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Abstract

This study focuses on the Burgers� equation, which plays an important role in

mathematical modeling and describes physical phenomena such as �uid �ow and

heat transfer. Given the di¢ culty of solving this equation accurately due to its

nonlinear nature, we used a new method based on Clique functions to construct

operational matrices that help approximate the solution.

We applied this method to transform the equation into an algebraic form that can

be solved numerically, and then compared the results with those of other existing

methods. The results showed that the developed method provides accurate solutions

and requires less computation time.

In conclusion, this method proved to be e¢ cient and can be applied to similar

equations in the future.
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Notations and symbols

ODE : Ordinary Di¤erential Equation

PDE : Partial Di¤erential Equation

In : The identity matrix of the order n� n

det (A) : The determinant of a matrix A

A�1 : The inverse of a matrix A

Tr (A) : The trace of a matrix A

AT : The transpose of a matrix A
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Introduction

partial di¤erential equations (PDEs) are among the most important tools

in applied mathematics, given their crucial role in modeling various phys-

ical and engineering phenomena such as heat transfer, material di¤usion,

and �uid �ow. Among these equations, the Burgers�equation stands out due to

its combination of two essential features: di¤usion and nonlinearity. This du-

ality makes it an ideal model for studying complex behaviors in physical sys-

tems. In light of the importance of this class of equations, this work focuses on

the topic: "Operational Matrices for Solving Burgers�Equation Using

Clique Polynomial." This choice was motivated by several factors, including a

desire to explore numerical solutions for nonlinear equations, the pursuit of ac-

curate and e¢ cient techniques to overcome the absence of analytical solutions in

many cases, and the promising capabilities of Clique functions, which are relat-

ively new tools in the �eld of numerical methods.

Within this context, the central research question guiding this study is: "How

can we construct an accurate and e¢ cient numerical method based on operational

matrices and Clique functions to solve the Burgers�equation?"

To answer this question, the structure of the memory is organized as follows:

Chapter One provides a theoretical overview of partial di¤erential equations,

including their classi�cations and key properties.
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Chapter Two explores the main types of operational matrices, their characterist-

ics, and introduces Clique functions alongside the construction of their associated

matrices.

Chapter Three presents a comprehensive analysis of the Burgers�equation, ex-

plaining its mathematical formulation, properties, and historical context. We

apply the operational matrix method using Clique polynomials to solve this equa-

tion, followed by an analysis and comparison of the results with those of other

numerical approaches to objectively evaluate the method�s performance.

By integrating rigorous theoretical foundations with computer-based numerical

applications, we were able to develop an e¢ cient numerical model that yields

accurate approximations to the solution of the Burgers�equation. We conduc-

ted a thorough review of previous studies, drawing from peer-reviewed articles

and research papers that addressed the equation using various approaches, al-

lowing for an insightful evaluation of our proposed method. The references used

in this work include recent publications from international scienti�c journals as

well as specialized books in numerical analysis, partial di¤erential equations, and

approximation functions. Despite the challenges we encountered particularly the

conceptual complexity of Clique functions and the technical di¢ culties in pro-

gramming the numerical model the valuable academic guidance of my supervisor

enabled us to overcome these obstacles, and we express our deep gratitude for his

continuous support.

The memory concludes with a list of the references used, followed by a concise

summary of the main results and conclusions drawn from the study.
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Chapter 1

Generalities of partial di¤erential

equation

In this chapter, we will explore the fundamental concepts, classi�cations, and

various solving techniques of PDEs, with an emphasis on practical applications

that highlight their importance in science and engineering.

1.1 Ordinary Di¤erential Equations (ODEs)

Ordinary di¤erential equation is de�ned as an equation composing of the deriv-

ative of the dependent variable having only one independent variable .

Examples include:

1. dy
dx
= 3x: Dependent variable y, independent variable x.

2. d2y

d2x2
+ 2xy = ex: Dependent variable y, independent variable x.

3. d
2x
d2t2

+ 3dx
dt
+ 2x = sin(2t): Dependent variable x; independent variable t.

3



CHAPTER 1. GENERALITIES OF PARTIAL DIFFERENTIAL EQUATION

1.2 De�nition of a PDE

A partial di¤erential equation (PDE ) are a type of di¤erential equation that

contains partial derivatives of a dependent variable (an unknown function) with

respect to multiple independent variable. A PDE is generally written as:

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G (1.1)

where A;B;C;D;E; F are constants or functions known in terms of X;Y:

Every linear partial di¤erential equation such as (1) represents of the following

patterns:

� A parabola

� Hyperbola

� Ellipse

The equation of parabola have the heat �ow and di¤usion processes and achieve

the property

B2 � 4AC = 0

Hyperbolic equation describe vibrational and wave motions and satisfy the prop-

erty

B2 � 4AC > 0

The elliptical equation describe steady -state phenomena and satisfy the property

B2 � 4AC < 0

4



CHAPTER 1. GENERALITIES OF PARTIAL DIFFERENTIAL EQUATION

Examples of PDEs include:

1. Heat equations:

ut = Kuxx(1D);ut = K(uxx + uyy)(2D);ut = K(uxx + uyy + uzz)(3D);

describing heat �ow in varying dimensions.

2. Wave equations:

utt = c
2uxx(1D);utt = c

2(uxx + uyy)(2D);utt = c
2(uxx + uyy + uzz)(3D);

describing wave propagation.

3.Laplace equations (time-independent):

uxx + uyy = 0(2D);uxx + uyy + uzz = 0(3D);

4. Burgers�equation:

ut + uux � nuuxx = 0,

These equations describe phenomena such as heat �ow, wave propagation, and

�uid dynamics in various dimensions.

1.3 Properties of Partial Di¤erential Equations(PDEs)

Partial Di¤erential Equations(PDEs) have several important properties that cat-

egorize and characterize their behavior. These properties are essential for under-

standing how to solve PDEs and interpret their solutions. Below are the key

properties:

1.3.1 Order of a PDE

The order of a PDE is determined by the highest order of the partial derivative

present in the equation. For example:

5



CHAPTER 1. GENERALITIES OF PARTIAL DIFFERENTIAL EQUATION

ux � uy = 0 (1st order).

uxx�ut = 0(2nd order).

Example : Determining the Order of PDEs

(a) ut = uxx + uyy: The highest derivative is uxx or uyy. Order: 2.

(b) ux + uy = 0: The highest derivative is ux or uy. Order: 1.

1.3.2 Linear and Nonlinear PDEs

� A partial di¤erential equation is linear if:

1. The power of the dependent variable and each partial derivative is one.

2. The coe¢ cients of the dependent variable and its partial derivatives are

constants or independent variables.

Examples of linear PDEs:

1. Heat equation: ut = Kuxx.

2. Wave equation:utt = c2uxx.

3. Laplace equation: uxx + uyy = 0.

4. Linear Schrödinger�s equation:iut + uxx = 0.

� A partial di¤erential equation is non-linear if it contain nonlinear terms

such as: sin y; ey;
p
y; y2; yy0or ln y:

Examples of nonlinear PDEs:

1. Advection equation: ut + uux = f(x; t):

2. Burgers equation: ut + uux = �uxx.

3. Sine-Gordon equation: utt�uxx = � sin(u).

6



CHAPTER 1. GENERALITIES OF PARTIAL DIFFERENTIAL EQUATION

What is the signi�cance of these equations?

� Linear PDEs often describe fundamental processes like di¤usion and wave

propagation.

� Nonlinear PDEs arise in advanced �elds like �uid dynamics, plasma phys-

ics, and nonlinear optics, often producing solitary wave solutions.

1.3.3 Homogeneous and Inhomogeneous PDEs

One way to classify partial di¤erential equations is based on their structure: they

can be homogeneous or non-homogeneous. This distinction is important in

understanding the behavior of solutions and the methods required to solve them.

� A PDE is homogeneous if every term in the equation contains the depend-

ent variable u or one of its derivatives.

� A PDE is inhomogeneous if at least one term in the equation does not

contain the dependent variable u or any of its derivatives.

Exemples

1. ut = 4uxx: Homogeneous (all terms involve u or its derivatives).

2. ut = uxx + x: Inhomogeneous (term x does not involve u).

3.uxx + uyy = 0: Homogeneous.

4. ux+ uy = u+4: Inhomogeneous (term 4 does not involve u or its derivatives).

This classifcation helps determine whether external sources or independent terms

are in�uencing the system described by the PDE. Homogeneous equations often

arise in idealized systems, while inhomogeneous ones account for external forces

or inputs.

7



CHAPTER 1. GENERALITIES OF PARTIAL DIFFERENTIAL EQUATION

1.4 Initial conditions

It was indicated before that the PDEs mostly arise to govern physical phe-

nomenon such as heat distribution, wave propagation phenomena and phenomena

of quantum mechanics. Most of the PDEs, such as the di¤usion equation and

the wave equation, depend on the time t. Accordingly, the initial values of the

dependent variable u at the starting time t = 0 should be prescribed. It will be

discussed later that for the heat case, the initial value u(t = 0), that de�nes the

temperature at the starting time, should be prescribed. For the wave equation,

the initial conditions u(t = 0) and ut(t = 0) should also be prescribed.

1.5 Boundary Conditions

The general solution of partial di¤erential equations (PDEs) is not su¢ cient; a

speci�c solution must satisfy prescribed conditions.

When a PDE governs the behavior of a physical phenomenon within a bounded

domain D, the value of the dependent variable u is speci�ed at the boundaries.

These speci�ed values are known as boundary conditions, which are classi�ed into

three types:

1. Dirichlet Boundary Conditions

The function u is explicitly de�ned at the boundary.

Exemple

For a rod of length L, where 0 < x < L, the boundary conditions are:

u(0) = � , u(L) = �

For a rectangular plate, values are speci�ed at:

8



CHAPTER 1. GENERALITIES OF PARTIAL DIFFERENTIAL EQUATION

u(0; y), u(L1; y), u(x; 0), u(x; L2)

2. Neumann Boundary Conditions

The normal derivative du
dn
of u at the boundary is speci�ed:

ux(0; t) = �; ux(L; t) = �

3. Mixed Boundary Conditions

A linear combination of the function u and its normal derivative is speci�ed on

the boundary.

9



Chapter 2

Description of the operational

matrix method and application

In this chapter, we will present the de�nitions of matrices and description of the

operational matrix method with some applications on di¤erential equations.

2.1 Matrices

2.1.1 De�nition of a square matrix

A square matrix is a matrix in which the number of rows is equal to the number

of columns.Its order is represented as n� n, where n is a positive integer.

It can be expressed as follows:

A =

266666664

a11 a12 � � � a1n

a21 a22 � � � a2n
...

...
. . .

...

an1 an2 � � � ann

377777775
n�n

10



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
METHOD AND APPLICATION

where:

� A is the square of order n.

� aij is the element located at row i and column j.

Exemples

1. A square matrix of order 2� 2:

A =

2643 5

1 2

375
2. A square matrix of order 3� 3 :

B =

266664
4 0 �2

1 3 5

7 8 6

377775

2.1.2 De�nition of a vectors

A vector is a matrix with only one row or one column, and its values are called

components of the vector. Vectors are denoted by lowercase bold letters such as

a or b, or using brackets like a = [a1].

� Row vector: It has the form:

a =

�
a1 a2 ::: an

�
such as

a =

�
�2 5 0:8 0 1

�
� Column vector: It has the form:

11



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
METHOD AND APPLICATION

b =

2666666666666664

b1

b2

:

:

:

bm

3777777777777775
such as b =

266664
4

0

�7

377775

2.2 Properties of square matrices

2.2.1 The matrix trace

Let A be an n� n square matrix. The trace of A , denoted as tr (A), is the sum

of the main diagonal elements of the matrix. That is:

tr(A) =
Pn

i=1 aii

Let: A =

2641 2

3 4

375 ,B =

266664
1 2 0

3 8 1

�2 7 �5

377775
To �nd the trace of A and B, we sum the main diagonal elements

tr (A) = 1 + 4 = 5

tr (B) = 1 + 8� 5 = 4

Properties of the matrix trace

Let A and B be n� n matrices. then:

1. tr (A+B) = tr (A) + tr (B)

2. tr (A�B) = tr (A)� tr (B)

12



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
METHOD AND APPLICATION

3. tr (kA) = k � tr (A), where k is a scalar

4. tr (AB) = tr (BA)

5. tr
�
AT
�
= tr (A)

2.2.2 Determinants

The determinant of an n � n matrix A , denoted det (A) or jAj , is a number

given by the following :

� If A is a 1� 1 matrix A = [a] , then det(A) = a.

� If A is a 2� 2 matrix

A =

264a b

c d

375
The determinant is calculated using the formula:

det(A) = ad� bc:

Numerical Example:

If A =

2643 4

2 5

375
Then the determinant is:

det(A) = (3� 5)� (4� 2) = 15� 8 = 7

� if A is an n� n matrix, where n � 2, then det (A) is the number found by

taking the cofactor expansion along the �rst row of A. That is,

det (A) = a1;1C1;1 + a1;2C1;2 + � � �+ a1;nC1;n:

13



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
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Determinant Properties

Let A and B be n� n matrices and let k be a scalar .The following are true :

1. det (kA) = kn � det (A)

2. det
�
AT
�
= det (A)

3. det (AB) = det (A) det (B)

4. If A is invertible, then

det (A�1) = 1
det(A)

:

5. A matrix A is invertible if and only if det (A) 6= 0

2.2.3 Inverse of a matrix:

The inverse of a square matrix A of order n � n is the matrix A�1 that satis�es

the equation:

AA�1 = A�1A = In

where In is the identity matrix of the same order.

For a matrix to have an inverse, it must be non-singular, meaning that its

determinant is not zero:

det(A) 6= 0

Consider the matrix:

A =

2642 3

1 4

375
First, we calculate the determinant:

det(A) = (2� 4)� (3� 1) = 8� 3 = 5

14
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Since the determinant is not zero, the matrix is invertible. The inverse is calcu-

lated using the formula:

A�1 = 1
det(A)

264 d �b

�c a

375
Substituting the values:

A�1 = 1
5

264 4 �3

�1 2

375
Thus, the inverse of A is:

A�1 =

264 4
5

�3
5

�1
5

2
5

375

Properties of inversible matrices

Let A and B be n� n inversible matrices. Then:

1. AB is inversible; (AB)�1 = B�1A�1.

2. A�1 is inversible; (A�1)�1 = A.

3. nA is inversible for any nonzero scalar n; (nA)�1 = 1
n
A�1.

4. If A is a diagonal matrix, with diagonal entries d1; d2;���; dn, where none of the

diagonal entries are 0, then A�1exists and is a diagonal matrix. Furthermore, the

diagonal entries of A�1are

1=d1; 1=d2;���; 1=dn.Furthermore,

1. If a product AB is not inversible, then A or B is not inversible.

2. If A or B are not inversible, then AB is not inversible.

15



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
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2.2.4 transpose of a matrix

The transpose of a square matrix is a new matrix obtained by swapping the rows

and columns of the original matrix. If A is a square matrix of order, then its

transpose AT is the matrix where the element in position (i; j) is equal to the

element in position (i; j) of the original matrix:

(AT )ij = Aij;8i; j

Let A =

2647 8

9 10

375
The transpose of this matrix AT will be:

AT =

2647 9

8 10

375

Properties of the transpose of a matrix:

Let A and B be matrices where the following operations are de�ned. Then

1. (A+B)T = AT +BTand (A�B)T = AT �BT

2. (kA)T = kAT for any real number k:

3. (AB)T = BTAT for any two matrices that can be multiplied.

4. (A�1)T = (AT )�1

5. (AT )T = A:

16



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
METHOD AND APPLICATION

2.3 Types of square matrices

2.3.1 Diagonal matrix

A diagonal matrix is a special type of square matrix in which all the elements

outside the main diagonal are zero. It can be represented as follows:

D =

266666666664

d11 0 0 ::: 0

0 d22 0 ::: 0

0 � � � d33 ::: 0

...
...

...
. . .

...

0 0 0 ::: dnn

377777777775
where dii represents the diagonal elements, which can be real or complex numbers.

Properties of a diagonal matrix:

� Addition and subtraction:

If D1and D2 are diagonal matrices of the same order, their sum and di¤erence

will also be diagonal matrices.

D1 +D2 = diagonal matrix

� Miltiplication:

The product of two diagonal matrices of the same order is also a diagonal matrix,

where:

(D1 +D2) = (D1)ii � (D2)ii

17



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
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� Inverse matrix:

If all diagonal elements are nonzero, the diagonal matrix is inversible, and its

inverse is also a diagonal matrix:

(D�1)ii =
1
dii

� Matrix Powers:

If is a diagonal matrix, then:

Dk =

266666666664

dk11 0 0 ::: 0

0 dk22 0 ::: 0

0 0 dk33 ::: 0

...
...

...
. . .

...

0 0 0 ::: dknn

377777777775
� Eigenvalues and Eigenvectors:

The eigenvalues of a diagonal matrix are its diagonal elements, and the eigen-

vectors are the standard basis vectors.

D =

266664
3 0 0

0 �2 0

0 0 5

377775
Properties of this example

� It is a diagonal matrix because all non-diagonal elements are zero.

� Its eigenvalues are 3;�2 and 5.

� Its inverse, if all diagonal elements are nonzero, is given by:

D�1 =

266664
1
3

0 0

0 �1
2

0

0 0 1
5

377775
18



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
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2.3.2 Identity matrix

The identity matrix is a square matrix (the number of rows equals the number

of columns) that has ones (1s) on the main diagonal (extending from the top left

to the bottom right) and zeros (0s) elsewhere.

It is usually denoted as In , where n represents the number of rows (or columns).

The identity matrix serves as the multiplicative identity in matrix operations.

� Identity matrix of order 2� 2 :

I2 =

2641 0

0 1

375
� Identity matrix of order 3� 3:

I3 =

266664
1 0 0

0 1 0

0 0 1

377775

Properties of the identity matrix

� Multiplicative Identity: When any matrix is multiplied by the identity

matrix, the result is the same matrix:

A � In = In � A = A

� Commutativity in Multiplication: Although matrix multiplication is

generally not commutative, multiplying any square matrix by the identity

matrix is commutative:

AI = IA = A

19
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� Non-Singular Matrix: The determinant of the identity matrix is always

1, which means it is non-singular and invertible:

det(In) = 1

� Diagonal Matrix: The identity matrix is a special case of diagonal matrices,

where all the diagonal elements are 1.

� Symmetric Matrix: The identity matrix is equal to its transpose:

ITn = In

� Self-Inverse Property: The inverse of the identity matrix is itself:

I�1n = In

� Does Not A¤ect Eigenvalues: When a matrix A is multiplied by In , its

eigenvalues remain unchanged.

2.3.3 Triangular matrix

A triangular matrix is a square matrix (where the number of rows equals the

number of columns) in which all elements either above or below the main diagonal

are equal to zero. It is classi�ed into two main types:

1. Upper Triangular Matrix

An upper triangular matrix is a square matrix in which all elements below the

main diagonal are zero. That is, an element in row i and column j is zero if i > j.

A matrix A = [aij] of order n� n is an upper triangular matrix if:

aij = 0 8i > j
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Example of an Upper Triangular Matrix:

A =

266664
2 3 4

0 5 6

0 0 7

377775
2. Lower Triangular Matrix

A lower triangular matrix in which all elements above the main diagonal are zero.

That is, an element in row i and column j is zero if i < j.

A matrix B = [bij] of order n� n is a lower triangular matrix if:

bij = 08i < j

Example of a Lower Triangular Matrix:

B =

266664
5 0 0

8 6 0

3 9 4

377775

Properties of triangular matrices

1. The product of two triangular matrices of the same type results in another

triangular matrix of the same type.

� If A and B are both upper triangular matrices, then AB is also an

upper triangular matrix.

� If A and B are both lower triangular matrices, then AB is also a lower

triangular matrix

2. The determinant of a triangular matrix is equal to the product of its diagonal

elements. If A is a triangular matrix (upper or lower), then:

det(A) = a11:a22:::ann
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3. A triangular matrix is invertible if and only if all its diagonal elements are

nonzero.

2.4 Operations on matrices

Matrices are a set of elements arranged in rows and columns, and several math-

ematical operations can be performed on them. The most important operations

include:

2.4.1 Addition of matrices:

If A[aij] and B[bij] are two matrices of the same order, then their sum A + B is

a new matrix, where each element is the sum of the corresponding elements in A

and B. That is:

A+B = [aij + bij]

Consider two matrices A and B of order 2� 2. Their sum is given by:264a1 b1

c1 d1

375+
264a2 b2

c2 d2

375 =
264a1 + a2 b1 + b2

c1 + c2 d1 + d2

375

Properties of matrix addition:

If A;B; and C are matrices of the same order, then:

1. Commutative Property:

A+B = B + A

2. Associative Property:

(A+B) + C = A+ (B + C)
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3. Identity Matrix (Additive Identity):

A+O = O + A = A

whereO is the zero matrix, which does not a¤ect the addition.

4. Additive Inverse:

A+ (�A) = 0 = (�A) + A

where (�A) is obtained by changing the sign of every element in A, making it the

additive inverse of the matrix.

2.4.2 Subtraction of matrices

If A and B are two matrices of the same order, the subtraction is de�ned as:

A�B = A+ (�B)

For two matrices and of order 2� 2 , their di¤erence is given by:264a1 b1

c1 d1

375�
264a2 b2

c2 d2

375 =
264 a1�a2 b1 � b2

c1 � c2 d1 � d2

375
� Matrices are subtracted by subtracting each element in the �rst matrix from

the corresponding element in the second matrix, A�B = [aij � bij]n�n.

2.4.3 Multiplication of matrices

A square matrix is a matrix where the number of rows is equal to the number

of columns, meaning its dimensions are n � n . When multiplying two square

matrices of the same size, the result is also a square matrix of the same size.

23



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
METHOD AND APPLICATION

Formula for Multiplying Square Matrices:

If A and B are two square matrices of order n�n , then their product C = A�B

is calculated as follows:

Ci;j =
Pn

k=1Ai;k �Bk;j

where:

� Ci;j is the element at row i and column j in the resulting matrix C .

� Ai;k is the element at row i and column k in matrix A .

� Bk;j is the element at row k and column j in matrix B .

� n is the number of rows and columns in the matrices.

Example:2641 2

3 4

375�
2641 �1

2 2

375 =
264 5 3

11 5

375

Properties of square matrices multiplication

1. Non-Commutativity (Non-Swap Property)

In general, matrix multiplication is not commutative:

A�B 6= B � A

except in special cases, such as when both matrices are diagonal or share certain

properties.

2. Associativity

Matrix multiplication is associative, meaning:

A� (B � C) = (A�B)� C
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This means that the order of execution does not a¤ect the result.

3. Distributive Property Over Addition

Matrix multiplication satis�es the distributive property over addition:

A� (B + C) = A�B + A � C

(B + C)� A = B � A+ C � A

4. Zero Matrix (Multiplicative Zero Property)

If any matrix is multiplied by the zero matrix O, the result is also a zero matrix:

A�O = O � A = O

5. Transposition Property

When multiplying two square matrices and then transposing the result, we get

the same result if we transpose each matrix �rst and reverse the order of multi-

plication:

(A�B)T = BT � AT :

2.5 Description of the clique polynomial opera-

tional matrix method

Graph theory is one of the gifted subjects in applied mathematics. A graph G

is contained with a nonempty �nite set of n vertices called the vertex set V (G),

along with a prescribed set of m unordered pairs of members of V (G) called edge

set E(G). These unordered pairs are joined by a line called an edge. Whenever

two vertices share a common edge, then those two edges are coined to be adjacent.

If all the vertices and edges present in a graph G0are from another graph G then G0

is said to be a subgraph of G. A graph in which all pair of vertices are adjacent is
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called a complete graph andKn is the notion for the complete graph on n vertices.

A complete subgraph with k vertices of a graph G is called as k�clique of G. For

graph-theoretic de�nitions, symbols, and related works we refer [3; 8]. Hoede et

al.[5] de�ned clique polynomial of a graph G, denoted by C(G;x), is de�ned by

C(G;x) =
nX
k=0

akx
k

where ak represent the total distinct k�cliques in graph of size k, with a0 = 1. In

general, the clique polynomial of a complete graph Kn with n�vertices is given

by

C (Kn;x) = (1 + x)
n =

nX
k=0

�
n

k

�
xk

where
�
n
k

�
= n!

k!(n�k)!

In particular

C(K0;x) = 1

C(K1;x) = 1 + x

C(K2;x) = 1 + 2x+ x
2

C(K3;x) = 1 + 3x+ 3x
2 + x3

Theorem 1. Let f(y) be the bounded function in L2 (R) de�ned on [0; 1], then

the clique polynomial expansion of f(y) converges to it.

Proof. See Ref [3; 8].

Let B = fCn(x) = C(Kn; x); n 2 Ng. Clearly B is Banach space on closed subset
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A of R with norm given by

kCnk = sup jCn (x)j
8x2A

8Cn 2 B (A)

We can approximate any function f(x) in L2[0; 1] in terms of the clique polynomial

f (x) � ef (x) = n�1X
i=0

aiC (Ki;x) =

n�1X
i=0

ai(

iX
k=0

�
i

k

�
xk) = ATPX (x)

where AT = [a0; a1; : : : ; an�1], X(x) = [1; x; : : : ; xn�1]T and P is the lower trian-

gular n� n matrices de�ned by

P =

2666666666666664

1 0 0 0 � � � 0

1 1 0 0 � � � 0

1 2 1
. . . � � � 0

1 3 3
. . . 0 0

...
...

...
. . . 1 0

1 n� 1 (n�1)(n�2)
2!

� � � n� 1 1

3777777777777775
where

pij =

8><>: 0 j > i; i; j = 1; 2; :::; n

(i�1)!
(i�j)!(j�1) i � j; i; j = 1; 2; :::; n

2.6 Numerical solution of di¤erential equations
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2.6.1 Operational matrix method

We consider the clique polynomial operational matrix method along with colloc-

ation points to solve the following fourth order of di¤erential equations

y(4) = f(x; y; y0; y00; y000); 0 � x � 1 (1)

with the initial conditions

y(0) = b1; y
0 (0) = b2; y

00
(0) = b3; y

000(0) = b4 (2)

where b1; b2; b3; b4 are real constants and f is a given continuous on [0; 1], nonlinear

function. We assume that

y(4) (x) = ATPX (x) (3)

Where A is an unknown vector to be determined AT = [a0; a1; : : : ; an�1], X (x) is

the known vector de�ned above and

P =

2666666666666664

1 0 0 0 � � � 0

1 1 0 0 � � � 0

1 2 1
. . . � � � 0

1 3 3
. . . 0 0

...
...

...
. . . 1 0

1 n� 1 (n�1)(n�2)
2!

� � � n� 1 1

3777777777777775
For solving the Equation (1), we calcul the derivatives y(k)(x) where k = 0; 1; 2; 3; x 2

28



CHAPTER 2. DESCRIPTION OF THE OPERATIONAL MATRIX
METHOD AND APPLICATION

[0; 1] and with the initial conditions (2). It is easy to prove that this identity

Z x

0

Z x

0

:::

Z x

0
k times

ATPX (t) dt = ATPMkx
kX (x)

where Mk is the n� n matrices

Mk =

266666666664

1
k!

0 0 � � � 0

0 1
2�3�:::(k+1) 0 � � � 0

0 0 1
3�4�:::(k+2)

. . . 0

...
...

. . . . . . 0

0 0 � � � 0 1
n(n+1):::(n+k�1)

377777777775
Integrating Equation (3) fourth times on bothside with respect to x limit between

0 and x, we obtain

y (x) = b1 + b2x+
b3
2
x2 +

b4
6
x3 +

Z x

0

Z x

0

Z x

0

Z x

0

ATPX(t)dt

After integration yields

y (x) = b1 + b2x+
b3
2
x2 +

b4
6
x3 + ATPM4x

4X(x)

where

M4 =

266666666664

1
4!

0 0 � � � 0

0 1
5!

0 � � � 0

0 0 1
3�4�5�6

. . . 0

...
...

. . . . . . 0

0 0 � � � 0 1
n(n+1)(n+2)(n+3)

377777777775
Now by substituting y; y0; y00; y000; y(4) into Equation (1) and collocate this equation
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by the following collocation points xi = 2i�1
2n
; i = 1; :::; n, we get a system of n non

linear equations with n unknowns (a0; a1; :::; an�1). This system can be solved by

using the Newton method.

Example 1 Consider the following Lane-Emden equation

y00 +
2

x
y0 + 1 = 0 (4)

with initial conditions

y (0) = 1; y0 (0) = 0 (5)

The exact solution of the above problem is

y = 1� x
2

6
(6)

By solving the Equation (4) with conditions (5) we obtain the vector A for n = 10

A =

26666666666666666666666666664

�0:211563

�0:755242

2:064859

�3:265769

3:292303

�2:193601

0:965798

�0:270905

0:043921

�0:003135

37777777777777777777777777775
Table 1 shows that the numerical solutions and the errors obtained for Lane-
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Emden equation of problem (4) (Example 1) by using the present method and

compared with the exact solution (6) for n = 10: Figure 2.1 shows the numerical

results for Example 1.

x Exact solution Numerical solution Errors

0:1 0:998333333333333 0:998333333424079 �9:07457442522741E � 11

0:2 0:993333333333333 0:993333333363829 �3:04952729734964E � 11

0:3 0:985 0:985000000121763 �1:21762711025042E � 10

0:4 0:973333333333333 0:973333333624439 �2:91105806127234E � 10

0:5 0:958333333333333 0:958333333868015 �5:34681854347241E � 10

0:6 0:94 0:940000000313705 �3:13704728860387E � 10

0:7 0:918333333333333 0:918333332677134 6:56199095061538E � 10

0:8 0:893333333333333 0:893333331842293 1:49104029123492E � 09

0:9 0:865 0:864999998067961 1:93203875120673E � 09

1 0:833333333333333 0:833333330673594 2:65973987279011E � 09
Table 1 Numerical results for Example 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Figure 2.1: Comparison of the numerical solution (�) with the exact solution (� )
for Example 1.
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Example 2 Consider the linear third order initial value problem

y000 = sin(x); 0 � x � 1 (7)

with initial conditions

y (0) = �1; y0 (0) = 0; y00 (0) = 1 (8)

The analytic solution of the above problem is

y = cos(x) + x2 � 2 (9)

We have

y(x) = �1 + 1
2
x2 + ATPM3x

3X(x) (10)

Substituting equation (10) into (7) yields

ATPX (x) = sin(x)

By using the conditions (8), the obtained system is solved. Table 2 shows that

the numerical solutions and the errors obtained for linear third order initial value

problem (7) (Examples 2) by using the present method and compared with the

exact solution (9) for n = 10. In Figure. 2.2, numerical results are shown for

Example 2.
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x Exact solution Numerical solution for n = 10 Errors

0 �1 �1 0

0:1 �0:994995834721974 �0:994995834723177 1:20281562487889E � 12

0:2 �0:979933422158758 �0:979933422162680 3:92197385679083E � 12

0:3 �0:954663510874394 �0:954663510881710 7:31581462076747E � 12

0:4 �0:918939005997115 �0:918939006007955 1:08402176124400E � 11

0:5 �0:872417438109627 �0:872417438122700 1:30726540703563E � 11

0:6 �0:814664385090322 �0:814664385113334 2:30125918321278E � 11

0:7 �0:745157812715512 �0:745157812779116 6:36040109469604E � 11

0:8 �0:663293290652835 �0:663293290813850 1:61015867305991E � 10

0:9 �0:568390031729336 �0:568390032047044 3:17708304109487E � 10

1 �0:459697694131860 �0:459697694888935 7:57074403168190E � 10
Table 2 Numerical results for Example 2

Figure 2.2: Comparison of the numerical solution (�) with the exact solution (� )
for Example 2.

Example.3 Consider the non-linear fourth boundary value problem
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y(4) = sinx+ (sinx)2 � (y00)2 ; 0 � x � 1 (11)

with boundary conditions

y (0) = 0; y0 (0) = 1; y (1) = sin 1; y0 (1) = cos 1 (12)

The exact solution of this problem is

y (x) = sin x (13)

Table 3 and 4 show that the numerical solutions and the errors obtained for the

non-linear fourth boundary value problem (11) (Example 3) by using the present

method and compared with the exact solution (13) for n = 10: Figure 2.3. shows

the numerical results which compared with the exact solution (13) for Example

3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2.3: Comparison of the numerical solution (�) with the exact solution (� )
for Example 3.
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x Exact solution Numerical solution at n = 10 Method in [1; 2]

0 0 0 9:5923E � 14

0:1 0:0998334166 0:0998334165 0:0998334945

0:2 0:1986693307 0:1986693304 0:1986696031

0:3 0:2955202066 0:2955202061 0:2955207315

0:4 0:3894183423 0:3894183416 0:3894191196

0:5 0:4794255386 0:4794255378 0:4794265100

0:6 0:5646424733 0:5646424727 0:5646435236

0:7 0:6442176872 0:6442176867 0:6442186501

0:8 0:7173560908 0:7173560905 0:7173567749

0:9 0:7833269096 0:7833269095 0:7833271803

1 0:8414709848 0:8414709848 0:8414709848

Table 3 Numerical results for example 3

x Errors ((CP) method) Errors in [1; 2]

0 0 9:5923E � 14

0:1 1:0752E � 10 7:7856E � 08

0:2 3:2231E � 10 2:7231E � 07

0:3 5:3800E � 10 5:2489E � 07

0:4 6:9509E � 10 7:7730E � 07

0:5 7:5288E � 10 9:7145E � 07

0:6 6:9431E � 10 1:0502E � 06

0:7 5:3058E � 10 9:6286E � 07

0:8 3:0506E � 10 6:8407E � 07

0:9 9:4464E � 11 2:7069E � 07

1 3:3306E � 16 1:5676E � 13
Table 4 Absolute errors obtained for Example 3.
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Chapter 3

Numerical solution of Burgers�

equation

3.1 Burgers�equation

Burgers�equation is a nonlinear parabolic partial di¤erential equation arises in

the theory of shock waves ,in turbulence problems and in continuous stochastic

processes. It has a large variety of applications in modeling of water in unsaturated

soil, gas dynamics, heat conduction, elasticity, statics of �ow problems, mixing and

turbulent di¤usion, cosmology, seismology, are the popular ones (Burger,1948)

Burgers�equation is an important and simple model in understanding the physical

�ows. It describes various kinds of phenomena such as mathematical model of

turbulence and the approximate theory of �ow through a shock wave travelling in

a viscous �uid. This equation provides the simplest nonlinear models of turbulence

in the phenomena process.

The one -dimensional form of burgers equation is:
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Where:

@y (x; t)

@t
+ y (x; t)

@y (x; t)

@x
= v

@2y (x; t)

@x2
; 0 < x < 1; 0 < t < T: (I)

� y (x; t) represents the �uid velocity.

� v is the velocity coe¢ cient.

� The term @y
@t
represesents temprral variation of velocity.

� The term v @y
@x
represesents nonlinear convection.

� The term v @
2y
@x2

accounts for di¤usion due to viscosity.

Subject to initial condition

y (x; 0) = g (x) ; 0 � x � 1

and boundary conditions

y (0; t) = h1 (t) and y (1; t) = h2 (t) ; 0 � t � T:

Where v = 1
Re
(Re is Reynolds number) is the positive coe¢ cient of kinematic

viscosity and g, h1 and h2 are the su¢ ciently smooth given functions.

One of the methods for solving this equation is :

1. Simpli�cation Using the Cole-Hopf Transformation

Due to the nonlinear nature of the equation, the Cole-Hopf transformation is

introduced by de�ning a new variable � such that:

y = �2v @
@x
ln�

Substituting this transformation into Burgers�equation converts it into the linear

heat equation:

@�
@t
= v @

2�
@x2
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2. Applying the Separation of Variables Method

To solve the transformed equation, we assume a separable solution of the form:

� (x; t) = X (x)T (t)

Where X is a function of x only and T is a function of t only. It other words, the

solution of the given PDE, � (x; t), is the product of two functions that depend

only on x and t .

Substituting this into the Burgers equation yields:

X(x)dT
dt
= vT (t) d

2X
dx2

Dividing both sides by X (x)T (t), we obtain two independent equations:

1
T
dT
dt
= v 1

X
d2X
dx2

= ��

where � is a separation constant.

It this way, two distinct ODES are derived from equation

dT
dt
= �v�T (t) ;

d2X
dx2

= ��X (x) :

As a result, two ordinary di¤erential equations that are simples to solve are gen-

erated by the method of separation of variable.

3.2 History of Burgers�equation

The origins of Burgers�equation date back to 1915 when Bateman �rst de-

rived it in a physical context. In 1923, Fay rederived it within the framework of

acoustics. Later, in 1940, Burgers highlighted the signi�cance of this equation,

emphasizing its role in describing turbulence phenomena in �uid mechanics.

It was discovered that Burgers� equation could be transformed into the linear
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heat equation, a transformation published by Cole and known as the Cole-Hopf

transformation. Independently, Blackstock and Hopf rediscovered this transform-

ation in 1950. In the �eld of aerodynamics, the Fay series was introduced as an

approximate solution to Burgers�equation for a sinusoidal initial condition.

Burgers�equation has been employed in studying the propagation of one-dimensional

�nite-amplitude acoustic signals, with Blackstock and Lighthill utilizing it for this

purpose. In 1969, Lagerstrom applied it to analyze shock structures in the Navier-

Stokes equations. Due to its characteristics, Burgers� equation is considered a

mathematical approximation of the Navier-Stokes equations, making it a simpli-

�ed model for them.

Burgers�equation consists of two primary terms: the di¤usion term, represent-

ing viscosity e¤ects, and the convection term, which accounts for the nonlinear

transport of momentum.

3.3 Numerical results of Burgers�equation

3.3.1 Description of the operational matrix method

In this section, clique polynomials of complete graphs with the collocation method

are used to solve the nonlinear Burgers equation de�ned in Eq. (I) with di¤erent

initial-boundary conditions.

Assume that
�3y (x; t)

�x2�t
= XT (t)ATPX (x) (1)

Where A is an unknown vector to be determined AT = [a0; a1; : : : ; an�1] andX (x)

is the known vector.
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Now, integrate Eq. (1) concerning t from 0 to t, we get

�2y (x; t)

�x2
=
�2y (x; 0)

�x2
+

Z t

0

XT (t)ATPX (x) dt (2)

After integration yields

�2y (x; t)

�x2
=
�2y (x; 0)

�x2
+M1tX (t)A

TPX (x) (3)

Integrating Eq. (3) concerning x from 0 to x

�y (x; t)

�x
=
�y (0; t)

�x
+
�y (x; 0)

�x
� �y (0; 0)

�x
+

Z x

0

M1tX (t)A
TPX (x) dx (4)

=
�y (0; t)

�x
+
�y (x; 0)

�x
� �y (0; 0)

�x
+M1tX (t)A

TPM1xX (x)

Integrating Eq. (4) concerning x from 0 to x

y (x; t) = y (0; x) + y (t; 0)� y (0; 0) + x
�
�y (0; t)

�x
� �y (0; 0)

�x

�
+

Z x

0

M1tX (t)A
TPM1xX (x) dx

(5)

= y (0; x) + y (t; 0)� y (0; 0) + x
�
�y (0; t)

�x
� �y (0; 0)

�x

�
+M1tX (t)A

TPM2x
2X (x)

Put x = 1 in the equation (5)

y(1; t) = y (0; 1)+y (t; 0)�y (0; 0)+
�
�y (0; t)

�x
� �y (0; 0)

�x

�
+M1tX (t)A

TPM2X (1)

Hence

�
�y (0; t)

�x
� �y (0; 0)

�x

�
= y (0; 1)+y (t; 0)�y (0; 0)�y(1; t)+M1tX (t)A

TPM2X (1)

(6)
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Substitute Eq. (6) in (5) we get

y (x; t) = y (0; x) + y (t; 0)� y (0; 0) + +M1tX (t)A
TPM2x

2X (x) + (7)

x
�
y (0; 1) + y (t; 0)� y (0; 0)� y(1; t) +M1tX (t)A

TPM2X (1)
�

where

M1 =

266666666664

1
1!

0 0 � � � 0

0 1
2

0 � � � 0

0 0 1
3

. . . 0

...
...
. . . . . . 0

0 0 � � � 0 1
n

377777777775
and

M2 =

266666666664

1
2!

0 0 � � � 0

0 1
2�3 0 � � � 0

0 0 1
3�4

. . . 0

...
...

. . . . . . 0

0 0 � � � 0 1
n(n+1)

377777777775
Di¤erentiating Eq. (7) concerning t , we get

�y (x; t)

�t
=
�y (t; 0)

�t
+
�
�
M1tX (t)A

TPM2x
2X (x)

�
�t

+

x
d

dt

�
y (0; 1) + y (t; 0)� y (0; 0)� y(1; t) +M1tX (t)A

TPM2X (1)
�
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Example: On consider the Burgers equation

�y

�t
+ y

�y

�x
= v

�2y

�2x
; (x; t) 2 [0; 1]� [0; T ]

with intial condition

y (x; 0) = sin (�x) ; t 2 [0; T ]

and boundary conditions

y (0; t) = 0; y (1; t) = 0; x 2 [0; 1]

The exact solution of this problem by using the Cole-Hopf transformation is

y (x; t) = 2�v

P1
n=1 cn exp (�n2�2vt)n sin (n�x)

c0 +
P1

n=1 cn exp (�n2�2vt)n cos (n�x)

where

c0 =

Z 1

0

exp

�
� 1

2�x
(1� cos (�x))

�
dx

cn = 2

Z 1

0

exp

�
� 1

2�x
(1� cos (�x))

�
cos (n�x) dx

The numerical computations were done by using the uniform mesh. For the

comparison we compute the analytical and numerical solution at some mesh points

for the given time step, Dt = 0:01. Tables 1 and 2 give the numerical and exact

values of the solution y for v = 1 and 0:1. The results by the proposed method

are in good agreement with exact solution. In Figure. 3.1 numerical results with

uniform mesh are shown for Example of Burgers equation at di¤erent times for

t = 0:01; 0:1; 0:2 and v = 1. Figure 3.3. shows the numerical results for Example
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at di¤erent times for t = 0:01; 0:05; 0:1 and v = 0:1: Figures 3.2 and 3.4 show

the numerical solution of the Burgers equation for v = 1 and v = 0:1 respectively.

These numerical predictions exhibit good physical behaviour.

x Exact solution Present method Method [13]

0 0:000000 0:000000 0:000000

0:125 0:135829 0:131176 0:128578

0:250 0:253638 0:251968 0:239809

0:375 0:336742 0:337973 0:317851

0:5 0:371577 0:372804 0:350090

0:625 0:350123 0:348647 0:329320

0:75 0:272582 0:266194 0:256060

0:875 0:149239 0:137828 0:140092

1 0:000000 0:000000 0:000000

Table 1. Comparison numerical solution with exact solution for Example of

Burgers equation with v = 1, t = 0:1.

x Errors Errors in [13]

0 0 0

0:125 0:004653 0:007251

0:250 0:00167 0:013829

0:375 0:001231 0:01889

0:5 0:001227 0:021487

0:625 0:001476 0:020803

0:75 0:006388 0:016522

0:875 0:011411 0:009147

1 0 0

Table 2. The errors for the solution of Burgers equation for v = 1 and t = 0:1:
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x Exact solution present method method [13]

0 0 0 0

0:125 0:278023 0:278617 0:271187

0:25 0:534143 0:531141 0:519585

0:375 0:743852 0:729710 0:721350

0:5 0:877280 0:843188 0:848611

0:625 0:897099 0:838978 0:867467

0:75 0:761797 0:691667 0:739558

0:875 0:447836 0:398221 0:438783

1 0 0 0

Table 3. Comparison numerical solution with exact solution for Example of

Burgers equation with v = 0:1, t = 0:1.
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Figure 3.1: Numerical results at di¤erent times for Example of Burgers equation
for v = 1:0 and t = 0:1.
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0
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2000

0.8 0.1

4000

0.6 0.08

 Burgers equation

6000

0.060.4

8000

0.040.2 0.02
0 0

Figure 3.2: Numerical solution of the problem produced for the parameter v =
1:0.

The �gure illustrates the numerical solution of the Burgers�equation for the vis-

cosity coe¢ cient v = 1:0. The resulting surface shows the behavior of the function

y (x; t) with respect to both spatial and temporal variables. The solution is char-

acterized by smoothness and regularity, indicating the e¢ ciency and accuracy of

the adopted numerical method based on Clique functions and the operational

matrix approach. It is also observed that the values decrease in the middle and

increase toward the boundaries, re�ecting the expected physical behavior of the

Burgers�equation under di¤usion e¤ects.

It is observed that the solution rapidly drops to large negative values over time,

indicating a potential numerical instability in the applied method, especially for

lower viscosity values. In contrast, the solution appears more stable in the higher

viscosity case.
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Figure 3.3: Numerical results at di¤erent times for Example of Burgers equation
for v = 0:1 and t = 0:1.
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Figure 3.4: Numerical solution of the problem produced for the parameter v =
0:1.
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Conclusion

In this work, Burgers�equation, a mathematical model that combines di¤usionand nonlinearity and is used to represent a variety of physical events, was the

subject of our numerical investigation. We used a numerical approach based on

operational matrices and Clique functions to solve this equation because of their

precision and simplicity of use. The chosen approach demonstrated e¢ cacy in ap-

proximating answers through theoretical analysis and numerical experimentation,

producing precise �ndings with a signi�cant decrease in numerical error. The cre-

ation of appropriate matrices to manage the equation in an orderly fashion was

also made easier by the application of Clique functions.

In conclusion, we believe that this work represents a foundational step that can be

further developed to address more complex di¤erential equations or to integrate

this methodology with other numerical tools to enhance e¢ ciency and accuracy.
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Abstract: 

   This study focuses on the Burgers’ equation, which plays an important role in mathematical modeling 

and describes physical phenomena such as fluid flow and heat transfer. Given the difficulty of solving 

this equation accurately due to its nonlinear nature, we used a new method based on Clique functions 

to construct operational matrices that help approximate the solution. 

  We applied this method to transform the equation into an algebraic form that can be solved 

numerically, and then compared the results with those of other existing methods. The results showed 

that the developed method provides accurate solutions and requires less computation time. 

  In conclusion, this method proved to be efficient and can be applied to similar equations in the future. 

Keywords: Burgers’ equation, operational matrices, Clique functions, numerical methods, approximate 

solutions. 

Résumé : 

  Cette étude porte sur l’équation de Burgers, qui joue un rôle important dans la modélisation 

mathématique et décrit des phénomènes physiques tels que l’écoulement des fluides et le transfert de 

chaleur. En raison de la difficulté à résoudre cette équation avec précision en raison de sa nature non 

linéaire, nous avons utilisé une nouvelle méthode basée sur les fonctions de clique pour construire des 

matrices opérationnelles permettant d’approximer la solution. 

   Nous avons appliqué cette méthode pour transformer l’équation en une forme algébrique pouvant 

être résolue numériquement, puis nous avons comparé les résultats à ceux obtenus par d'autres 

méthodes connues. Les résultats ont montré que la méthode développée fournit des solutions précises 

et nécessite moins de temps de calcul. 

  En conclusion, cette méthode s’est révélée efficace et peut être appliquée à des équations similaires à 

l’avenir. 

Mots-clés : Équation de Burgers, matrices opérationnelles, fonctions de clique, méthodes numériques, 

solutions approchées. 

 الملخص:

الریاضیة وتصف ظواھر فیزیائیة مثل جریان الموائع وانتقال  ةجالنمذر، التي تلعب دورًا مھمًا في غتركز ھذه الدراسة على معادلة بر   

دوال المضغوطة تخدمنا طریقة جدیدة تعتمد على الالحرارة. ونظرًا لصعوبة حل ھذه المعادلة بدقة بسبب طبیعتھا غیر الخطیة، فقد اس

 لبناء مصفوفات تشغیلیة تساعد في تقریب الحل. 

معادلة إلى صیغة جبریة یمكن حلھّا عددیاً، ثم قارنا النتائج مع تلك الناتجة عن طرق أخرى معروفة. قمنا بتطبیق ھذه الطریقة لتحویل ال   

    وقد أظھرت النتائج أن الطریقة المطورة توفرّ حلولاً دقیقة وتتطلب وقتًا حسابیًا أقل. 

 .بلالمستق وفي الختام، أثبتت ھذه الطریقة كفاءتھا، ویمكن تطبیقھا على معادلات مماثلة في    

 .لطرق العددیة، الحلول التقریبیةر، المصفوفات التشغیلیة، الدوال المضغوطة ، اغ: معادلة برةیالكلمات المفتاح
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