People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research
Mohamed Khider University of Biskra
Faculty of Exact Sciences and Siences of Nature and Life

Department of Mathematics

Thesis Submitted in Partial Execution of the
Requirements of the Degree of

Master in “Applied Mathematics”
Option : Analyse

By Mme. (Mme/Melle.) Houili Ines

Operational Matrices For Solving Burgers’ Equation By Using Clique

Polynomials

Examination Committee Members :

Mme. KACI FATMA MCA U. Biskra President
Mr. LATADI ABDELKADER MCA U. Biskra  Supervisor

Mme. RADJEH FOUZIA MCB U. Biskra Examiner

03/06/2025




Dedication

Praise be to God, who granted me the strength and determination to pursue the

path of knowledge and complete this humble work.

To my dear parents, I extend my deepest gratitude and appreciation for the love

and support you have given me since my early childhood.
To my beloved family, thank you for your constant encouragement and support.
To my dear siblings, I am truly grateful for your unwavering presence by my side.

And to my friend Amel, heartfelt thanks for your sincere support and

companionship throughout this journey.



Acknowledgment

First and foremost, I would like to extend my sincere thanks to God Almighty,
the Most Holy and Most Merciful, who granted me the strength and courage to

complete this modest work.

I would also like to express my deep gratitude and appreciation to my super-
visor, Dr. Laiadi Abdelkader, for his precise guidance, constructive feedback,
and valuable suggestions throughout the course of this work, as well as for giving

me the freedom to express my ideas openly.

I would also like to thank the members of committee, Dr. Kaci Fatima and
Dr. Radjeh Fouzia, and all the professors in the Mathematics Department for

their technical support and continuous cooperation.

Finally, I extend my heartfelt thanks and appreciation to my dear par-
ents, my siblings, and all my friends for their unwavering support and constant

encouragement.

Thank’s

ii



Abstract

This study focuses on the Burgers’ equation, which plays an important role in
mathematical modeling and describes physical phenomena such as fluid flow and
heat transfer. Given the difficulty of solving this equation accurately due to its
nonlinear nature, we used a new method based on Clique functions to construct

operational matrices that help approximate the solution.

We applied this method to transform the equation into an algebraic form that can
be solved numerically, and then compared the results with those of other existing
methods. The results showed that the developed method provides accurate solutions

and requires less computation time.

In conclusion, this method proved to be efficient and can be applied to similar

equations in the future.

iii



Notations and symbols

Ordinary Differential Equation

Partial Differential Equation

The identity matrix of the order n x n
The determinant of a matrix A

The inverse of a matrix A

The trace of a matrix A

The transpose of a matrix A

v



Contents

[Dedicationl i
[Acknowledgment)| ii
[Abstractl iii
[Notations and symbols| iv
(Iable of Contents| v
[List of figures| viii
UIntroductionl 1
[1 (Generalities of partial differential equation| 3
(L.1 Ordinary Differential Equations (ODEs)| . . . . .. .. ... ... 3
[L2 Definition of a PDEl. . . . . . . .. ... .. 4
[L.3  Properties of Partial Differential Equations(PDEs)|. . . . . . . .. 5
.31 OrderofaPDFE ... ... ... .. ... ... ....... 5)

(.3.2 Dinear and Nonlinear PDEs . . . . . . . .. ... ... 6



CONTENTS

[1.3.3  Homogeneous and Inhomogeneous PDEs| . . . . . . . . .. 7

(.4 Initial conditions . . . . . . . ... L oo 8
(1.5 Boundary Conditions| . . . . . . ... ... ... ... ....... 8
2 Description of the operational matrix method and application|] 10
2.1 Matrices . . . . . .o 10
[2.1.1  Definition of a square matrix|. . . . . . . . .. . ... ... 10
2.1.2 Definition of a vectorsl . . . .. ... ... ... ... 11

[2.2  Properties of square matrices| . . . .. ... ... ... ... ... 12
221 Thematrixtracel . . . . ... ... ... L. 12
222 Determinants . . . . . ... ... oL 13
223 Inverse of amatrixd] . . ... ... ... ... ... .. .. 14
[2.2.4  transpose of a matrix| . . . . .. .. ... 16

2.3 Types of square matrices| . . . . . . . ... ... ... ... ... 17
[2.3.1 Diagonal matrix]. . . . . ... ... ... ... ... .... 17
[2.3.2  Identity matrix. . . . . .. ... o oo 19
[2.3.3  Triangular matrix| . . . . . .. ... 20

[2.4  Operations on matrices . . . . . . . . . . . ... ... 22
2.4.1 Addition of matricesd . . . . ... ..o 22
[2.4.2 Subtraction of matrices. . . . . .. ... o000 23
[2.4.3  Multiplication of matrices| . . . . . . . ... ... ... 23

[2.5  Description of the clique polynomial operational matrix method| . 25
[2.6  Numerical solution of differential equations| . . . . . . . . . . ... 27
[2.6.1  Operational matrix method . . . . . . .. ... ... ... 28

vi



CONTENTS

[3 Numerical solution of Burgers’ equation|

[3.1  Burgers’ equation|

[3.2  History of Burgers’ equation|

[3.3  Numerical results of Burgers” equation|

B3.1

Description of the operational matrix method|

Conclusion

[Bibliography|

Vil

36

36

38

39

39

47

48



List of Figures

viii

[2.1  Comparison of the numerical solution (o) with the exact solution |
(—) for Example 1| . . . . . ... ... o oo oL 31

[2.2  Comparison of the numerical solution (o) with the exact solution |
() for Example 2. . . . ... ... oo oo oL 33

[2.3  Comparison of the numerical solution (o) with the exact solution |
() for Example 3. . . . . ... ... oo L 34

[3.1  Numerical results at different times for Example of Burgers equa- |
tionforv=T0and =011 . . ... .. ... ... ... ..... 44

[3.2  Numerical solution of the problem produced for the parameter v = |
C IO 45
[3.3  Numerical results at different times for Example of Burgers equa- [
tlionforv=0Jandt=01J . . ... ... ... ... ... .... 46

[3.4  Numerical solution ot the problem produced for the parameter v = |
0T o 46



Introduction

artial differential equations (PDEs) are among the most important tools

in applied mathematics, given their crucial role in modeling various phys-

ical and engineering phenomena such as heat transfer, material diffusion,
and fluid flow. Among these equations, the Burgers’ equation stands out due to
its combination of two essential features: diffusion and nonlinearity. This du-
ality makes it an ideal model for studying complex behaviors in physical sys-
tems. In light of the importance of this class of equations, this work focuses on
the topic: "Operational Matrices for Solving Burgers’ Equation Using
Clique Polynomial." This choice was motivated by several factors, including a
desire to explore numerical solutions for nonlinear equations, the pursuit of ac-
curate and efficient techniques to overcome the absence of analytical solutions in
many cases, and the promising capabilities of Clique functions, which are relat-

ively new tools in the field of numerical methods.

Within this context, the central research question guiding this study is: "How
can we construct an accurate and efficient numerical method based on operational

matrices and Clique functions to solve the Burgers’ equation?"
To answer this question, the structure of the memory is organized as follows:

Chapter One provides a theoretical overview of partial differential equations,

including their classifications and key properties.
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Chapter Two explores the main types of operational matrices, their characterist-
ics, and introduces Clique functions alongside the construction of their associated

matrices.

Chapter Three presents a comprehensive analysis of the Burgers’ equation, ex-
plaining its mathematical formulation, properties, and historical context. We
apply the operational matrix method using Clique polynomials to solve this equa-
tion, followed by an analysis and comparison of the results with those of other

numerical approaches to objectively evaluate the method’s performance.

By integrating rigorous theoretical foundations with computer-based numerical
applications, we were able to develop an efficient numerical model that yields
accurate approximations to the solution of the Burgers’ equation. We conduc-
ted a thorough review of previous studies, drawing from peer-reviewed articles
and research papers that addressed the equation using various approaches, al-
lowing for an insightful evaluation of our proposed method. The references used
in this work include recent publications from international scientific journals as
well as specialized books in numerical analysis, partial differential equations, and
approximation functions. Despite the challenges we encountered particularly the
conceptual complexity of Clique functions and the technical difficulties in pro-
gramming the numerical model the valuable academic guidance of my supervisor
enabled us to overcome these obstacles, and we express our deep gratitude for his

continuous support.

The memory concludes with a list of the references used, followed by a concise

summary of the main results and conclusions drawn from the study.



Chapter 1

(Generalities of partial differential

equation

In this chapter, we will explore the fundamental concepts, classifications, and
various solving techniques of PDEs, with an emphasis on practical applications

that highlight their importance in science and engineering.

1.1 Ordinary Differential Equations (ODEs)

Ordinary differential equation is defined as an equation composing of the deriv-

ative of the dependent variable having only one independent variable .
Examples include:

1. % = 3x: Dependent variable y, independent variable .

2. % + 2zy = e”: Dependent variable y, independent variable x.

3.55—; + 3‘fl—f + 2z = sin(2t): Dependent variable x, independent variable t.
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1.2 Definition of a PDE

A vpartial differential equation (PDE ) are a type of differential equation that
contains partial derivatives of a dependent variable (an unknown function) with

respect to multiple independent variable. A PDFE is generally written as:

Aug, + Bugy + Cuyy + Duy + Buy + Fu =G (1.1)

where A, B,C, D, E, F are constants or functions known in terms of X, Y.

Every linear partial differential equation such as (1) represents of the following

patterns:

e A parabola
e Hyperbola

e Ellipse

The equation of parabola have the heat flow and diffusion processes and achieve
the property

B? —4AC =0
Hyperbolic equation describe vibrational and wave motions and satisfy the prop-
erty

B? —4AC >0
The elliptical equation describe steady -state phenomena and satisfy the property

B?2 —4AC <0
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Examples of PDEs include:

1. Heat equations:

U = Ky (1D); ut = K (Ugy + tyy) (2D); ut = K (Ugg + Uy + u,.)(3D);
describing heat flow in varying dimensions.

2. Wave equations:

U = C2um(1D); Uy = CQ(“m + Uyy)(QD); Uy = CZ(UM +uyy + Uzz)(?)D);
describing wave propagation.

3.Laplace equations (time-independent):

Ugy + Uyy = 0(2D); Uy + Uy + U, = 0(3D);

4. Burgers’ equation:

Up + Uy — NUUL, = 0,

These equations describe phenomena such as heat flow, wave propagation, and

fluid dynamics in various dimensions.

1.3 Properties of Partial Differential Equations(PDEs)

Partial Differential Equations(PDFE's) have several important properties that cat-
egorize and characterize their behavior. These properties are essential for under-
standing how to solve PDFEs and interpret their solutions. Below are the key

properties:

1.3.1 Order of a PDE

The order of a PDFE is determined by the highest order of the partial derivative

present in the equation. For example:
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u, —u, = 0 (1st order).
Uzt = 0(2nd order).

Example : Determining the Order of PDEs

(a) Ut = Uyy + uy,: The highest derivative is u,, or u,,. Order: 2.

(b) uy + u, = 0: The highest derivative is u, or u,. Order: 1.

1.3.2 Linear and Nonlinear PDEs

e A partial differential equation is linear if:

1. The power of the dependent variable and each partial derivative is one.

2. The coefficients of the dependent variable and its partial derivatives are

constants or independent variables.
Examples of linear PDEs:
1. Heat equation: u; = Kug,.
2. Wave equation:uy = c?ugy.
3. Laplace equation: t,, + ty, = 0.

4. Linear Schrodinger’s equation:iu; + gz, = 0.

e A partial differential equation is non-linear if it contain nonlinear terms

such as: siny, e¥, /y,y?, yy'or Iny.

Examples of nonlinear PDEs:
1. Advection equation: u; + uu, = f(z;t).
2. Burgers equation: u; + uu, = qtly,.

3. Sine-Gordon equation: uy_u,, = asin(u).

6
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What is the significance of these equations?

e Linear PDFE's often describe fundamental processes like diffusion and wave

propagation.

e Nonlinear PDFE's arise in advanced fields like fluid dynamics, plasma phys-

ics, and nonlinear optics, often producing solitary wave solutions.

1.3.3 Homogeneous and Inhomogeneous PDEs

One way to classify partial differential equations is based on their structure: they
can be homogeneous or non-homogeneous. This distinction is important in

understanding the behavior of solutions and the methods required to solve them.

e A PDE is homogeneous if every term in the equation contains the depend-

ent variable u or one of its derivatives.

e A PDE is inhomogeneous if at least one term in the equation does not

contain the dependent variable u or any of its derivatives.

Exemples

1. w; = 4u,,: Homogeneous (all terms involve u or its derivatives).

2. uy = Uy + x: Inhomogeneous (term x does not involve u).

3.Uzyy + Uy, = 0: Homogeneous.

4. uy + uy, = u+4: Inhomogeneous (term 4 does not involve u or its derivatives).

This classifcation helps determine whether external sources or independent terms
are influencing the system described by the PDFE. Homogeneous equations often
arise in idealized systems, while inhomogeneous ones account for external forces

or inputs.
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1.4 Initial conditions

It was indicated before that the PDFEs mostly arise to govern physical phe-
nomenon such as heat distribution, wave propagation phenomena and phenomena
of quantum mechanics. Most of the PDFE's, such as the diffusion equation and
the wave equation, depend on the time ¢. Accordingly, the initial values of the
dependent variable u at the starting time ¢ = 0 should be prescribed. It will be
discussed later that for the heat case, the initial value u(t = 0), that defines the
temperature at the starting time, should be prescribed. For the wave equation,

the initial conditions u(t = 0) and (¢t = 0) should also be prescribed.

1.5 Boundary Conditions

The general solution of partial differential equations (PDFE's) is not sufficient; a

specific solution must satisfy prescribed conditions.

When a PDFE governs the behavior of a physical phenomenon within a bounded

domain D, the value of the dependent variable u is specified at the boundaries.

These specified values are known as boundary conditions, which are classified into

three types:

1. Dirichlet Boundary Conditions

The function u is explicitly defined at the boundary.
Exemple

For a rod of length L, where 0 < x < L, the boundary conditions are:

For a rectangular plate, values are specified at:
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w(0,y), u(L1,y), u(z,0), u(zx, L)

2. Neumann Boundary Conditions

The normal derivative Z—T“Lof u at the boundary is specified:
uz(0,t) = a, ug(L,t) =

3. Mixed Boundary Conditions

A linear combination of the function u and its normal derivative is specified on

the boundary.



Chapter 2

Description of the operational

matrix method and application

In this chapter, we will present the definitions of matrices and description of the

operational matrix method with some applications on differential equations.

2.1 Matrices

2.1.1 Definition of a square matrix

A square matrix is a matrix in which the number of rows is equal to the number

of columns.Its order is represented as n X n, where n is a positive integer.

It can be expressed as follows:

a1

21

an1

a2

a22

An2

10

Q1n

Q2n,

ann

nxn
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where:

e A is the square of order n.

® a;; is the element located at row ¢ and column j.

Exemples

1. A square matrix of order 2 x 2:

3 5
A:

1 2

2. A square matrix of order 3 x 3 :

4 0 -2
B=113 5
78 6

2.1.2 Definition of a vectors

A vector is a matrix with only one row or one column, and its values are called
components of the vector. Vectors are denoted by lowercase bold letters such as

a or b, or using brackets like a = [a4].

e Row vector: It has the form:

a= {al ay ... an} such as

GZ{—Q 5 08 0 1}

e Column vector: It has the form:

11
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_bl_
by
4
b= | | suchasb= |
=7
bm

2.2 Properties of square matrices

2.2.1 The matrix trace

Let A be an n x n square matrix. The trace of A , denoted as tr (A), is the sum

of the main diagonal elements of the matrix. That is:

tr(A) =30 ag

1 2 0
1 2

Let: A= B=13 8 1
3 4

-2 7 =5

To find the trace of A and B, we sum the main diagonal elements
tr(A)=14+4=5
tr(B)=14+8-5=14

Properties of the matrix trace

Let A and B be n X n matrices. then:

1. tr(A+ B) =tr (A) +tr(B)

2. tr(A—B) =tr(A) —tr(B)

12
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3. tr (kA) =k -tr (A), where k is a scalar
4. tr (AB) = tr (BA)

5. tr (AT) = tr (A)

2.2.2 Determinants

The determinant of an n x n matrix A , denoted det (A) or |A| , is a number

given by the following :

o If Aisalx 1 matrix A= [a] , then det(A) = a.

o If Aisa 2 x 2 matrix

a b
A:

c d

The determinant is calculated using the formula:
det(A) = ad — bc.
Numerical Example:

3 4
If A=

2 5

Then the determinant is:

det(A) = (3x5)— (4x2)=15—-8=7

e if Ais an n X n matrix, where n > 2, then det (A) is the number found by

taking the cofactor expansion along the first row of A. That is,

det (A) = al,lcl,l + a1,20172 + -+ al,ncl,n-

13
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Let A and B be n x n matrices and let k£ be a scalar .The following are true :

1. det (kA) = k™ - det (A)
2. det (AT) = det (A)
3. det (AB) = det (A) det (B)

4. If A is invertible, then

det (Ail) = m.

5. A matrix A is invertible if and only if det (A) # 0

2.2.3 Inverse of a matrix:

The inverse of a square matrix A of order n x n is the matrix A~! that satisfies

the equation:
AATL =A71A =1,
where [,, is the identity matrix of the same order.

For a matrix to have an inverse, it must be non-singular, meaning that its

determinant is not zero:
det(A) # 0

Consider the matrix:
2 3
1 4

First, we calculate the determinant:

det(A) = (2x4)— (3x1)=8—-3=5

14
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Since the determinant is not zero, the matrix is invertible. The inverse is calcu-
lated using the formula:

d —b

- 1
ATl = det(A)

—C a

Substituting the values:

Let A and B be n x n inversible matrices. Then:

1. AB is inversible; (AB)f1 =B tAL

2. A7! is inversible; (A7)~ = A.

3. nA is inversible for any nonzero scalar n; (nA)™' =t A~

4. If A is a diagonal matrix, with diagonal entries d1, d2,---, dn, where none of the
diagonal entries are 0, then A~ lexists and is a diagonal matrix. Furthermore, the

diagonal entries of A~ lare
1/d1,1/d2,-+,1/dn.Furthermore,
1. If a product AB is not inversible, then A or B is not inversible.

2. If A or B are not inversible, then AB is not inversible.

15
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2.2.4 transpose of a matrix

The transpose of a square matrix is a new matrix obtained by swapping the rows
and columns of the original matrix. If A is a square matrix of order, then its
transpose A’ is the matrix where the element in position (7,j) is equal to the
element in position (4, j) of the original matrix:
(AT = Ay, Vi, g

7 8

Let A=
9 10

The transpose of this matrix A7 will be:

79
AT =

8 10

Let A and B be matrices where the following operations are defined. Then
1. (A+ B)T = AT + BTand (A — B)T = AT — BT

2. (kA)T = kAT for any real number k.

3. (AB)T = BT AT for any two matrices that can be multiplied.

4. (AT = (A7)

5. (AT)T = A.

16
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2.3 Types of square matrices

2.3.1 Diagonal matrix

A diagonal matrix is a special type of square matrix in which all the elements

outside the main diagonal are zero. It can be represented as follows:

d; 0 0 .. 0
0 dy 0 ... 0
D=10 ... d33 ... 0
(0 0 0 .. du

where d;; represents the diagonal elements, which can be real or complex numbers.

Properties of a diagonal matrix:

e Addition and subtraction:

If Diand Dy are diagonal matrices of the same order, their sum and difference

will also be diagonal matrices.

Dy + Dy = diagonal matrix

e Miltiplication:

The product of two diagonal matrices of the same order is also a diagonal matrix,

where:

(D1 + D3) = (D1)i; - (D2)s

17
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e Inverse matrix:

If all diagonal elements are nonzero, the diagonal matrix is inversible, and its

inverse is also a diagonal matrix:

(DY) = o
e Matrix Powers:
If is a diagonal matrix, then:
d, 0 0 .. 0
0 di, 0 ... 0
D=0 o0 dty .. 0
00 0 .. d’fm_

¢ Eigenvalues and Eigenvectors:

The eigenvalues of a diagonal matrix are its diagonal elements, and the eigen-

vectors are the standard basis vectors.

3 0 0
D=10 -2 0
0 0 5

Properties of this example
e [t is a diagonal matrix because all non-diagonal elements are zero.
e [ts eigenvalues are 3, —2 and 5.

e Its inverse, if all diagonal elements are nonzero, is given by:

10 0
-1 _ _
D7 =10 3 0

0 0 1

18
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2.3.2 Identity matrix

The identity matrix is a square matrix (the number of rows equals the number
of columns) that has ones (1s) on the main diagonal (extending from the top left

to the bottom right) and zeros (0s) elsewhere.

It is usually denoted as I,, , where n represents the number of rows (or columns).

The identity matrix serves as the multiplicative identity in matrix operations.

e Identity matrix of order 2 x 2 :

e Identity matrix of order 3 x 3:

100
Is=10 1 0
001

e Multiplicative Identity: When any matrix is multiplied by the identity

matrix, the result is the same matrix:

e Commutativity in Multiplication: Although matrix multiplication is
generally not commutative, multiplying any square matrix by the identity

matrix is commutative:

Al =TA=A

19
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e Non-Singular Matrix: The determinant of the identity matrix is always

1, which means it is non-singular and invertible:

det(l,) =1

e Diagonal Matrix: The identity matrix is a special case of diagonal matrices,

where all the diagonal elements are 1.

e Symmetric Matrix: The identity matrix is equal to its transpose:

IT=1,

e Self-Inverse Property: The inverse of the identity matrix is itself:

I-1=1,

n

e Does Not Affect Eigenvalues: When a matrix A is multiplied by I,, , its

eigenvalues remain unchanged.

2.3.3 Triangular matrix

A triangular matrix is a square matrix (where the number of rows equals the
number of columns) in which all elements either above or below the main diagonal

are equal to zero. It is classified into two main types:
1. Upper Triangular Matrix

An upper triangular matrix is a square matrix in which all elements below the

main diagonal are zero. That is, an element in row ¢ and column j is zero if i > j.
A matrix A = [a;;] of order n x n is an upper triangular matrix if:
Qij = 0 Vi> ]

20
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Example of an Upper Triangular Matrix:
2 3 4

A=10 5 6
007

2. Lower Triangular Matrix

A lower triangular matrix in which all elements above the main diagonal are zero.

That is, an element in row ¢ and column j is zero if 7 < j.
A matrix B = [b;;| of order n X n is a lower triangular matrix if:
bij =0Vi < j
Example of a Lower Triangular Matrix:
5 00
B=18 6 0
39 4

1. The product of two triangular matrices of the same type results in another

triangular matrix of the same type.

e If A and B are both upper triangular matrices, then AB is also an
upper triangular matrix.
e If A and B are both lower triangular matrices, then AB is also a lower

triangular matrix

2. The determinant of a triangular matrix is equal to the product of its diagonal

elements. If A is a triangular matrix (upper or lower), then:

det(A) = A11-0929...Apn

21
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3. A triangular matrix is invertible if and only if all its diagonal elements are

nonzero.

2.4 Operations on matrices

Matrices are a set of elements arranged in rows and columns, and several math-
ematical operations can be performed on them. The most important operations

include:

2.4.1 Addition of matrices:

If Ala;;] and Blb;;| are two matrices of the same order, then their sum A + B is
a new matrix, where each element is the sum of the corresponding elements in A

and B. That is:
A+ B = [ai; + byj]
Consider two matrices A and B of order 2 x 2. Their sum is given by:

aq bl n ag bg ay + as bl + b2
c d cy dy c1+cy di+do

Properties of matrix addition:
If A, B, and C' are matrices of the same order, then:

1. Commutative Property:

A+B=B+ A
2. Associative Property:
(A+B)+C=A+(B+C)

22
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3. Identity Matrix (Additive Identity):
A+O=0+A=A

whereO is the zero matrix, which does not affect the addition.

4. Additive Inverse:

A+ (-A)=0=(-A)+ A

where (—A) is obtained by changing the sign of every element in A, making it the

additive inverse of the matrix.

2.4.2 Subtraction of matrices

If A and B are two matrices of the same order, the subtraction is defined as:
A—B=A+(-B)
For two matrices and of order 2 x 2 , their difference is given by:
a; by as  be ai_ay by — by

c dy cy dy cp—cy dy —dy

e Matrices are subtracted by subtracting each element in the first matrix from

the corresponding element in the second matrix, A — B = [a;; — b;j], .. .

2.4.3 Multiplication of matrices

A square matrix is a matrix where the number of rows is equal to the number
of columns, meaning its dimensions are n x n . When multiplying two square

matrices of the same size, the result is also a square matrix of the same size.

23
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Formula for Multiplying Square Matrices:

If A and B are two square matrices of order n x n , then their product C' = A x B

is calculated as follows:
Cij =2 per Aige X By

where:

C;; is the element at row ¢ and column j in the resulting matrix C .

A; i, is the element at row ¢ and column k in matrix A .

B, j is the element at row k and column j in matrix B .

n 1s the number of rows and columns in the matrices.

Example:

1 2 1 -1 5 3
X —

3 4 2 2 11 5

1. Non-Commutativity (Non-Swap Property)
In general, matrix multiplication is not commutative:
AxB#BxA

except in special cases, such as when both matrices are diagonal or share certain

properties.

2. Associativity

Matrix multiplication is associative, meaning:
Ax(Bx(C)=(AxB)xC
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This means that the order of execution does not affect the result.

3. Distributive Property Over Addition

Matrix multiplication satisfies the distributive property over addition:
Ax(B+C)=AxB+A xC
(B+C)xA=BxA+CxA

4. Zero Matrix (Multiplicative Zero Property)

If any matrix is multiplied by the zero matrix O, the result is also a zero matrix:

AxO=0xA=0
5. Transposition Property

When multiplying two square matrices and then transposing the result, we get
the same result if we transpose each matrix first and reverse the order of multi-

plication:

(Ax B)T =BT x AT,

2.5 Description of the clique polynomial opera-

tional matrix method

Graph theory is one of the gifted subjects in applied mathematics. A graph G
is contained with a nonempty finite set of n vertices called the vertex set V(G),
along with a prescribed set of m unordered pairs of members of V' (G) called edge
set F(G). These unordered pairs are joined by a line called an edge. Whenever
two vertices share a common edge, then those two edges are coined to be adjacent.
If all the vertices and edges present in a graph G’are from another graph G then G’

is said to be a subgraph of GG. A graph in which all pair of vertices are adjacent is
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called a complete graph and K, is the notion for the complete graph on n vertices.
A complete subgraph with k vertices of a graph G is called as k—clique of GG. For
graph-theoretic definitions, symbols, and related works we refer [3,8]. Hoede et

al.[5] defined clique polynomial of a graph G, denoted by C(G;x), is defined by

n

C(Gyz) = Z apa®

k=0

where ay represent the total distinct k—cliques in graph of size k, with ag = 1. In
general, the clique polynomial of a complete graph K, with n—vertices is given

by n
C(Kyz)=1+a) =3 (Z)mk

where (Z) = #Lk),

In particular

C(Kop;z) =1
C(Kyz)=1+4z
C(Kyz) =142z +2°

C(Ks;z) =1+ 32 + 32% + 2°

Theorem 1. Let f(y) be the bounded function in L? (R) defined on [0, 1], then

the clique polynomial expansion of f(y) converges to it.
Proof. See Ref [3, 8].

Let B ={C,(z) = C(K,,z),n € N}. Clearly B is Banach space on closed subset
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A of R with norm given by

|Cll = sup [Ch (z)] VO, € B(A)

VzeA

We can approximate any function f(z) in L?[0, 1] in terms of the clique polynomial

n—1 n—1 i .
P~ F0) = aC (fia) = L a(Y () ) = ATPX ()
i=0 1=0 k=0
where AT = [ag,ay,...,a,1], X(2) = [1,z,...,2" YT and P is the lower trian-

gular n x n matrices defined by

1 0 0 0 0
1 1 0 0 0
1 2 1 0

P =
1 3 3 0 0
1 0
1 n—1 (’1—1)2# e om—1 1

where
0 j>i,4,j=1,2,...,n
Pij =

(i—1)!

m ZZ]vzuj: 1,2,,77,

2.6 Numerical solution of differential equations
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2.6.1 Operational matrix method

We consider the clique polynomial operational matrix method along with colloc-

ation points to solve the following fourth order of differential equations

y W = fl,y, 9,y y"),0<x < 1 (1)

with the initial conditions

y(0) = b1,y (0) = by, y" (0) = b3, 5" (0) = by (2)

where by, bs, b3, by are real constants and f is a given continuous on [0, 1], nonlinear

function. We assume that

yW (2) = ATPX (x) (3)

Where A is an unknown vector to be determined A” = [ag, ay, ..., a, 1], X (x) is

the known vector defined above and

1 0 0 0 0
1 1 0 0 0
1 2 1 0
P =
1 3 3 0 0
1 0
1 n—1 (”—1)2# e -1 1

For solving the Equation (1), we calcul the derivatives y*) () where k = 0,1,2,3,x €
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[0,1] and with the initial conditions (2). It is easy to prove that this identity

/ / / ATPX (t)dt = ATPM2" X (z)
0 0 0

k times

where M, is the n x n matrices

= 0 0 e 0
1
0 2x3x...(k+1) 0 T 0
1 -
My = |0 0 3xdx..(kt2) 0
0
0 0 R 0 —1
L n(n+1)...(n+k—1)

Integrating Equation (3) fourth times on bothside with respect to = limit between

0 and z, we obtain

y()_b1+62x+—x +b43 ////ATPX

After integration yields

bs b
y(x) = by + byr + §x +—= 57 S+ ATPMy2* X (2)

where _ -
& 0 0 0
0 % 0 0
Mi=10 0 5555 0
0
1

_O 0 T 0 n(n+1)(n+2)(n+3)

Now by substituting v, 4, v", y", y* into Equation (1) and collocate this equation
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by the following collocation points z; = 22;1 ;i =1,...,n, we get a system of n non

linear equations with n unknowns (ag, a1, ..., a,_1). This system can be solved by

using the Newton method.

Example 1 Consider the following Lane-Emden equation
" 2 /
Y+ ;y +1=0 (4)

with initial conditions

The exact solution of the above problem is

yzl—g (6)

By solving the Equation (4) with conditions (5) we obtain the vector A for n = 10

—0.211563_
—0.755242
2.064859
—3.265769
3.292303
—2.193601
0.965798
—0.270905
0.043921

—0.003135

Table 1 shows that the numerical solutions and the errors obtained for Lane-
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Emden equation of problem (4) (Example 1) by using the present method and

compared with the exact solution (6) for n = 10. Figure 2.1 shows the numerical

results for Example 1.

x Exact solution Numerical solution Errors
0.1 | 0.998333333333333 | 0.998333333424079 | —9.07457442522741F — 11
0.2 | 0.993333333333333 | 0.993333333363829 | —3.04952729734964F — 11
0.3 0.985 0.985000000121763 | —1.21762711025042E — 10
0.4 | 0.973333333333333 | 0.973333333624439 | —2.91105806127234F — 10
0.5 | 0.958333333333333 | 0.958333333868015 | —5.34681854347241F — 10
0.6 0.94 0.940000000313705 | —3.13704728860387E — 10
0.7 | 0.918333333333333 | 0.918333332677134 | 6.56199095061538FE — 10
0.8 | 0.893333333333333 | 0.893333331842293 | 1.49104029123492F — 09
0.9 0.865 0.864999998067961 | 1.93203875120673E — 09

1 1 0.833333333333333 | 0.833333330673594 | 2.65973987279011E — 09

Figure 2.1: Comparison of the numerical solution (o) with the exact solution (—)

Table 1 Numerical results for Example 1

098

0.9

0.9 -

092

0.9

0.88 -

0.86 [~

0.84 -

0.82 ! !

for Example 1.

0.3 0.4 0.5 0.6

31

0.7

0.8

0.9 1




CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
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Example 2 Consider the linear third order initial value problem
y" =sin(r),0 <z <1 (7)
with initial conditions
y(0) = -1,4/(0) = 0,4"(0) = 1 (8)
The analytic solution of the above problem is
y = cos(x) +x* — 2 9)

We have
1
y(r) = -1+ §x2 + ATPM32* X () (10)

Substituting equation (10) into (7) yields
ATPX (z) = sin(x)

By using the conditions (8), the obtained system is solved. Table 2 shows that
the numerical solutions and the errors obtained for linear third order initial value
problem (7) (Examples 2) by using the present method and compared with the
exact solution (9) for n = 10. In Figure. 2.2, numerical results are shown for

Example 2.
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x Exact solution Numerical solution for n = 10 Errors

0 -1 -1 0

0.1 | —0.994995834721974 —0.994995834723177 1.20281562487889F — 12
0.2 | —0.979933422158758 —0.979933422162680 3.92197385679083F — 12
0.3 | —0.954663510874394 —0.954663510881710 7.31581462076747TE — 12
0.4 | —0.918939005997115 —0.918939006007955 1.08402176124400F — 11
0.5 | —0.872417438109627 —0.872417438122700 1.30726540703563F — 11
0.6 | —0.814664385090322 —0.814664385113334 2.30125918321278F — 11
0.7 | —0.745157812715512 —0.745157812779116 6.36040109469604F — 11
0.8 | —0.663293290652835 —0.663293290813850 1.61015867305991F — 10
0.9 | —0.568390031729336 —0.568390032047044 3.17708304109487F — 10

—0.459697694131860

—0.459697694888935

7.57074403168190F — 10

Table 2 Numerical results for Example 2

05|

08 |

i
| g
1] o1 02

g
.r**t‘r.

0.3 0.4 os 0B 0.7

Figure 2.2: Comparison of the numerical solution (o) with the exact solution ()
for Example 2.

Example.3 Consider the non-linear fourth boundary value problem
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y@ =sinz + (sinz)’ — (y)

with boundary conditions

The exact solution of this problem is

y(x) =sinx

(13)

Table 3 and 4 show that the numerical solutions and the errors obtained for the

non-linear fourth boundary value problem (11) (Example 3) by using the present

method and compared with the exact solution (13) for n = 10. Figure 2.3. shows

the numerical results which compared with the exact solution (13) for Example

3.

Figure 2.3: Comparison of the numerical solution (o) with the exact solution (- )

for Example 3.
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z | Exact solution | Numerical solution at n = 10 | Method in [1, 2]
0 0 0 9.5923F — 14
0.1 | 0.0998334166 0.0998334165 0.0998334945
0.2 | 0.1986693307 0.1986693304 0.1986696031
0.3 | 0.2955202066 0.2955202061 0.2955207315
0.4 | 0.3894183423 0.3894183416 0.3894191196
0.5 | 0.4794255386 0.4794255378 0.4794265100
0.6 | 0.5646424733 0.5646424727 0.5646435236
0.7 | 0.6442176872 0.6442176867 0.6442186501
0.8 | 0.7173560908 0.7173560905 0.7173567749
0.9 | 0.7833269096 0.7833269095 0.7833271803
1 | 0.8414709848 0.8414709848 0.8414709848

Table 3 Numerical results for example 3

z | Errors ((CP) method) | Errors in [1, 2]
0 0 9.5923F — 14
0.1 1.0752E — 10 7.7856 E — 08
0.2 3.2231F — 10 2.7231F — 07
0.3 5.3800E — 10 5.2489F — 07
0.4 6.9509F — 10 77730 — 07
0.5 7.5288E — 10 9.7145F — 07
0.6 6.9431F — 10 1.0502E — 06
0.7 5.3058F — 10 9.6286F — 07
0.8 3.0506 £ — 10 6.8407F — 07
0.9 9.4464F — 11 2.7069F — 07
1 3.3306E — 16 1.5676E — 13

Table 4 Absolute errors obtained for Example 3.
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Chapter 3

Numerical solution of Burgers’

equation

3.1 Burgers’ equation

Burgers’ equation is a nonlinear parabolic partial differential equation arises in
the theory of shock waves ,in turbulence problems and in continuous stochastic
processes. It has a large variety of applications in modeling of water in unsaturated
soil, gas dynamics, heat conduction, elasticity, statics of low problems, mixing and

turbulent diffusion, cosmology, seismology, are the popular ones (Burger,1948)

Burgers’ equation is an important and simple model in understanding the physical
flows. It describes various kinds of phenomena such as mathematical model of
turbulence and the approximate theory of flow through a shock wave travelling in
a viscous fluid. This equation provides the simplest nonlinear models of turbulence

in the phenomena process.

The one -dimensional form of burgers equation is:

36



CHAPTER 3. NUMERICAL SOLUTION OF BURGERS’ EQUATION

Where:

2
+y(x,t)ayéi’t):vayag’t), O<z<l O0<t<T. (I

dy (z,1)
ot

y (x,t) represents the fluid velocity.

v is the velocity coefficient.

The term % represesents temprral variation of velocity.

The term v% represesents nonlinear convection.

2 s L
The term U% accounts for diffusion due to viscosity.

Subject to initial condition
y(x,0)=g(x),0<z<1
and boundary conditions
y(0,t) =hy (t) and y (1,t) = he (t),0 <t <T.
Where v = é (Re is Reynolds number) is the positive coefficient of kinematic
viscosity and g, h; and hs are the sufficiently smooth given functions.
One of the methods for solving this equation is :
1. Simplification Using the Cole-Hopf Transformation

Due to the nonlinear nature of the equation, the Cole-Hopf transformation is

introduced by defining a new variable ¢ such that:
Y= —21}% Ing
Substituting this transformation into Burgers’ equation converts it into the linear

heat equation:

2
I
4
Q>|®
™
bt
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2. Applying the Separation of Variables Method

To solve the transformed equation, we assume a separable solution of the form:
¢ (x,t) =X (x)T'(t)

Where X is a function of x only and 7' is a function of ¢ only. It other words, the

solution of the given PDE, ¢ (x,t), is the product of two functions that depend

only on x and ¢ .
Substituting this into the Burgers equation yields:

X(2)9 = T (t) £

Dividing both sides by X (z) T (¢), we obtain two independent equations:

ar 1
at = VX da?

Si=

where A is a separation constant.

It this way, two distinct OD Eg are derived from equation

‘il—:tr = —ovAT'(t),
P = XX (2).

As a result, two ordinary differential equations that are simples to solve are gen-

erated by the method of separation of variable.

3.2 History of Burgers’ equation

The origins of Burgers’ equation date back to 1915 when Bateman first de-
rived it in a physical context. In 1923, Fay rederived it within the framework of
acoustics. Later, in 1940, Burgers highlighted the significance of this equation,

emphasizing its role in describing turbulence phenomena in fluid mechanics.

It was discovered that Burgers’ equation could be transformed into the linear
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heat equation, a transformation published by Cole and known as the Cole-Hopf
transformation. Independently, Blackstock and Hopf rediscovered this transform-
ation in 1950. In the field of aerodynamics, the Fay series was introduced as an

approximate solution to Burgers’ equation for a sinusoidal initial condition.

Burgers’ equation has been employed in studying the propagation of one-dimensional
finite-amplitude acoustic signals, with Blackstock and Lighthill utilizing it for this
purpose. In 1969, Lagerstrom applied it to analyze shock structures in the Navier-
Stokes equations. Due to its characteristics, Burgers’ equation is considered a
mathematical approximation of the Navier-Stokes equations, making it a simpli-

fied model for them.

Burgers’ equation consists of two primary terms: the diffusion term, represent-
ing viscosity effects, and the convection term, which accounts for the nonlinear

transport of momentum.

3.3 Numerical results of Burgers’ equation

3.3.1 Description of the operational matrix method

In this section, clique polynomials of complete graphs with the collocation method
are used to solve the nonlinear Burgers equation defined in Eq. (I) with different

initial-boundary conditions.

Assume that
0%y (x,1)

—Soigr = XT(t)ATPX (2) (1)

Where A is an unknown vector to be determined A” = [ag, ay, ..., a, 1] and X (z)

is the known vector.
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Now, integrate Eq. (1) concerning ¢ from 0 to ¢, we get

Oy (z t) %y T
= XT(t) ATPX (z) dt 2
0.0 2080 [ (a) di ®)
After integration yields
2 2
Py P00 L vex (1) ATPX (a) (3)

oz a2
Integrating Eq. (3) concerning z from 0 to x

) B0 0 500

/MtX()ATPX( Ydr  (4)

oxr  ox ox
~ 0y (0,t) | dy(xz,0) oy (0,0) T
= 2 + 5 S + MitX (t) A" PMhz X (x)

Integrating Eq. (4) concerning x from 0 to x

Sy (0.1) 6y (0,0)]

y(l’,t):y(o,l‘)—i-y(t,())—y((),())—i-l'

| Oz oz
(5)
5y (0,t) 6y (0,0)]
=y (0,2) +y(£,0) —y(0,0) + 2 yéx’ ) _ yf;x M & Mt (1) AT PaLa2 X ()
Put z = 1 in the equation (5)
5y (0,t) 5y (0,0
y(1.0) = 0.0+ 1,0) -y 0,0+ L0 - WOD e ) a7 Pasex (1)

Hence

6y (0,8) 0y (0,0)
ox ox

} =y (0,1)+y (t,0)—y (0,0)—y(1, )+ M tX () ATPM,X (1)
(6)
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Substitute Eq. (6) in (5) we get

y(z,t) =y (0,2) +y(t,0) =y (0,0) + +MtX (t) ATPMya*X (z) + (7)

z [y (0,1) +y(t,0) —y (0,0) — y(1,¢) + MitX (t) AT PM> X (1)]

where ) )
£ 0 0 0
01 0 0
My=10 0 3 0
0
00 - 0 4
and
L0 0 0
0 75 0 0
My= 10 0 34 0
0
1
_O 0 0 n(n+1)

Differentiating Eq. (7) concerning ¢ , we get

oy (z,t) oy (t,0) N 6 (MitX (t) ATPMya?X (z))
st ot ot

x% [y (0,1) +y (t,0) =y (0,0) — y(1,t) + MitX (t) A"PM,X (1)]

+
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Example: On consider the Burgers equation

oy by 8%y
2y — =L (z.t 1 T

with intial condition

y (z,0) = sin (nz) ,t € [0,T]

and boundary conditions
y(0,t) =0,y (1,t) =0,z € [0, 1]
The exact solution of this problem by using the Cole-Hopf transformation is

> enexp (—n?m?ut) nsin (nrx)

t) =2
Yy (.%', ) v co + ZZO:I Cp, €XP (—n271'21)t) n Ccos (717'('33)

where

¢y — /Olexp (—% (1— cos (m>)) iz
o = 2/01 exp (—QL (1— cos (m))) cos (nrz) da

T

The numerical computations were done by using the uniform mesh. For the

comparison we compute the analytical and numerical solution at some mesh points

for the given time step, Dt = 0.01. Tables 1 and 2 give the numerical and exact

values of the solution y for v = 1 and 0.1. The results by the proposed method

are in good agreement with exact solution. In Figure. 3.1 numerical results with

uniform mesh are shown for Example of Burgers equation at different times for

t =0.01,0.1,0.2 and v = 1. Figure 3.3. shows the numerical results for Example
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at different times for t = 0.01,0.05,0.1 and v = 0.1. Figures 3.2 and 3.4 show
the numerical solution of the Burgers equation for v = 1 and v = 0.1 respectively.

These numerical predictions exhibit good physical behaviour.

xz | Exact solution | Present method | Method [13]

0 0.000000 0.000000 0.000000
0.125 0.135829 0.131176 0.128578
0.250 0.253638 0.251968 0.239809
0.375 0.336742 0.337973 0.317851
0.5 0.371577 0.372804 0.350090
0.625 0.350123 0.348647 0.329320
0.75 0.272582 0.266194 0.256060
0.875 0.149239 0.137828 0.140092
1 0.000000 0.000000 0.000000

Table 1. Comparison numerical solution with exact solution for Example of

Burgers equation with v =1, ¢ = 0.1.

T Errors | Errors in [13]

0 0 0

0.125 | 0.004653 0.007251

0.250 | 0.00167 0.013829

0.375 | 0.001231 0.01889

0.5 | 0.001227 0.021487

0.625 | 0.001476 0.020803

0.75 | 0.006388 0.016522

0.875 | 0.011411 0.009147

1 0 0

Table 2. The errors for the solution of Burgers equation for v =1 and ¢t = 0.1.
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xz | Exact solution | present method | method [13]

0 0 0 0
0.125 0.278023 0.278617 0.271187
0.25 0.534143 0.531141 0.519585
0.375 0.743852 0.729710 0.721350
0.5 0.877280 0.843188 0.848611
0.625 0.897099 0.838978 0.867467
0.75 0.761797 0.691667 0.739558
0.875 0.447836 0.398221 0.438783

1 0 0 0

Table 3. Comparison numerical solution with exact solution for Example of

Burgers equation with v = 0.1, £ = 0.1.

solution
© o o o o o 9o o
N W A 01O N 0 ©
|

o
[

o

Figure 3.1: Numerical results at different times for Example of Burgers equation
forv=1.0and ¢t =0.1.
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Burgers equation

8000

6000 ~°

4000

2000

X axis 0 0

t axis

Figure 3.2: Numerical solution of the problem produced for the parameter v =
1.0.

The figure illustrates the numerical solution of the Burgers’ equation for the vis-
cosity coefficient v = 1.0. The resulting surface shows the behavior of the function
y (x,t) with respect to both spatial and temporal variables. The solution is char-
acterized by smoothness and regularity, indicating the efficiency and accuracy of
the adopted numerical method based on Clique functions and the operational
matrix approach. It is also observed that the values decrease in the middle and
increase toward the boundaries, reflecting the expected physical behavior of the

Burgers’ equation under diffusion effects.

It is observed that the solution rapidly drops to large negative values over time,
indicating a potential numerical instability in the applied method, especially for
lower viscosity values. In contrast, the solution appears more stable in the higher

viscosity case.
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Figure 3.3: Numerical results at different times for Example of Burgers equation
forv=20.1 and £t =0.1.

Burgers equation

X axis 0 0 t axis

Figure 3.4: Numerical solution of the problem produced for the parameter v =
0.1.
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Conclusion

n this work, Burgers’ equation, a mathematical model that combines diffusion
Iand nonlinearity and is used to represent a variety of physical events, was the
subject of our numerical investigation. We used a numerical approach based on
operational matrices and Clique functions to solve this equation because of their
precision and simplicity of use. The chosen approach demonstrated efficacy in ap-
proximating answers through theoretical analysis and numerical experimentation,
producing precise findings with a significant decrease in numerical error. The cre-
ation of appropriate matrices to manage the equation in an orderly fashion was

also made easier by the application of Clique functions.

In conclusion, we believe that this work represents a foundational step that can be
further developed to address more complex differential equations or to integrate

this methodology with other numerical tools to enhance efficiency and accuracy.
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Abstract:

This study focuses on the Burgers’ equation, which plays an important role in mathematical modeling
and describes physical phenomena such as fluid flow and heat transfer. Given the difficulty of solving
this equation accurately due to its nonlinear nature, we used a new method based on Clique functions
to construct operational matrices that help approximate the solution.

We applied this method to transform the equation into an algebraic form that can be solved
numerically, and then compared the results with those of other existing methods. The results showed
that the developed method provides accurate solutions and requires less computation time.

In conclusion, this method proved to be efficient and can be applied to similar equations in the future.
Keywords: Burgers’ equation, operational matrices, Clique functions, numerical methods, approximate
solutions.

Résumé :

Cette étude porte sur I'équation de Burgers, qui joue un rble important dans la modélisation
mathématique et décrit des phénomenes physiques tels que I’écoulement des fluides et le transfert de
chaleur. En raison de la difficulté a résoudre cette équation avec précision en raison de sa nature non
linéaire, nous avons utilisé une nouvelle méthode basée sur les fonctions de clique pour construire des
matrices opérationnelles permettant d’approximer la solution.

Nous avons appliqué cette méthode pour transformer I'’équation en une forme algébrique pouvant
étre résolue numériquement, puis nous avons comparé les résultats a ceux obtenus par d'autres
méthodes connues. Les résultats ont montré que la méthode développée fournit des solutions précises
et nécessite moins de temps de calcul.

En conclusion, cette méthode s’est révélée efficace et peut étre appliquée a des équations similaires a
I"avenir.

Mots-clés : Equation de Burgers, matrices opérationnelles, fonctions de clique, méthodes numériques,
solutions approchées.
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