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Notation

• f(x): Objective function to be optimized

• x = (x1, x2, . . . , xn): Vector of decision variables

• F : Feasible region (subset of S ”Search space” satisfying constraints)

• gj(x) ≤ 0: Inequality constraints

• hi(x) = 0: Equality constraints

• x∗: Global optimal solution

• xL: Local optimal solution

• ∇f(x): Gradient of the objective function

• ∇2f(x): Hessian matrix of the objective function

• S: The original image.

• AS: An adversarial example (AS = S + A).

• A: The perturbation.

• TM : The target black-box model.

• ϕ(AS): The fitness function of AS.

• P (AS): The attack performance component of the fitness.

• Z(A): The perturbation size evaluation component.

• y0: The true label of S.

• y1, y2: Labels for S with the first and second highest confidence from TM .

• p(y|AS): The confidence of AS being labeled as y by TM .

• Pc, Pm: Crossover and mutation probabilities.
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Introduction

Finding optimal solutions is a fundamental attempt across various scientific, engineering, and

economic disciplines. Optimization problems, which include obtaining the best possible solu-

tion from an ensemble of available alternatives under stated constraints, are ubiquitous. While

classical optimization techniques have demonstrated effective for well-behaved, usual convex

and differentiable problems, many real-world scenarios introduce formidable challenges. These

involve high dimensionality, non-convex and multi-modal landscapes, non-differentiable objec-

tive functions, complex constraints, and the presence of noise or uncertainty. Such complexities

usually render traditional methods insufficient or inapplicable at all.

To answer to these challenges, metaheuristic algorithms have appeared as a powerful class

of general-purpose optimization strategies. Inspired by natural facts such as physical annealing

processes, swarm intelligence, or biological evolution. Metaheuristics offer high-level frameworks

for mapping heuristic algorithms able to explore vast and rugged search spaces to obtain near-

optimal solutions. They consistently work in a gradient-free manner, what makes them suitable

for black-box optimization problems, and usual incorporate stochastic elements to avoid local

optima and attain a better balance between exploration and exploitation of the search space.

Within the wide array of metaheuristics, Genetic Algorithms (GAs) stand out as a important

and widely used approach. GAs have been inspired by the principles of Darwinian natural

selection and Mendelian genetics, including a population of candidate solutions over successive

generations through processes like selection, crossover, and mutation. They have successful

applications in numerous domains, due to their robustness and versatility.

This thesis delves into metaheuristic algorithms, with a particular concentration on Genetic

Algorithms. We start by instituting the context of optimization problems, underlying their

importance and the inherent difficulties that need advanced solution approaches (Chapter 1).

Subsequently, we offer a detailed exposition of the Genetic Algorithm, enveloping its mathe-

matical formulation, core components, evolutionary operators, and theoretical underpinnings

(Chapter 2).

The primary donation of this work lies in proving the practical application of GAs to

a current challenging problem in the field of machine learning security: the generation of

adversarial attacks against Deep Neural Networks (DNNs). Specially, we investigate how GAs

can be used to craft subtle perturbations to input data (e.g., images) that make a target DNN

ix



Introduction

to misclassify it, specially in a black-box setting where internal model details are unknown. We

will look into the POBA-GA (Perturbation Optimized Black-box Attack via Genetic Algorithm)

framework as a case study to demonstrate the adaptation of GA principles for this specific task

(Chapter 3). This application not only highlights the problem-solving abilities of GAs but also

illuminates the vulnerabilities of modern AI systems.
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Chapter 1
Optimization problem

1.1 What are optimization problems and their impor-

tance

One of the majority essential drives of the human chase is more then just to obtained solu-

tions to problems, problems that humanity makes itself, but to obtain the best solution. This

deep-seated wish for improvement,excellence, and efficiency lies at the heart of optimization.

Optimization problems encircle us, showing themselves in practically every field of economics,

engineering, science, and even going as far as to life itself. They are the mathematical form of

this necessity to ”inhance” be it to maximize gains,to improve performance, to cut costs, or to

discover the most optimal result given some restrictions[10, 11].

1.1.1 Defining Optimization Problems

At its main idea, an optimization problem is involved with choosing the best element from

some ensemble of available alternatives, based on a specific conditions. Mathematically, it can

be defined by:

Definition 1.1.1 (Optimization Problem). An optimization problem seeks to obtain the values

of decision variables that attained the best possible value of an objective function, among

an ensemble of constraints[11].

Let’s deconstruct these key components:

• Decision Variables: These are the variables that we can manipulate or adjust to effect

the outcome. They signify the possibilities we can make. Let’s that the set of decision

variables is a vector x = (x1, x2, . . . , xn) ∈ Rn. For example, in architecting a bridge,

decision variables might be the materials used, the thickness of the steel beams, or the

number of support pillars. In asset allocation, they might be the proportions of several

assets in the portfolio.

1



CHAPTER 1. OPTIMIZATION PROBLEM

• Objective Function: This is a function, habitually denoted as f(x), that quantifies

the quality or the performance of a solution x. It’s the function we need to maximize

or minimize. The objective function interprets our goal into a mathematical expression.

Such as:

– Cost function: We could desire to minimize the cost of transportation, manufactur-

ing, or production.

– Profit function: We could wish to maximize the profit from investments, operations,

or sales.

– Performance metric: We could wish to maximize the strength of a structure,the

accuracy of a prediction model, or the efficiency of an algorithm.

– Error function: In machine learning, we need to minimize an error function that

measures the difference between actual and predicted values .

The objective function offers a way to compare several solutions and know which one is

”better” based on our defined criteria.

• Constraints: These are conditions or restrictions that should be attained by the de-

cision variables. Constraints is the feasible region of solutions. They can correspond

to regulatory requirements, resource availability, physical limitations, or desired perfor-

mance levels. Constraints can be expressed as equalities or inequalities. Usual kinds of

constraints include:

– Equality constraints: For instance, the all budget must be exactly spent, or the all

flow into a network node must equal the all flow out. Mathematically, they are often

correspond to hi(x) = 0 for i = 1, 2, . . . ,m.

– Inequality constraints: Such as, the weight of a structure should not more than a

certain limit, the production capacity should be among a certain range, or the con-

centration of a chemical should be more then a minimum threshold. Mathematically,

they are usually corresponds to gj(x) ≤ 0 for j = 1, 2, . . . , p.

The ensemble of all solutions x that fulfill all the constraints is names the feasible region

or feasible set, denoted as F . We are only curious about finding the optimal solution

among this feasible region.

• Goal (Minimization or Maximization): Optimization problems can be categorized

into two main groups based on the goal:

– Minimization problems: The aim is to obtain a solution x∗ ∈ F such that f(x∗) ≤
f(x) for all x ∈ F .

– Maximization problems: The aim is to obtain a solution x∗ ∈ F such that f(x∗) ≥
f(x) for all x ∈ F .

2



CHAPTER 1. OPTIMIZATION PROBLEM

It’s crucial to note that any maximization problem can be transferred into a minimization

problem (and vice-versa) by using the negative of the objective function. For example,

maximizing f(x) is the same as minimizing −f(x).

Therefore, a general optimization problem might be expressed as:

minimize (or maximize)
x

f(x)

subject to gj(x) ≤ 0, j = 1, 2, . . . , p

hi(x) = 0, i = 1, 2, . . . ,m

x ∈ X ⊆ Rn (or other domain S)

where X corresponds to the basic domain of the variables (e.g., Rn, Zn, {0, 1}n) and the explicit

constraints indicates the feasible region F within X.

1.1.2 The Importance of Optimization Problems

The importance of optimization problems arises from their widespread presence and their ca-

pability to give innovation, efficiency, and amelioration across various domains. Here are some

key arguments why optimization is so important:

1. Efficiency and Resource Management: In a world of growing demands and finite

resources, optimization offers the tools to use resources most effectively. By reducing

costs, maximizing output, and minimizing waste, optimization assists organizations and

individuals attained more with less. This is crucial in domains like logistics, resource

allocation, manufacturing, and energy production. For example, in supply chain manage-

ment, optimization algorithms are utilized to minimize delivery times, inventory levels,

and transportation costs, this leads to significant benefits and enhanced efficiency.

2. Improved Decision-Making: Optimization offers a quantitative and structured ap-

proach to decision-making. Instead of basing only on intuition or trial-and-error, opti-

mization permits to analyze different options, appraised their potential outcomes, and

choose the best course of action provides on well-defined objectives and constraints. This

is specially possible in complex situations with several interacting factors, like strategic

planning, operational management, and financial portfolio management.

3. Engineering and Design Innovation: Optimization is important to engineering de-

sign. Engineers frequently try hard to design products and systems that are more reliable,

efficient, safer, and cost-saver. Optimization techniques are used to design bridges that

can withstand maximum charges with minimal material, aircraft wings that minimize

drag, circuits that use the least power, and chemical processes that minimize waste while

maximizing yield . Optimization lead to create innovative and high-performance solutions

that would be difficult or impossible to attained through manual processes alone.

3



CHAPTER 1. OPTIMIZATION PROBLEM

4. Scientific Discovery and Modeling: In scientific research, optimization represents a

crucial role in parameter estimation ,data analysis , and model development. Researchers

utilize optimization techniques to find optimal parameters for simulations, suit numerical

models to experimental data, and detect patterns and relationships in complex datasets.

For instance, in machine learning, optimization algorithms are used in the training models

that can estimate outcomes, make intelligent decisions, and classify data. In physics

and chemistry, optimization is utilized to obtain the minimum energy configurations of

molecules and materials[1].

5. Advancements in Technology and Artificial Intelligence: The rapid developments

in technology, specially in artificial intelligence and machine learning, are hard in relation

with optimization. Training sophisticated AI models, like deep neural networks, includes

solving massive optimization problems to modify millions or even billions of parameters.

Optimization algorithms are also important for control systems, autonomous systems,

and robotics permitting them to generate optimal decisions in dynamic and uncertain

environments.

6. Solving Real-World Problems: Optimization is more than a theoretical concept;

it is a dominant tool for addressing real-world problems among several sectors. From

scheduling airline operations to optimizing traffic flow in cities, from managing water

resources to designing personalized medical treatments , optimization offers practical

solutions to enhance the quality of life and address societal challenges.

In conclusion, optimization problems go beyond academic exercises; they are fundamental to

develop and productivity in countless areas. knowing the basics of optimization and progress-

ing productive methods to solve these problems is very important for scientists, engineers,

economists, and decision-makers. As we go deeper into the difficalties of the modern world,

the ability to formulate and solve optimization problems will only become more essential for

achieving sustainable progress and driving innovation .

1.2 Challenges in optimization

While the idea of optimization obtaining the best solution x∗ with f(x∗) ≤ f(x) (for minimiza-

tion) for all feasible x ∈ F is clear, the actual procedure meets considerable obstacles, specially

when the search space S or the feasible region F is not simple. These challenges frequently

provide simple or classical optimization approaches deficient. Mathematically, these challenges

shown as:

• High Dimensionality: The search space S is presented frequently as a subset of Rn

where the dimension n is big (e.g., hundreds, thousands, or even millions in machine

learning). The volume of the search space develops exponentially with n, constituting

exhaustive search computationally impractical. For example, examining a function on

4



CHAPTER 1. OPTIMIZATION PROBLEM

a coarse grid with just 10 points per dimension demands 10n evaluations. This number

quickly becomes astronomical: 103 = 1000 for n = 3, but 1010 for n = 10, and 10100 (a

googol) for n = 100. Many algorithms afflicted by this ”problem of dimensionality,” where

their execution lowers vastly or the demanded number of function evaluations explodes

as n grows (see Figure 1.1).

1 2 3 4 5 6 7 8 9 10
Dimension (n)

102

104

106

108

1010

Nu
m

be
r o

f G
rid

 P
oi

nt
s (

10
n )

Exponential Growth of Search Space Volume

Figure 1.1: Illustration of the curse of dimensionality: The number of grid points need for
exploration increases exponentially (kn) with the dimension n, quickly becoming too complex
for practical computation.

• Non-Convexity and Multi-Modality: The objective function f(x) can be non-convex.

Generally, f is convex if for any x1,x2 ∈ F (supposing F is convex) and λ ∈ [0, 1],

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). If this condition is not satisfied, f is non-

convex. Such functions can have many local minima, points that are optimal among a

local neighborhood but not necessarily in the all the domain. A point xL ∈ F presents

a local minimum if there is a neighborhood N(xL) sush that f(xL) ≤ f(x) for all x ∈
F ∩ N(xL). A global minimum x∗ satisfies f(x∗) ≤ f(x) for all x ∈ F . Multi-modality

means there are multiple distinct local minima xL1,xL2, . . . . Simple iterative methods like

gradient descent, beginning from different points, can easily get trapped in suboptimal

local minima, failing to obtain the true global optimum x∗ (see Figure 1.2)[10, 11].

• Non-Differentiability: Several classical optimization methods depend hard on the gra-

dient ∇f(x) or even the Hessian matrix ∇2f(x) to guide the search way. However, the

objective function f(x) could not be differentiable everywhere in the search space S. This

intends ∇f(x) does not exist at certain points, often happening at ”kinks” or disconti-

nuities in the function (e.g., functions concluding piecewise definitions, absolute values

like f(x) = |x|, or max functions). Gradient-based methods unsuccess or demand spe-

cialized sub-gradient techniques at points of non-differentiability. Furthermore, in several

real-world ”black-box” optimization scenarios (e.g., optimizing parameters of a complex

simulation), the analytical form of f(x) is unknown, causing symbolic differentiation

5



CHAPTER 1. OPTIMIZATION PROBLEM
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Figure 1.2: Comparison of a convex function (left) with a single global minimum, and a non-
convex, multi-modal function (right) with multiple local minima (xL1, xL2) and one global
minimum (x∗). Gradient-based methods started within the basin of a local minimum may
converge there instead of finding x∗.

unachievable. Numerical approximation of gradients can be numerically expensive and

sensitive to noise or step size (see Figure 1.3)[10].

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1

0

1

2

3

4

f(x
)

Smooth Differentiable Function (f(x) = x2)
Tangent at x=-1 (Gradient = -2)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1

0

1

2

3

4

f(x
)

Non-Differentiable Function (f(x) = |x|)
Non-differentiable point at x=0
(Gradient undefined)

Figure 1.3: Comparison of a smooth, differentiable function (left) where the gradient is defined
everywhere, and a non-differentiable function (right, f(x) = |x|) with a ’kink’ at x = 0 where
the gradient is undefined. Gradient-based methods cannot be directly applied at such points.

• Computational Cost: Valuing the objective function f(x) and/or the constraints

gj(x), hi(x) for one candidate solution x may be numerically expensive. This evaluation

time, Teval, could vary from microseconds (simple formulas) to seconds, minutes, or even

hours (e.g., complex physics simulations such as Finite Element Analysis (FEA), training

a deep neural network, or Computational Fluid Dynamics (CFD)). If an optimization

algorithm demands Neval evaluations to converge, the whole runtime Ttotal ≈ Neval×Teval

may easily be prohibitive, restricting the feasibility of methods that demand a huge num-

ber of evaluations.

6



CHAPTER 1. OPTIMIZATION PROBLEM

• Complex Constraints: The feasible region F = {x ∈ X ⊆ Rn | gj(x) ≤ 0, j =

1..p; hi(x) = 0, i = 1..m} can have a complex geometry. Constraints gj(x) or hi(x) might

be highly non-linear, making the boundary of the feasible region irregular. The feasible

set F itself might be non-convex (even if f(x) is convex), or even disjoint (composed

of multiple separate regions). Navigating such complex feasible regions is challenging

for many algorithms. Staying within the feasible region (constraint handling) becomes

difficult, and moving between disconnected feasible regions might be impossible for simple

local search methods (see Figure 1.4).

2 1 0 1 2
x1

2

1

0

1

2

x 2 Feasible Set

Simple Convex Feasible Region

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

Non-Convex

Region A Region B

Disjoint Regions

Complex Feasible Regions

Figure 1.4: Comparison of a simple convex feasible region (left) and complex feasible regions
(right): non-convex (top right) and disjoint (bottom right). Finding the optimum within or
navigating such complex regions poses significant challenges.

• Noise and Uncertainty: In several realistic applications, function evaluations are de-

pendent on noise or stochasticity. Instead of remarking the true value f(x), we could

remark f̂(x) = f(x) + ϵ, where ϵ is a random variable illustrating environmental fluctua-

tions, measurement error, or simulation stochasticity. Comparing two solutions x1 and x2

according to noisy evaluations f̂(x1) and f̂(x2) turn into statistically challenging, particu-

larly if the noise magnitude σϵ is significant depend on the true difference |f(x1)−f(x2)|.
Optimization might also require to be done under uncertainty, such as f based on ex-

plicitly on random parameters ω, i.e., f(x, ω), demanding robust optimization (average

performance or optimizing worst-case) or stochastic programming techniques (see Figure

1.5).

These mathematical properties and practical challenges underscore the require for optimiza-

tion techniques that may effectively deal with such difficulties.
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CHAPTER 1. OPTIMIZATION PROBLEM
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Figure 1.5: Illustration of a noisy objective function. The solid line represents the true under-
lying function f(x), while the points represent noisy evaluations f̂(x) = f(x) + ϵ. The noise
obscures the exact location and value of the minimum, complicating the optimization process.

1.2.1 Why metaheuristic algorithms are crucial and how the tradi-

tional optimization methods are restricted

Traditional optimization methods, often derived from calculus (like gradient descent, Newton’s

method) and mathematical programming (like linear or convex programming), exhibit signifi-

cant limitations, particularly when facing the challenges outlined in Section 1.2. Metaheuristics

gain importance precisely because they offer robust strategies to circumvent these limitations.

Limitations of Traditional Methods (Mathematically Framed):

• Gradient Dependency: Methods such that Gradient Descent (xk+1 = xk−αk∇f(xk))

or Newton’s Method (xk+1 = xk − [∇2f(xk)]
−1∇f(xk)) explicitly need the calculation of

the gradient ∇f(x) and might the Hessian ∇2f(x). They fundamentally don’t succeed

if these derivatives do not exist (non-differentiable f , see Figure 1.3) or are unattainable

(black-box f).

• Local Optima Entrapment: Iterative approaches usually generate sequences {xk} that
converge to a stationary point xstat where ∇f(xstat) = 0 (or a point satiating similar first-

order necessary conditions). If f(x) is non-convex (multi-modal, see Figure 1.2), this xstat

is usually just a local minimum xL or even a saddle point, where it’s not certain being

the global minimum x∗. The algorithm becomes ”trapped” in the basin of attraction of

the first stationary point it nears, powerfully according to the starting point x0.

• Assumptions on Problem Structure: Many strong traditional methods need powerful

assumptions. Linear Programming supposes f(x) = cTx and linear conditions Ax ≤
b, Aeqx = beq. Convex programming needs f(x) to represent a convex function and the
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feasible ensemble F to represent a convex set (like the left panel in Figure 1.4). Several

real-world problems do not fulfill these limited structural assumptions.

• Difficulty with Non-Continuous Spaces: Classical methods are first created for con-

tinuous search spaces S ⊆ Rn. Conforming them effectively to discrete domains binary

domains (S ⊆ {0, 1}n), combinatorial spaces (e.g., spaces of permutations or graph struc-

tures), or (S ⊆ Zn) or is usually non-trivial or not realizable, as the concept of a continuous

gradient way does not implement.

• Scalability Issues: Some approaches have numerical difficulty per iteration that scales

badly with the dimension n. For example, shaping and inverting the Hessian matrix in

Newton’s method holds approximately O(n3) operations, which befits prohibitive for the

high-dimensional problems talk about earlier (Figure 1.1).

Importance of Metaheuristic Algorithms (Mathematical Perspective): Meta-

heuristics address these limitations directly:

• Gradient-Free Nature: They commonly operate depend only on evaluating the objec-

tive function value f(x) for candidate solutions x. They do not need calculating ∇f(x) or
∇2f(x), driving them directly applicable to non-differentiable (Figure 1.3) and black-box

problems in which the gradient information is unreliable or unavailable.

• Global Search Capability: They include stochastic components and exploration-exploitation

mechanisms particularly designed to control local optima trick (Figure 1.2). For exam-

ple, algorithms such as Simulated Annealing may admit worsening moves (f(xnew) >

f(xcurrent)) with a sure probability, permitting them to escape local basins. Population-

based methods such as Particle Swarm Optimization or Genetic Algorithms maintain a

diverse ensemble of solutions discovering many regions of the search space at the same

time.

• Flexibility and Broad Applicability: They get far fewer thoughts about the mathe-

matical structure of the objective function f(x) or the feasible ensemble F . The same pri-

mary metaheuristic framework (e.g., Genetic Algorithm) may generally be implemented

(with appropriate adjustments in variation operators and solution representation) to dis-

crete (Zn, {0, 1}n), continuous (Rn), or complex combinatorial problems, and may pick

up non-convex or disjoint feasible regions (Figure 1.4).

• Robustness to Noise: Since they generally depend on rankings or comparisons of solu-

tions rather than detailed function values or gradient approximates, some metaheuristics

may reveal greater robustness to noise in function evaluations (Figure 1.5) compared to

methods that rely on accurate computational differentiation.

Briefly, metaheuristics offers a pragmatic and strong ensemble of tools when the intrinsic math-

ematical properties of the optimization problem (non-differentiability, non-convexity, complex

9
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constraints, noise, black-box nature, high dimensionality) allow the efficient or effective imple-

mentation of traditional, generally gradient-based or structure-dependent, optimization tech-

niques. They deal the mathematical guarantee of obtaining the *exact* global optimum (which

traditional approaches generally only offer under strict conditions such as convexity) for the real

ability to obtain high-quality, near-optimal solutions for a wide range of complex, real-world

problems in acceptable calculated time.

1.3 Metaheuristic algorithms

1.3.1 Introduction to metaheuristic algorithms and their significance

Constructing upon the restrictions of traditional methods emphasized in Section 1.2.1, we

institute metaheuristic algorithms. The term ”meta” means ”beyond” or ”higher level,”

and ”heuristic” connects to the process of obtaining solutions, generally by trial-and-error or

guided search, without promises of optimality.

Definition 1.3.1 (Metaheuristic Algorithm). A metaheuristic is a high-level problem-individualistic

algorithmic structure that offers an ensemble of strategies or guidelines to inhence heuristic op-

timization algorithms. Metaheuristics are often designed to obtain near-optimal solutions to

difficult optimization problems where classic methods are deficient, particularly for problems

with non-convexity, large search spaces, combinatorial structures, or non-differentiability [2].

Metaheuristics do not assure obtaining the global optimal solution for all problem examples.

However, their goal is to obtain excellent solutions along a reasonable amount of calculating

time, being them highly valuable for feasible applications. Their importance trunk directly

from their capability to address the challenges sketched in Section 1.2:

• Handling Complexity: They are built to explore complex search landscapes, involving

those with several local optima (multi-modality), high dimensionality, and discontinuities.

• Gradient-Free Operation: Most metaheuristics depend sonly on objective function

evaluations, making them adaptable for non-differentiable functions, black-box optimiza-

tion, and problems where derivatives are impossible or expensive to compute, .

• Versatility: The general structure of several metaheuristics may be adapted to many

types of optimization problems, involving continuous, discrete, combinatorial, and mixed-

variable problems, generally by changing the solution presentation and search operators.

• Global Search Focus: As opposed to simple local search approaches, metaheuristics

involve mechanisms to balance exploitation (intensification) around promising regions

with exploration (diversification) of the search space, growing the likelihood of obtaining

globally ruthless solutions.

The main idea beyond several metaheuristics includes mimicking successful strategies remarked

in nature or other processes. Usual inspirations involve:
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• Biological Evolution: Algorithms like Genetic Algorithms (GA), Genetic Programming

(GP), and Differential Evolution (DE) simulate processes like natural selection, crossover,

and mutation.

• Swarm Intelligence: Algorithms like Particle Swarm Optimization (PSO) and Ant

Colony Optimization (ACO) mimic the collective behavior of social insects or animal

groups (e.g., bird flocking, ant foraging).

• Physical Processes: Simulated Annealing (SA) models the process of annealing in

metallurgy, where controlled cooling allows a material to reach a low-energy state.

• Human Problem Solving: Tabu Search (TS) includes memory structures to avoid

revisiting previously explored solutions and to guide the search away from local optima.

A key predictable combining these diverse approaches is the strategic employ of stochasticity

(randomness) and heuristic rules to conduct the search process. Stochastic elements assist

in exploring new regions of the search space and avoiding local optima, while heuristic rules

use knowledge reached during the search to focus on hopeful areas. The interchange between

exploration (searching broadly to recognize strongly good regions) and exploitation (search-

ing intensively among promising regions to obtain the best solutions there) is essential to the

performance of metaheuristics.

Remark 1.3.1 (Exploration vs. Exploitation). The balance between exploration and exploita-

tion is crucial. Too much exploration yields to a inefficient, slow search that can never converge

properly. A lots of exploitation yields to an early convergence, where the algorithm rapidly

gets trapped in the first local optimum it obtains, failing to find better solutions away in the

search space. Efficient metaheuristics dynamically control this trade-off all over the optimiza-

tion operation[4, 2].

In conclusion, metaheuristic algorithms are strong and adaptable class of optimization tech-

niques. Their capability to address complex, real-world problems in which traditional methods

strive makes essential tools in domains vary from operations research and engineering design

to bioinformatics and machine learning. The following chapters will explore one specific and

widely utilized metaheuristic: the Genetic Algorithm.
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Chapter 2
The Genetic Algorithm

The Genetic Algorithm (GA) components a prominent class of stochastic optimization algo-

rithms inclusion to the broader field of Evolutionary Computation [4]. It has been inspired by

principles of Darwinian natural selection and Mendelian genetics , GAs offer a framework for

searching complex, usual high-dimensional spaces to obtain approximate solutions to problems

of optimization [8, 7]. They work iteratively on a population of potential solutions, using mech-

anisms analogous to biological evolution to progressively improve the population approaching

regions of higher solution quality.

2.1 Mathematical Formulation

Assuming an optimization problem focused on finding a solution x∗ within a search space S
that optimizes (e.g., minimizes) an objective function g : S → R. A GA approaches this by

including a population of potential solutions.

2.1.1 Representation (Encoding)

Each possible solution x ∈ S is encoded as a chromosome (or individual). This encoding guides

the solution representation (phenotype) to a genetic representation (genotype), usually a vector

or string structure. Assuming an individual be represented by x = (g1, g2, . . . , gL), where gi

presents the i-th gene. The nature of the genes relies on the problem domain and encoding

scheme:

• Binary Encoding: gi ∈ {0, 1}. The chromosome is a binary string x ∈ {0, 1}L.

• Real-Valued Encoding: gi ∈ [loweri, upperi] ⊂ R. The chromosome is a vector x ∈ RL.

• Permutation Encoding: x is a permutation of {1, 2, . . . , L}, commonly used for order-

ing problems.

The choice of representation significantly reflects on the effectiveness and design of the genetic

operators [7].
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2.1.2 Population

The algorithm conserves a population P (t) of N individuals at generation t:

P (t) = {x1(t), x2(t), . . . , xN(t)}

where xj(t) ∈ S are the j-th individual at generation t. The initial population P (0) is com-

monly generated randomly, sampling uniformly from the search space S where feasible, or using

problem-specific heuristics.

2.1.3 Fitness Function

The quality of each individual xj(t) is evaluated using a fitness function f : S → R+. The

fitness function is obtained from the objective function g(x). For a minimization problem g(x),

a typical transformation is f(x) = 1/(1 + g(x)) if g(x) ≥ 0, or f(x) = Cmax − g(x) for some

large constant Cmax, guarantee higher fitness corresponds to better solutions (lower objective

values). Maximization problems could use f(x) = g(x) directly if g(x) > 0. The fitness f(xj(t))

quantifies the reproductive possible of individual xj(t).

2.2 Evolutionary Operators

The transition from population P (t) to P (t + 1) is extracted by selection, crossover, and mu-

tation.

2.2.1 Selection

Selection is identifying individuals from P (t) to serve as parents for the next generation. The

probability of selecting an individual xj(t), is ps(xj(t)), it is consistently proportional to its

relative fitness among the population. A typical method is Fitness Proportional Selection (or

Roulette Wheel Selection), where:

ps(xj(t)) =
f(xj(t))∑N
k=1 f(xk(t))

Other mechanisms like Tournament Selection or Rank Selection are also frequently used to

control selection pressure and mitigate issues such as premature convergence [7]. Selection

constructs an intermediate population or mating pool M(t).

2.2.2 Crossover (Recombination)

Crossover works on pairs of parent individuals chosen from the mating pool M(t) to generate

offspring. It is used with a specific crossover probability pc. Suppose that xa, xb ∈ M(t) are

two selected parents. The crossover operator c : S ×S → S ×S (or c : S ×S → S) creates one
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or more offspring x′
a, x

′
b. For example, in one-point crossover for binary strings xa = (a1 . . . aL)

and xb = (b1 . . . bL), a crossover point k ∈ {1, . . . , L − 1} is selected randomly. The offspring

are:

x′
a = (a1 . . . ak, bk+1 . . . bL)

x′
b = (b1 . . . bk, ak+1 . . . aL)

Several crossover operators exist, adapted to different representations (e.g., blend crossover

(BLX-α) for real values, partially mapped crossover (PMX) for permutations) [4]. Crossover

makes easy the exploration of combinations of parental features (schemata [8]).

2.2.3 Mutation

Mutation represents random alterations to individual genes among an offspring chromosome,

achieving with a common low mutation probability pm per gene or per chromosome. The

mutation operator m : S → S changes an individual x′ to create x′′. For binary strings, bit-flip

mutation modifies a selected gi from 0 to 1 or vice-versa. For real-valued encoding, mutation

might include adding a random value from a particular distribution (e.g., Gaussian) to a gene gi.

Mutation aims at maintain genetic diversity and frustrates irreversible loss of genetic material,

allowing escape from local optima [7].

2.3 Algorithmic Structure

The canonical Genetic Algorithm advances iteratively:

1. Initialization (t = 0): Create initial population P (0) = {x1(0), . . . , xN(0)}. Calculate

fitness f(xj(0)) for all j = 1, . . . , N .

2. Iteration Loop (t = 0, 1, 2, . . . , Tmax):

(a) Selection: Generate a mating pool M(t) by choosing individuals from P (t) based

on fitness f(xj(t)) employing a chosen selection scheme (e.g., N selections with

replacement).

(b) Crossover: Pair individuals from M(t) and apply the crossover operator c with

probability pc to create an offspring population Oc(t). Individuals not undertaking

crossover are generally copied directly.

(c) Mutation: Use the mutation operator m to individuals in Oc(t) with probability

pm to create the final offspring population Om(t).

(d) Evaluation: Calculate fitness f(x′) for all offspring x′ ∈ Om(t).

(e) Replacement: Build the next generation population P (t + 1) by choosing indi-

viduals from P (t) and Om(t). Typical strategies involve generational replacement

(replace entire P (t) with Om(t) if |Om(t)| = N) or including elitism (keeping the

best individual(s) from P (t) into P (t+ 1)).
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(f) Increment generation counter: t← t+ 1.

3. Termination: Stop when a stopping criterion is satisfied (e.g., maximum number of

generations Tmax, convergence of fitness values, time limit).

4. Output: Give back the individual with the highest fitness come across during the whole

process as the best-found solution xbest.

2.4 Theoretical Aspects

The theoretical underpinnings of GAs were explored by Holland [8] via the concept of schemata

(hyperplanes representing subsets of chromosomes with resemblances at certain positions). The

Schema Theorem offers insight into how GAs implicitly favor the proliferation of short, low-

order, high-fitness schemata over generations, although its direct predictive power for complex

GA dynamics is debated [7]. GAs are recognized as robust stochastic search methods able of

navigating complex fitness landscapes efficiently [4].

2.5 Illustrative Applications

Genetic Algorithms have been successfully applied to a wide array of optimization problems

across different domains. Their versatility stems from their problem-agnostic nature at a high

level, demanding only a suitable representation, fitness function, and genetic operators. Below,

we explore two common application scenarios.

2.5.1 Optimization of Test Functions

A common practice in judging the performance of optimization algorithms, involving GAs, is

to apply them to a suite of standard benchmark or test functions. These functions have been

familiar by characteristics, such as the location and value of their global optimum, the presence

and nature of local optima, dimensionality, and separability.

• The Sphere function is a simple, unimodal, convex function, often used as an initial test

case. For x = (x1, . . . , xD), it is typically defined as g(x) =
D∑
i=1

x2
i . Its global minimum is

at xi = 0 for all i, with g(x∗) = 0.

• TheRastrigin function is a more complex, multimodal function characterized by a large

number of local optima. For x = (x1, . . . , xD), it is defined as g(x) = 10D +
D∑
i=1

[x2
i −

10 cos(2πxi)]. Its global minimum is also at xi = 0 for all i, with g(x∗) = 0. This function

tests an algorithm’s ability to escape local optima and find the global optimum in a rugged

landscape.
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For these types of continuous optimization problems, real-valued encoding is typically used. The

performance of the GA is generally visualized by plotting the landscape of the objective function

(e.g., utilizing contour plots for 2D problems) and overlaying the positions of individuals in

the population. Figures 2.1 and 2.2 illustrate this for the Sphere and Rastrigin functions,

respectively, revealing the state of the population at the beginning of the search and after 100

generations.
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Figure 2.1: Visualization of GA performance on the 2D Sphere function between the initial
population and the final population at Gen 100. The global optimum is at (0,0) with a value
of 0.00.
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Figure 2.2: Visualization of GA performance on the 2D Rastrigin function between the initial
population and the final population at Gen 100. The global optimum is at (0,0) with a value
of 0.00.

The plots prove key aspects of the GA’s search process:

• The Initial Population plots (the two plots on the left) exhibit individuals (typically

depicted as blue circles with black outlines in the offered image style) scattered widely

within the search space. This affects the random initialization of the population. The

global optimum is commonly marked (e.g., a yellow ’X’ marker).
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• The Final Population plots (the two plots on the right) exhibit the state of the pop-

ulation after a certain number of generations (here, 100). The individuals (often orange

circles with black outlines) are expected to have converged towards the area of the global

optimum. For the unimodal Sphere function (Figure 2.1), this convergence is commonly

direct and pronounced. For the multimodal Rastrigin function (Figure 2.2), the plot

illustrate the GA’s ability to navigate a complex landscape with many local optima to

find the global optimum. The tight clustering of the final population around the global

optimum (0.00) signals successful optimization.

Such visualizations are invalid for understanding the search dynamics of the GA, involving

its exploration and exploitation characteristics, convergence speed, and overall efficiency on

different fitness landscapes.

2.5.2 Combinatorial Optimization: The Traveling Salesperson Prob-

lem (TSP)

The Traveling Salesperson Problem (TSP) is a classic NP-hard problem in combinatorial opti-

mization. The target is to find the shortest possible route that visits each city in a given list

of cities exactly once and then returns to the city of origin. Because of its complexity, exact

solutions are often infeasible for large numbers of cities, making heuristic methods like GAs

attractive.

Applying a GA to the TSP includes specific considerations:

• Representation: Permutation encoding is the natural choice. A chromosome is a per-

mutation of the cities, e.g., (c1, c2, . . . , cN), representing the order in which the cities are

visited.

• Fitness Function: The objective is to minimize the total tour length. The fitness

function is typically inversely proportional to this length, e.g., f(tour) = 1/length(tour).

GAs have demonstrated considerable success in finding high-quality solutions to TSP instances,

generally outperforming simpler heuristics and offering good approximations to the optimal so-

lution,specially for moderately sized problems. They excel in investigating the vast search space

of possible tours, balancing the exploitation of good existing sub-tours with the exploration of

new tour structures.
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Chapter 3
Applying Genetic Algorithms to Adversarial

Attacks on Neural Networks

The vulnerability of deep neural networks (DNNs) to adversarial attacks has become a signif-

icant concern in machine learning. Adversarial attacks include crafting subtle, often imper-

ceptible, perturbations to input data that cause a DNN to misclassify it with high confidence

[3]. This chapter investigates the application of Genetic Algorithms (GAs) to generate such

adversarial examples, especially in a black-box setting where the attacker has no knowledge of

the target model’s architecture or parameters, only access to its input-output behavior (e.g.,

predicted labels and confidence scores).

Black-box attacks may be seted as optimization problems: the aim is to find a minimal

perturbation that, when joint to an original input, successfully fool the target model. Genetic

Algorithms, as powerful stochastic optimization techniques, are well-suited for this operation

due to their capability to navigate complex search spaces without demanding gradient infor-

mation. This chapter illustates the POBA-GA (Perturbation Optimized Black-box Attack via

Genetic Algorithm) method proposed by Chen et al. [3] as a concrete example of applying GAs

in this domain.

3.1 Problem Definition for Adversarial Attacks

The main problem is to generate an adversarial example from an original input that deceives a

target DNN.

Definition 3.1.1 (DNN-based Image Label (from [3])). Set a Deep Neural Network (DNN)

trained for image classification, for an input image S, the DNN outputs a label y1, presented

as TM(Θ, S) = y1, where Θ presents the model parameters, and y1 is the output label in the

company of the highest confidence.

Definition 3.1.2 (Adversarial Attack (from [3])). Given a DNN and an original image S, for

which the model outputs the true label y0 (i.e., TM(Θ, S) = y0), an adversarial attack method

AM generates an adversarial image AS such that TM(Θ, AS) = y1, where y1 ̸= y0. The images

18



CHAPTER 3. APPLYING GENETIC ALGORITHMS TO ADVERSARIAL ATTACKS ON
NEURAL NETWORKS

S and AS should be almost indistinguishable to the human eye, meaning the added perturbation

A = AS − S is small.

The goal of a black-box adversarial attack is to find such a perturbation A (and thus AS)

that minimizes its detectability while guarantee misclassification. This fundamentally forms an

optimization problem where we attempt to:

• Maximize the probability of misclassification (or the confidence of the wrong class).

• Minimize the size of the perturbation A.

POBA-GA [3] utilizes a genetic algorithm to improve perturbations that achieve these dual

objectives.

3.2 The POBA-GA Framework

POBA-GA translates the black-box adversarial attack into finding an optimal perturbation

through an evolutionary process. The framework, as showed in Figure 3.1 (inspired by Figure

2 in [3]), consists of various key stages:

Figure 3.1: Conceptual block diagram of the POBA-GA framework. It includes initializing a
population of perturbations, calculating their fitness based on attack success and perturbation
size, and iteratively refining them through selection, crossover, and mutation until a satisfactory
adversarial example is met. (Adapted from Chen et al. [3], Figure 2).

1. Initialization: A population of various initial perturbations is generated. These pertur-

bations, when included to the original image S, form the initial population of adversarial

example candidates AS0
i .
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2. Fitness Evaluation: Each candidate adversarial example ASi in the current population

is fed to the target model TM . The output (predicted label and confidences) is used

to calculate a fitness score ϕ(ASi). This fitness score quantifies both the attack ability

(how well it deceives the model) and the perturbation control (the small-scale of the

perturbation).

3. Termination Check: The algorithm checks if a stop condition is met. This might be a

maximum number of generations, obtaining an adversarial example that meets predefined

criteria (e.g., target misclassification with sufficient confidence and low perturbation), or

a budget on the number of queries to the target model. If met, the best adversarial

example obtained is output.

4. Evolutionary Operations: If stop conditions are not met, the algorithm proceeds to

produce a new generation of perturbations:

• Selection: Parent perturbations are chosen from the current population based on

their fitness scores.

• Crossover: Selected parent perturbations are combined to create offspring pertur-

bations, inheriting characteristics from both parents.

• Mutation: Offspring perturbations undergo small random changes to present new

genetic material and maintain diversity.

The newly generated perturbations is the next population, and the cycle repeats from the

Fitness Evaluation stage.

Key symbols used in POBA-GA (from Table 2 in [3]) involve:

3.3 Genetic Algorithm Components in POBA-GA

POBA-GA tailors the standard GA components for the specific task of generating adversarial

perturbations.

3.3.1 Initialization

The initial population of perturbations At=0 is important for the diversity of the search. As

described by Chen et al. [3], for a stated original image S, initial perturbations δ are created

using random Gaussian noise:

At=0
i = δi where δi ∼ N (µ, σ2

i )

The initial adversarial corresponding examples are ASt=0
i = S + At=0

i . To improve diversity,

different initial perturbations are created based on varying parameters like the variance σ2
i , the

number of noise points, and the noise point size.
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3.3.2 Fitness Function

The fitness function ϕ(AS) is mapped to balance attack capability and perturbation size. An

excellent adversarial example have strongly deceive the model while being minimally modified

from the original. POBA-GA utilizes a two-part fitness strategy [3].

Suppose y0 be the true label of S. When AS is fed to TM , let y1 be the label with the

highest confidence and y2 be the label with the second-highest confidence. The confidence of

AS being classified as label y is p(y|AS).
The attack performance P (AS) is defined as:

P (AS) =

p(y1|AS)− p(y0|AS) if y1 ̸= y0 (successful attack)

p(y2|AS)− p(y0|AS) if y1 = y0 (failed attack)
(3.1)

If the attack is successful (y1 ̸= y0), P (AS) measures the confidence margin of the misclassi-

fication over the true label. If the attack fails (y1 = y0), P (AS) measures the margin of the

second-best class over the true label; a smaller (more negative) value is better here as it pushes

the model further from the true class.

The perturbation size is denoted by Z(A). Initially, the algorithm concentrates solely on

achieving a successful attack. Thus, the parameter α (which weights the perturbation penalty)

is effectively 0. Once an attack succeeds at iteration tsucc, the fitness function incorporates the

perturbation penalty. The updated fitness function is (from Eq. (3) in [3]):

ϕ(AS) =

(p(y1|AS)− p(y0|AS))− α
Z(A)

Zmax(Atsucc)
if y1 ̸= y0

p(y2|AS)− p(y0|AS) if y1 = y0

(3.2)

Here, Zmax(A
tsucc) is the maximum perturbation size within the successfully attacked examples

at iteration tsucc (when the first successful attack occurred for any individual in the popula-

tion, or a similar normalizing factor for perturbation). This term normalizes the perturbation

penalty. The parameter α controls the trade-off: a larger α prioritizes smaller perturbations.

3.3.3 Evolutionary Operations

Selection

POBA-GA employs Roulette Wheel Selection [3]. For each individual ASi in the population

with fitness ϕ(ASi), its selection probability fp(AS
i) is:

fp(AS
i) =

ϕ(ASi)∑N
j=1 ϕ(AS

j)
(3.3)

21



CHAPTER 3. APPLYING GENETIC ALGORITHMS TO ADVERSARIAL ATTACKS ON
NEURAL NETWORKS

where N is the population size. Individuals with higher fitness scores have a greater chance of

being selected as parents for the next generation. The cumulative probability fr(ASi) is:

fr(ASi) =
i∑

j=1

fp(AS
j) (3.4)

Crossover

POBA-GA uses a uniform crossover tailored for perturbations, which are essentially matrices

of pixel changes [3]. Given two parent perturbations A1 and A2, and a binary mask matrix B

of the same dimensions (where elements of B are randomly 0 or 1), two offspring perturbations

Ac1 and Ac2 are generated as:

Ac1 = (A1 ⊙B) + (A2 ⊙ (1−B)) (3.5)

Ac2 = (A1 ⊙ (1−B)) + (A2 ⊙B) (3.6)

where ⊙ denotes element-wise multiplication and 1 is a matrix of ones. This operation is

performed with a crossover probability Pc. Chen et al. [3] set Pc = 1 to ensure exploration of

combined features. Figure 3.2 (inspired by Figure 3 in [3]) illustrates this.

Figure 3.2: Schematic of crossover and mutation operations on perturbations in POBA-GA.
Crossover combines parts of two parent perturbations. Mutation introduces small random
changes to an offspring perturbation. (Adapted from Chen et al. [3], Figure 3).

Mutation

Multi-point mutation is applied to the offspring perturbations Ac with a small mutation prob-

ability Pm [3]. For an offspring perturbation Ac
q, the mutated perturbation Am

q is obtained

by:

Am
q =

Ac
q ⊙ C if rand(0, 1) < Pm

Ac
q otherwise

(3.7)
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where C is a mutation matrix, typically an identity matrix with a few randomly chosen elements

modified (e.g., multiplied by values between 0 and 2) to alter corresponding perturbation pixels.

Pm is kept low (e.g., 0.001-0.003) to avoid disrupting good schemata too drastically.

3.3.4 Generation Update and Termination

POBA-GA uses a father-son mixed selection for generation updates, which is a form of elitism

[3]. The N perturbations with the highest fitness values from the combined set of current parent

perturbations (At) and the newly generated (mutated) offspring perturbations (Am) form the

population for the next generation (At+1). This ensures that high-quality solutions are not lost.

The algorithm terminates when a predefined maximum number of generations is reached, or

when an adversarial example’s fitness function value exceeds a certain threshold γ, indicating

a sufficiently successful and subtle attack.

3.4 Perturbation Evaluation Metric in POBA-GA

Traditional metrics for perturbation size (L0, L2, L∞) have limitations in capturing human

perception of changes. POBA-GA introduces a novel perturbation evaluation metric Z(A)

(detailed in Eq. (9) of [3]) designed to be more aligned with visual assessment and to better

distinguish small perturbations. The metric Z(A) is given by:

Z(A) =
mr∑
r=1

mc∑
c=1

(
1

1 + e−(A(rc)·pm1+pm2)
− 1

1 + epm2

)
(3.8)

where A(rc) is the perturbation value at pixel (r, c), and pm1, pm2 are parameters that shape

the sigmoid-like mapping of pixel perturbation values to their contribution to the overall Z(A)

score. When pm1 = 15, pm2 = 3 (as used for machine evaluation in [3]), this metric effectively

amplifies the perceived difference between small perturbations, guiding the GA to optimize

towards smaller, less perceptible changes once an attack is successful. This Z(A) is the quantity

used in the fitness function (Equation 3.2).

3.5 Demonstration of Successful Attacks

This section presents illustrative examples of successful adversarial attacks generated using a

Genetic Algorithm-based approach, such as POBA-GA, against target neural network models.

The effectiveness of these attacks is typically demonstrated by visually comparing the original

input with the generated adversarial example, showcasing the subtle nature of the perturbation,

and reporting the model’s misclassification.

Figures 3.3 and 3.4 showcase such successful attacks on representative images. For each

example, the original image, the computed perturbation, and the resulting adversarial image

are displayed. The labels indicate the model’s prediction for the original and the adversarial
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input, highlighting the misclassification achieved. The perceptibility of the attack can be gauged

by visually inspecting the adversarial example and the magnitude of the perturbation.

Figure 3.3: Original Image (Label: Bloodhound, Conf: 0.41%) Pertuebed Image (Label: Stop-
watch, Conf:0.07%

Figure 3.4: Original Image (Label: Miniature Poodle, Conf: 0.78%) Pertuebed Image (Label:
Computer Keyboard, Conf:0.06%

In Figure 3.3, the original image, confidently classified as [Bloodhound], is subtly modified.

The resulting adversarial image, visually very similar to the original, is misclassified by the

target model as [Stopwatch] with high confidence.

Similarly, Figure 3.4 demonstrates an attack on an image of a [Miniature Poodle]. The GA

successfully found a perturbation leading to a misclassification as [Computer Keyboard], while

the changes remain largely imperceptible to the human eye.
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Summary of POBA-GA Performance on Various Bench-

marks (Non-Targeted Attacks)

Dataset / Perturbation Attack Success Query Count
Target Model (Per-pixel L2) Rate (%) (Total (Initial Success))

MNIST 3.0e-03 100% 423 (94)
CIFAR-10 6.8e-05 100% 381 (78)

ImageNet64 / VGG19 1.5e-05 96% 3786 (536)
ImageNet64 / ResNet50 1.4e-05 98% 3614 (492)
ImageNet64 / Inception-V3 1.7e-05 95% 3573 (471)

Note: Results extracted from Chen et al. [3], Table 5. ”Perturbation” refers to the average per-pixel L2 norm
of the adversarial noise. ”Query Count” indicates the average number of model queries needed for a successful
attack, with the number for initial success in parentheses. These are for non-targeted attacks.

These demonstrations underscore the capability of GA-based methods to systematically explore

the input space and identify vulnerabilities in DNNs. The ability to generate successful attacks

with low perceptibility in a black-box scenario highlights the practical threat these techniques

pose and motivates further research into robust defense mechanisms.

The POBA-GA method proves a successful application of Genetic Algorithm principles to

the challenging problem of black-box adversarial attacks against deep neural networks. By care-

fully designing the genetic perturbations (representation) , fitness function (balancing attack

success and perturbation subtlety), and evolutionary operators (tailored for image perturba-

tions), POBA-GA can efficiently search for and optimize adversarial examples. The employ of

a new perturbation metric Z(A) further refines the optimization process towards generating

less perceptible attacks. This approach highlights the versatility and power of GAs in tackling

complex, real-world optimization tasks in the domain of machine learning security.
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Conclusion

This thesis started on an exploration of metaheuristic algorithms, with focusing on Genetic

Algorithms (GAs), and ended in a practical demonstration of their application to the complex

problem of generating black-box adversarial attacks against Deep Neural Networks (DNNs).

On this work, we first illustrated the fundamental concepts of optimization problems, high-

lighting their prevalence and the outstanding challenges raised by real-world complexities.

Chapter 2 offered an in-depth exploration of Genetic Algorithms. We underscoring their

bio-inspired mechanisms, involving solution representation, population-based search, fitness

evaluation, and the main evolutionary operators of selection, crossover, and mutation.

The main contribution of this work, introduced in Chapter 3, involved applying these GA

principles to the field of machine learning security. We concentrated on the POBA-GA ap-

proach, proving how GAs can be effectively adapted to generate adversarial examples.

Future work could be enlarge from this foundation in different directions.

• Investigate other metaheuristic algorithms or hybrid frameworks for adversarial attack

generation could lead even more efficient attack strategies.

• Explore GAs as a component in designing defense mechanisms, for example, by including

robust model designs or adversarial training data.

In conclusion, metaheuristic algorithms, and Genetic Algorithms in particular, provide a

potent and adaptable model for tackling complex optimization problems. Their implementation

to the generation of adversarial attacks not only operates as a compelling case study of their

abilities but also contributes to the bigger understanding of AI security.
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اिऻڪٌۘ
෠඾݄؇ت আॻ༟ ଩ଃ܋ଫଐܳا ؕ݁ اৎ৊أگڎة، ඔ൹اܳٺۜފ ႟၍؇݁ލ ࠍ੆ܭ (GAs) اࠍ੊٭ྡྷ٭۰ اࠍ੅ިارز݁٭؇ت ۰༡ޗݠو৙৑ا ۱ڍه ོྥٷ؇ول
ّݱྡྷ٭ژ إ༡ڎاث ሌᇿإ ا୒ୖ݄۠؇ت ۱ڍه ዛኤڎف (DNNs). اܳأ݄٭گ۰ اܳأݱྟ٭۰ اܳލٴႤၽت ݪڎ ۰ਃಮاܳأڎا ا৙৑ݿިد اܳݱٷڎوق
ؕ݁ اܳٺأ؇݁ܭ আॻ༟ ؇ዛኤوڢڎر اܳٺڎرج ݆݁ اࠍ੅؇ܳ٭۰ ؇ዛውܳޚٴ٭أ ݁ٷ؇ݿٴ۰ GAs ّأڎ ۊڰ٭۰. ݁ڎఈః༠ت اݪޚݠاً؇ت ଫଊ༟ ༠؇ޗ޴
ሒᇭ ؇ஓ୾ GAs، ݁ܝިَ؇ت ෛຬݱݧ اᄳᄟي POBA-GA، ᆇᅦܭ إޗ؇ر ۰༡ޗݠو৙৑ا ّگڎم اৎ৊أگڎة. اܳٴۜت ݁ފ؇༡؇ت
෠ຶ؇ح لଫଊز اܳݯިݪ؇ء. ৕৑دراك ༥ڎࢴࣖ Z(A) و݁گ٭؇س ا৖৑ݪޚݠاب) وّگܹ٭ܭ ا୒ୖ۠ިم (෠ຶ؇ح ݁ٺިاز۰َ ܳ٭؇ڢ۰ ᄭᄟدا ዻዧذ

ل۰. اܳگި اᄴᄟڣ؇ع آܳ٭؇ت ሒᇭ اܳٴۜت وොຬڰݞ ،ሒᇿ৚৑ا اܳٺأ޺޾ ஓ஁؇ذج ݪأژ وَگ؇ط GAs، ڣأ؇ܳ٭۰ POBA-GA
.۰ਃಮاܳأڎا ا୒ୖ݄۠؇ت ,ඔ൹اܳٺۜފ اࠍ੊٭ྡྷ٭۰, اࠍ੅ިارز݁٭؇ت اৎ৊٭ٺ؇۱٭ިر૭૏ྥ٭۹, اৎ৊ڰٺ؇ۋ٭۰:ۊިارز݁٭؇ت اగၵၽܳ؇ت

اܳأ݄٭گ۰ اܳأݱྟ٭۰ اܳލٴႤၽت

Abstract

This thesis explores Genetic Algorithms (GAs) for complex optimization, focusing on
black-box adversarial attacks against Deep Neural Networks (DNNs). These attacks gen-
erate subtle input perturbations to induce misclassification. GAs are well-suited due to
their gradient-free nature and ability to navigate complex search spaces. The POBA-GA
framework is introduced, customizing GA components like a specialized fitness function
(balancing attack success and minimal perturbation) and a novel perceptibility metric,
Z(A). POBA-GA's success highlights GAs' versatility, machine learning vulnerabilities,
and the need for robust defense mechanisms.
Keywords:Metaheuristic Algorithms,Genetic Algorithms,Optimization.
Adversarial Attacks,Deep Neural Networks

Résumé

Cette thèse utilise les Algorithmes Génétiques (AG) pour des attaques adversariales en
boîte noire contre les Réseaux de Neurones Profonds (RNP), générant des perturbations
subtiles pour induire une mauvaise classification. Le cadre POBA-GA, adapté par une
fonction de fitness équilibrée et la métrique Z(A), prouve la polyvalence des AG et révèle
les vulnérabilités des RNP, soulignant le besoin de défenses robustes.
Mots clés:Algorithmes Métaheuristiques, Algorithmes Génétiques, Optimisation
Attaques Adversariales, Réseaux de Neurones Profonds.
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