plane. The analytical solution for
minimum fuel control effectively transfers the spacecraft from
the initial to the target position within the specified time. The
visualization of the control magnitude also allows for the verifi-
cation of potential constraints on the control effort. If constraints
are violated, more complex optimization techniques would be

required to find a feasible optimal control strategy.



General Conclusion

This thesis has explored the area of deterministic optimal control,
showing its importance in optimizing dynamic systems. We
started by introducing the basic ideas and history of the field,

noting its use in areas like aerospace, robotics, and economics.

A key part of our study was the Pontryagin Maximum Princi-
ple. We looked closely at its math and how it helps solve optimal
control problems.

We also showed how these methods are useful in real

situations, like drone navigation and spacecraft paths.

Our work also addressed the difficulties in this area, such as
the complexity of calculations and dealing with constraints.
These problems suggest future re-

search, including creating more efficient computer methods and
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using machine learning to improve optimal control strategies.
Overall, this thesis has improved our understanding of deter-

ministic optimal control and its important role in solving com-

plex optimization problems. The results here offer a strong base for

more research and uses of this constantly changing field.
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