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Chapter 1 : Dimensional analysis.
I.Introduction

The observation of physical phenomena is incomplete if it does not lead to quantitative
information, which is the measurement of physical quantities. To study a physical phenomenon,
one must examine the important variables; the mathematical relationship between these variables
constitutes a physical law.

This is possible in certain cases, but for other cases, it is necessary to use a madeling, method

such as dimensional analysis.( Jdadll g2ad).

I1. Definition of Dimensional Analysis Jaaill 3l Ciy s

It is a theoretical tool for interpreting problems based on the dimensions,of the involved physical
quantities: length, time, mass, and so on.

Dimensional analysis allows for:

- Verifying the validity of dimensioned equations,

- Investigating the nature of physical quantities.

- Exploring the homogeneity of physical laws.

- Determining the unit of a physical quantity based on fundamental units (meter, second,
kilogram, etc.).

111.Physical Quantity -k diylia

A physical quantity is%an observable ‘and measurable property through a specifically designed
instrument. Mechapi€Syacknowledges seven fundamental physical quantities: length, time, mass,
electric currentiytemperature, “quantity of material, and luminous intensity. Other physical
quantitiesp known as, derived quantities, are expressed in terms of these three fundamental
quantities, such,aselocity, acceleration, force, and more.....

Note :

In general, for first-year students in Mathematics and Computer Science (MI), Mathematics (M),
and Computer Science (1), the focus is primarily on the first three fundamental quantities: length,
time, and mass.

The value of a physical quantity is given in relation to a standard known as a "unit." The first
four fundamental units constitute the MKSA International System (Meter, Kilogram, Second,
Ampere). Using these fundamental units, derived units can be constructed: area (m?), velocity

(m/s), force (kg m/s?)...



IV. International System of Units  ealall alail 4 31 g

Units( in the
Fundamental quantities international system Symbols
MSKA)
Length Metre (m)
Mass Kilogramme kg
Time Seconde
Temperature Kelvin
Current intensity Ampere (A
Light intensity Candela C
Quantity of material Mole mol)

There are specific units such as N (Newton), for e, 'Hz (Hertz) for frequency, Watt for power,
Pascal (Pa) for pressure...

Note: There are two systems of units:

- The International System
the most widely used syste%.
- The CGS system (
V. Dimensional ' N daaa

Dimension represents of a physical quantity. A physical quantity has only one possible
dime
tity G is denoted by: [G]=L.

, and T as the dimensions of the fundamental quantities mass, length, and time,

we can express the dimensions of other derived quantities in terms of these three. The resulting

equations are the dimension equations for these physical quantities.



Fundamental Unitssaagli( in the

quantities aliall Symbols Dimensions«¥! | international
L) system MSKA)
Length L [1]=L Metre
Mass M [m]=M Kilogramme
Time T [t]=T
Temperature T [T]=6

Current intensity I [i]=I
Light intensity J [il=
Quantity of N
material
L’équation aux dimensions de toute grandeu ut'se,mettre sous la forme :
[C1E WM L1 0 N

To determine the dimensiq it ed to use known formulas.
Example :

X. T~ and the unit of speed is (m/s).

[velocity] = [v]

-1
[acceleration = % = % = L.T~? and the unit of acceleration (m/s?).
[Fo s][acceleration] = [m][a] = M.L.T~% and the unit of force is
Newto ).

Notes :

» The dimension of constants is always equal to 1; we say they are dimensionless.
» Angles and functions like sin, cos, tan, exp, In, and log are dimensionless functions.

[Numeric value] = 1, [angle] = 1, [cos a] = [sin a] = [tan a] = [cot o] = [In x] = [ex] = 1.

VI.Homogeneity of Dimensional Equationsta¥) (uilad dlslea
The two sides of a dimension equation must have the same dimensions since they represent
quantities of the same nature.



G is a physical quantity:

¢ A heterogeneous (non-homogeneousiwiaia 5e) equation is necessarily e.

¢ A homogeneous equation is not necessarily true.
¢ Dimensions cannot be added (or subtracted).

Example 1:

y = %atz + vyt + y, Is the equation of a physical law. xﬁ
Check that this equation is homogeneous?
This equation is homogeneous if:

1
1= [7at?| = [t = [yo]
We have : °
.
= L.T72.T2 = L; [vyt] = [vol[t] = L.T-L.T =L

1
1=l = Ls |

So:

iongy, = + vyt + y, IS homogeneous.

property of dimension equations to discover physical laws by knowing the

variables involved in the given physical phenomenon and the relationship among them.
Example 2:
The period is given in terms of length and severity by the following relationship:
T =kl*g”
Give the physical law of period T ?
For this it is necessary to determine the exponents x and y.
It is assumed that the equation is homogeneous so :

[T] = [k][1]*[g]”



The dimensions of all physical quantities in the study relationship are written.

[(]=L; [kl =1 [g] =L.T % [T]=T

So:

[T] = L*(LT™%)Y = L**Y.T7% .........(D)
On other hand we have :
[T]=T=TL......cc. ... .....(2)

By comparing (1) and (2) find :

x+y=1
{—2y=1 ”

it’s the law of the period.

Conclusions :
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Vector calculation :sdd)l clual)
I. Introduction :
Physical quantities are classified into two categories: scalar and vector quantities.
A scalar quantity is a real numerical value used to represent certain quantities such as: mass,
time, temperature...

A vector quantity is a quantity that has a real numerical value and a direction, such as speed,

acceleration, force, ... B
A vector quantity is represented by what we call a vector. Figure 1 4
The vector 4B is characterized by : /B
-The origin (A) %

- Support (straight line (AB)) Figure (M.1): VectordB

- Vector direction (from A to B)
- The modulus or norm of the vector: real numerical value representingithe fength of the vector
(the distance between A and B).

The modulus of a vector 4B is written as follows :|| AB{h= 48| =B
I1. Unit vector (3l glad)
The unit vector is a vector whose modulus is equal to“h, We express a vector AB parallel to the
unit vector U such that :
ABls AB.U

With ||4B|| = 4B; ||7]| = 1
I11.Vector components (g2l Sbs )
A vector is described by i1ts,components, which are determined from a reference frame. This
reference systemgan he linear (a single x component), planar (two components) or spatial (three
components).

-Vectorcoordinates in Cartesian reference system :
The Cartesian reference frame is orthonormal: unit vectors must be orthogonal to each other and
normalized to unity.

In the plan (0: t:

The vector V is written as

—

V=V, +V, withV; = VI andV, = V,j

X

Figure (11 .2) : Projection of a vector in the plane(Q; i:])
11



Vy=Vcosa;V,=Vsina

The components of vector ¥ in the orthonormal plane O; T; ))are : Vxand V, and we write :
N <Vx> V cosa
V = = ( . )
Vy Vsina
The modulus of vector Vis calculated from its coordinates as follows:

In the plan (0; T; Zj) } A

The vector ¥/ is written _

4 6 I
72 | [
V,=Vcosa ; & T3 i A
_ N o L7
V, =V cospf | I/
V, =V cos6

FigUie (11. 3) : Projection of a vector in the plane(0; i, k)

0
re: Vy, Vyand V,.
The modulus of vector V is g\

Let two vectors V;and V,be such that :

=) %=(,)
! V1 2 Y2

The sum of two vectors is another vector S = 7{ + 7{

The components of vector{ I

S = (g +x)T+ 1+ ¥2)J

Figure (11 .4) : Sum of two vectors

12



The modulus of S is calculated as follows:

S =0 +2)2 + (71 + y,)?

Or by the laws of cosines : § = \/Vlz + V2 + 21V, cos(V;, V)

IV.2.Subtracting vectors

The subtraction of two vectors is a vector ;: D = 7{ — 72) which can be defined as the sum of the

vector Vl with the inverse of the vector V :
D=V +(-V)
D= ((x, — x)T+ 0 — ¥2)J

We obtain the modulus of D as follows:

1V.3.Tt p product (or dot product) between two vectors (weledd ol g/iad/

—_— _ x . e _ x -
Scalar product between two vectors V; = (yi) vV, = (yz) gives a scalar value
V1V2 = V]_VZ COS(V1V2)

If7{ is parallel to 7{ , then : cos(V;V,) = 1 and the scalar product is V,V, = V,V,

If 7{ is perpendicular to 7{ then cos(V;V,) = 0 and the scalar product is zero V;V, = 0

13



On the other:

‘71-V2) = (01T + y1)) * (20 + y2))

Vi Vs = x50 00 + %1 Y50 + Y120 + y132)7

- >

We'vegot:J=ji=0andil=jj=1
Hence ]7)1V2) = xlxz + ylyZ'

Angle Between Two Vectors
The angle 6, (0 < 6 < x), between two vectors can be found using the

definition of the dot product:

V]_Vz = V1V2 COS(V]_VZ) = V1V2 CoSs 9 \%
Viv, -1

So:cosf = — 6 = cos

i A%
Examplel : x
1-If V{(Z; 3; Dand 7;(5; —2;2)finf the ang enV;; V;

CVTE v, =TS 1 AT A=V

) =cos~1(0.2791)

1 ( 6
cos™H =
0 =73.8°

The ang nV; and V, is 73.8e.

» Scalar product properties :
Scalar product is commutative : V,.V, = V,.V;
Distributor V, (V, + V3) = (V, + V,) + (V, + V)
(a4)B = A(aB)

J=ji=tk=0andi=jj=kk=1

Example2 :

14



Let two vectors V, = 20+ 3] —k; V, = 2T+ 2] — k
The scalar product : 171.72) =22+32+(-1.(-1) =11

1V.4.The cross product (vector product) between two vectors weledd sleddl ¢/dad)

The vector product between two vectors V, and 172 is a vector perpendicular to the plane formed

by these two vectors.

W=I71AV2)=]71XV2)

direct

\

W= |‘71 X 72>| =V, Sin(—)Vsz))

The modulus of the vector W represents the area of the parallelogram (OABC) formed by the
two vectors 17191: 172 (figure 6).

|_) |

VixV,

And W =
The vector product can be calculated using the determinant method:

represents the area of a triangle.

Let two vectors 171 : 172 be such that :

15



— _ -  —> _ - — _ l _-] k _ yl Zl - xl
W - VlAVZ - V1 X VZ - xl 3’1 Zl - yz Zz L — xz
X2 Y2 23

W = (V122 — 21Y,)T — (X125 — 2123)] + (X1Y, — Y1x2)zl\ :

Z1
Z

> |x1
X2

From this relationship, we can calculate the modulus of w by :

W = \/(}’122 — 21Y2)% + (X125 — 21%,)? + (X1 — y1%2)2.

Note:

1-Non commutative V, x V, = =V, x V,

?szﬁ;jxﬁz?;ﬁ =
> Properties of the cross product : %

2-Non-associative : V; X (V, X Va) # (V3 X Vo)X Va

3-Distributive :A x (B + C) = (4 x 4 x g)
4-(aA) x B = Ax (aB) ¢

55AXxB=0 - A=0o0rB

6-Ixj=kand]xk
Example3 : Let be

V,=20+3]—5k; V,=20+2]

The e product( ross product) :
W=Vx; V=12 3
2 2

W = (0+10)7

V. The mixed product of three vectors:

We define the mixed product between three vectors : 71) = <Y1

X1

Z1

o

Vil

X2

Y2
Z2

0 =0->60=00r0=kn—>A)B
ndwk X=7; Ixk=—j

)andvg)=<

X3
Y3

16



by the scalar V;. (V, x V3) which is calculated by the determinant method such that :

—

o o Tk Vi Zi. X1 Z1|.  [X1 Yi|~
Vi.(VaxV3)=Vi|xy v z|=W [y; Z; |x: Z; + |x; y;| k]
X2 Y2 22

V. (V; X v3)) = (V122 — 21Y2)%1 + (X125 — 21%5)y1 + (X1Y2 — Y1X2) 7y

Mixed productrepresent the volume of a parallelogram

N\

. B =41+ kand C = —T1—2]+k

Exercicel :
Let be the vectos : A =T+ — k ;
Calculate A. ( B x C)and A x ( B x G

Solution :

Q
_ 31-21)1— (41— 1.1)] + (4. -2+ 3.Dk

(§><5)—l— ]—5k
Z(ﬁxﬁ)_11—3+5_3
4
€)=|1 7 1 = (=5-3)i— (=5 + 1)J + (-3 — 1)k
1 -3 -5

Ax(BxC)=~-7i+4j— 4k

Exercise 02:

Let there be three vectors 4, B, and C, such that:

'\->
F‘)
oy
Il
=
~>
+
<

>
+
N
oyl

A——21+]+3k B =2i—

1. Calculate x and z so that the vector C ~ is:

17



o (a)Parallelto A~
o (b) Parallel toB ™~

2. IfC =xi+ yj + zk, calculate x, y, and z so that the vector Cis perpendicular to both A
and B at the same time.

Solution :

VI-Differential operators:

VI.1. Definitions :
A single-variable function is a function that depends on a single variable x

function f is derivable at any point x, we define F' the derivati the functi such that
Fr=y

dx
On the other hand, if the function depends on several variables X3y, efine what we call

a differential.
A dual-variable function is a function that depends on tw iables: £=f(x,y).

A three-variable function is a function that de iables x, y and z: F=f(x, vy, z).

The total differential of an algebraic funct hree variables x, y, z is written :

0
dF =df (x,y,2z) = dy+a—jzrdz
With & ,a—f and <L are par S
dx " dy dz ‘
Example 4 :

y,2) =x*—2y+4z
x —2dy +4dz

ic functions and multi-variable vector functions.

The total differenti

There are multi<¥ariab b

= f(x,y,2)T+ g(x,y,2)] + h(x,y,2)k

ab ctor function.

ors < fisall
V1.2.1.0pérateur nabla 34U il

The nabla V operator is a vector that acts on functions as follows:

18



V1.2.2.The gradient:z s :
The gradient is an operator that acts on algebraic functions, transforming them into vector

functions by means of the nabla operator. We define the gradient vector of the algebraic function
f as follows :
_— o of , of, Of -
gradf =V.f —al+@] + aZk

Example 5:
Either f(x,y,2) = xyz?
So: gradf = yz?i + xz%] + 2xyzk

V1.2.3.Divergent s\l): %
The divergent operator acts on vector functions, transforming themtinto %: ns using
the nabla operator. It is defined as follows:

divV =V.V ax'i—aY-F\x
Example 6: %

V = 2xyT + xyz] — xyz%k
divV = 2y + xz — 2xyz

V1.2.4.The rotationaI?C
Consider a vector .V

The rotational of .V asfollows:

/0~
)
NS
<
2
% <!
N _ Il
! <\
| X
S <!
NS 1]
- N §| Q ~
R<
N————
~ o ‘3)| Q \I‘
+
T SR =
SRS
Y
N
N————
==l

Example7 :

V(x,y,2) = 2xyTl + xyz] — xyz°k

T -] k
o =vxiv=|2 2 9
dx 0dy 0z
. vV
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rotV = (—xz% — xy)l — (—yz? — 0)] + (yz — 2x)k

rotV = ((—xz% — xy)l + yz%j + (yz — 2x)k
V1.2.5.The laplacian
The laplacian is defined as the divergent of the gradient or the gradient of the divergent.

The Laplacian of an algebraic function is given by the following relation :

s — 2 2 2
VI =V =L+ L+

ox2  9y? = 9z?%’
Vectorial function Laplacian is given by the following relation

92V 9%V 9%V

e azz@

V.9(7) = V(7) =

20



Kinematics of material point :4:sle dkiid s

I.Introduction :
Material point kinematics is the study of the motion of material bodies as a function of time
(position, distance traveled, velocity, acceleration, etc.), without taking into account the causes
that cause or modify motion (forces, energy, etc.).
The body under study is assumed to be a material point. The dimensions of the body are assumed
to be very small compared with the distance covered.
The notion of motion is relative. A body can be, at the same time, in motion relatiVeyto one body
and at rest relative to another. Consequently, it is necessary to define( a reference frame “ales)
4ma )to determine the position, velocity or acceleration of aymowing' bodyyat “an instant
corresponding to the position of the moving body relative to this reference frame:
Several coordinate systems are defined according to the nature(of the, material point's motion.
Cartesian, polar, cylindrical and spherical
I1. Descriptive study of the motion of a material pointi(dee ks &< al Ldua g 4 13 )
I1.1.Vector position ;g sall £ladi
Vector position is a vector, which connect theyorigin/of,referenge to the position of the material point

in a given time.

my Path
=
= T ms

L

Figure (111.1) : Position vector OM in Cartesian coordinates

And it is wrrtten by the following equation:
OM =7 =xT+yj+zk
The x, y and z components of the position vector in the Cartesian coordinate system are the Cartesian

coordinates of mobile M. These coordinates change with time as mobile M is in motion: x(t), y(t), z(t).

We will have :

—_—

oM

7= x(O)T+y(@)] + z(Dk
We call x(t), y(t), and z(t) the time equations of motion.
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Note

We have chosen Cartesian coordinates, but we could have chosen other coordinates (polar,
cylindrical or spherical coordinates).

11.2. The trajectory : sbwal)

The trajectory is the collection of successive positions occupied by the moving body over time,
relative to a reference frame. It is a continuous line drawn from the point of origin to the point of
destination (figure 2). The trajectory defines the nature of the movement. If the trajectory is
rectilinear, the motion is rectilinear(+efiwe 4S_ald ); if it is curvilinear, the motion is
curvilinear(dyisic iS s ll8),

Figure(1) shows M's position vector in the Cartesian coordinate system and jitsitrajeetory.

Trajectoire

Figure/(H2) : The trajectory of material point.

» Equation of the®rajectory
This is the relationship that links the,mobile’s coordinates X, y, z to each other, independently of
time. To find the equation “of the trajectory, we need to eliminate the time between the time

equations.

Examplel :

Get the'time equations of a moving point in the plane (O, x, y) are :

X =2t ... (1)
{y =2t+1...... (2)

1-Find the equation of the trajectory

2- Find the position vector at time t=2s

From equation (1), we have t = g If we replace t in equation (2), we:
X
y:2(§)+1—>y=x+1

22



This equation of the trajectory is the equation of a straight line of the form y=ax+b, which means
that the motion is rectilinear.
2-OM = xT +yj
OM =2ti+ (2t + 1)J
OM(t2s) = 47+ 57
Example2 :
The motion of a point M is defined in a Cartesian reference frame by :

{x(t) = a sin(wt + @)
y(t) = acos(wt + @)

What is the trajectory of M. %
Solution : %
x% + y? = a?[sin?(wt + @) + cos?(wt \
x2 +y2 = g2 %

is the equation of a circle with radius a and center O

11.3.The displacement vector :

During motion, the moving body occupies di S JAt time t, it is at point M and at

(111.3) : Displacement vector M, M, in Cartesian coordinates

11.4.The (speed) vector :
11.4.1.Average velocity :

Average velocity is the variation in distance between two positions Mj, M, occupied by the
moving body, in relation to the time between these two positions.
It is defined as follows :

_ OM,(t")— OM;(t) _ M;M, AOM _Ar
B t'—t Ct' -t At At

—
m
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Note that:
- The direction of average velocity is same as the direction vector displacement.
- The magnitude of the average velocity is called (velocity) speed.

11.4.2.Instant velocity :
This is the limit of the average velocity when the time diffe Il, meaning that it
tends towards zero.

D
SV

dt

Let a function y=f(x), its derivative is equal to :

AN+ a0 - f()
® N Ax

This is simply the definiti \ Ive of a function.
"So, instantaneous velocity,can ined as the derivative of the position vector with respect to
time."

ol Al gm all plh idie gl e i yat Aaal) eyl
"The e city vector is tangent to the trajectory, and its direction follows the
direction otion."

AS palldga (a8 aaladl ()5S jlall bulas ()5S Aplaalll A ) e
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Trajectoire du

The coordinates of the position vector in Cartesian coordinates are :
Let OM = xT + yj + zk %
"The velocity vector of point M is obtained by deriving its positi torwithyrespect to time :
dOM dx_, dy. dz-

=—1+—]+k T+ vy] L0,

VS0 Tart T ad Tae

Its modulus is :

v= (&) () + (@) o + () + 02
0

11.5.Acceleration vector ;

]

11.5.1.Average Accgleration
We define the average iomof material point during the time interval At as the difference

f the particle divided by that time interval,

between the veloci

LBt +A) —v(t)  AB(t)
Gmoy ="y A —t | At

ion has the same direction and sense as Av
Vector a,,is // at 4v and heading towards the concavity of the trajectory.
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11.5.2.The instant acceleration :

As before, we'll go to the (At — 0)limit to obtain the instantaneous acceleratien.

—

- lim & Y v i v —v dv 0
a=1ma,, = IlIm — = |1In = —=
At»o ™ At-0 At At>0 At dt
The coordinates of the acceleration vector in Cartesian coordi S a
Let:
. dv x y ., Wz
a=—= l 2 ﬁk

The position vector is :0M = x(t)7
v" Uniform rectilinear motion :4akiiall dadicall 45 al)
Uniform rectilinear motion is characterized by constant velocity, so acceleration is zero.

a=—=0
dt
. . .- _dOM _ dx.
The velocity vector is : ¥ = — = =7
dt dt
dx = vdt
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Hence : b sf & (e

X t
f dx=fvdt
X t

0 0
Where: X Is the position of M at the initial instant to,
x(t) =v(t —ty) + x,

This equation is called the time equation of uniform rectilinear motion.
«» Diagram of uniform rectilinear motion:

X+ 0
X v a
4 ‘l?ﬂ:?[] 4 4
Vo
vy <0 a4 = 0m/s
. i -:t ¢ >

Where vq is

v(t) = a(t —ty) + v,

On the ‘ath ]

v(t) = % - dx = v(t)dt
fx(t) dx = ftv(t) dt = ft[a(t —ty) + vyl dt
X t

0 0 to

a
x(t) = Z(tz —t%0) + v (t — to) + %o

t
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If t,=0, the time equation of uniformly varied rectilinear motion becomes :
a
x(t) = Etz + Vot + X,

If av > 0, motion is uniformly accelerated

If av < 0, the motion is uniformly retarded

Note: uniformly varied rectilinear motion is characterized by a constant acceleration which can

be calculated as follows:

dv p dvd
= — > e pp—
a It adx T X
X v
fadxzfvdv

1
alx = x) = 5 (y ‘(x
(v? —v) =

X, and Vg are respectively M's position

++ Diagram of uniform“varied cti
e

d velocity.at time to.

tion:

X 1 [rh
F'Y 'y F
a =0
a = cte
N'\
yva<0
LY
- - > & » >
\ t ¢ t

Varied rectilinear motion is characterized by a time-dependent acceleration.
Example : If a moving object is accelerating :a = 2t — 1

Determine the particle coordinate x(t) ?

d
Wehave :qa=2
dt

28



dv 2t—1->d (2t — 1)dt
- = — - = —
dt v

v t
f dv = | (2t - 1Ddt
Vo to

Assume at time tg=0s, vo=0m/s and X,=0m
v(t) =t>—t

dx
vV=—>dx =vdt
dt

dx = (t* — t)dt

fx(t)dx = ft(t2 —t)dt \%
0 0

3 t?
0 =73-7

111.2.The study of motion in intrinsic coordinates (Frenet Fra

(Aokie A alra) LIl Sl 4 dadal) S jadf L] o

We use the Frenet frame in curvilinear

knowledge of the radius of curvature and the center,of curvature.

The trajectory is modeled by.a time-varyi gment of a circle with radius p, center C and angle
0. Q\A

N N\
Pt

), called the curvilinear abscissa, is given :S = p6

The le
Where e radius of curvature, and 6 is the angle subtended by the arc in radians.

In some cases, to determine the acceleration at a point M, we use the intrinsic components,

which are the algebraic projections of the acceleration.

To determine the expressions of velocity and acceleration in the Frenet frame, we use the
osculating circle(4sulia/l 5 42l associated with the trajectory of the object M . The osculating
circle is the circle tangent to the trajectory at a given point, with the same radius of curvature as

the trajectory at that moment. Here's how this applies to velocity and acceleration.
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One of the vectors of the Frenet frame Uy is tangent to the trajectory at point M and is directed in

the positive direction of the movement. The other vector U7 is directed, according to the radius

of curvature of the trajectory, towards the center of the osculating circle.

N (\\bQ

O Y

Figure (111.4) : Unit vectors in intrinsic coordinates \

- )
\
We can then define the displacement vector of this movi ject een points M and M" :

_—

Since uy is a unit vector tangential to the tra

parallel to the velocity vector), and it'is en@s: v =vu; whereas: v = g
The acceleration vector : ®
(vug) dv_,  du;
=—U +——V

tory and in the direction of motion (u; is

dt dt dt
G= g, T
a—dtut+ )

dw, ..
E = Hun
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¥
M,
0 X
Figure (111.5) : Representation of Curvilinear Motion and Its %
On the other: 8 = Z—(z =w= pﬂ ;U= % with R is the radius of the ctikva ajectory.
Hence :
- dv—)_l_ v2—> —_—
a=—u — Uy = a
dt T p N n
a,, The normal acceleration (g_ldll <LUl) and a; ntialyacceleration (gl (sleadl) are
written
d|vl
e = F — 2 2 2 2
By . anda=a’+a +a,
a, = E ‘

ct of acceleration and velocity.

- - dv—>+ v2—> —
axXv=|—u —u X vu
dt t p n t

3
5><17=?(u_rfxu_t))

"Since the cross product is a vector, we will take its magnitude, and thus we can deduce the

radius of curvature."
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Exercice :
Given that its tangential acceleration is § and its normal acceleration is 23, and let a be the
angle between the tangent to the trajectory and the OX axis:
1. If this point is at rest at (t=0), with the curvilinear coordinate (s = 0), deduce the relation
s = f(v).
2. Calculate the radius of curvature and show that p(t) = s(t).
3. Knowing that (ds = pda), determine (s) by setting (s = sg) when (a= 0), and deduce the relation

v = f(w).

Solution : %
Aav v_z _

We have == B and = 2B

By integrating the first equation we get :f;; dv = ftto dt - v = cause at=0 speed is zero.

The relationship between the curvilinear coordinate(s) and t dul elocity (v) is :

ds J
= — -
v Tt S

s
f ds = S tdt
So to
es

to
s = '%tz The,cons 's&ro because s =0 when t=0.
.
So:s =2
2
Now, we want to exw tion of (v) instead of (t). From v = Bt, we can express (t)as:

T
NG

istinto the equation for s(t):

2 2B
Thus, the relationship between the curvilinear coordinate (s) and the velocity (v) is:

2.Calculate the radius of curvature and show that p(t)=s(t) :

A i
Wehave.p—Zﬁ—>p—2ﬁ

3.knowing that ds= pda, determine s by posing s=so quant =0 deduce the relation v=f(a).
The curvilinear coordinate is modelized as an arc, which is the product of the radius and the

angle. ds=pda and since s=p, ds=sda.
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ds
?=da—>lns=a+cste—>s=Ae“
Whereas S(0)=Sy So:s = spe”
From this last equation and the expression for velocity as a function of S, we get :
p=S= :_B — v = ,/2s5p.e%? so velocity is a function of .
111.3. Circular motion 4l &< ,al

= Uniform Circular motion and Angular Velocity

Let us now consider the special case in which the path is a circle

(circular motion). The velocity v, being tangent to the circle and
is perpendicular to the radius R = CA. When we measure
distances along the circumference of the circle (3,2 lass)from

the origin 0, we have :

ds . d(RO)
—_— —
dt

vE dt

de .
v=R— ->v=R0
dt

v" For uniform circular motion(aeki 43 434S )all) thena; = 0

'UZ

The acceleration in this case is: @ = d,, = ;ﬁn

v However, if uniformly variable circular motion(pUsiil 3 e 43 002 4 jall) in this case the

angular velocity o is not constant and therefore the velocity v is not constant also, then :

2
dv_, wv°_,

d=—u;+ —u
dt t p n
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The acceleration in this case is :

dv_, v? dw

5=Eut+?ﬁ=PEu_{+Pw2u_1{
_dv_ dw
=G T Par
v (pw)?
"oop P

x(t) = Asin(wt + @)
A: amplitude, : angular frequency ('Y 22,4, and ¢: phase.
W= 2_7'[ = 2nf %
T

T: period and f: frequency x
The speed(velocity) :

v(t) =dwc
The acceleration :

a%‘— w?x(t)

C t

e

L) sy

111.4.Sinusoidal or harmonic motion 4wl 4s al
The movement is called sinusoidal or harmonic (“x)if its evolution over time ritten by the
equation: \%

IVV.Expression of velogi ion in different coordinate systems :

IV.1.Polar coordinat
The polar coordin cific to the study of rotationally symmetrical plane motion. A
polar axis (Ox) ISyuse origin O called the pole. The position of any point M in the plane

an then be determined by the polar radius p(t) and the polar angle 8, which

ith time using the bases fwhich refer to the direction of OM and ﬂ obtained

L |

a
ole )
p Pole axis

Figure (111.7) : Position vector in polar coordinates
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When the motion is in a plane, it's also possible to locate the position of point M using its polar
coordinates (p, 0).

p: polarradius 0 < p = R

0: polar angle 0 < 6 > 2m

The base of this coordinates system is (U,; U,,)

fis directed form the origin towards the material point position.

U, is directed in the direction of increase of e.

V1.1.1.Vector position

The vector position is given by OM = 7 = pU,

Relation between Cartesian and polar coordinates

?=p7p>=pcost97+psin97

— i — [r2 2

—ps¥n9_> p x*+y -
y =psinf tan9=%

®
Figure (111.8),: Relationship between polar and Cartesian coordinates
Relation between ases :

=

U, = cos 0i + sin
U_9)=cos(0+ % Z)j ’—Y *

j= sinOU_p)+c059U_9)

4.1.2 Velocity :
. _dOM)__dp_.  d@) .. .
v = i —T—E s tp It =pU,+pU,.c....())

Fp’ Changes its direction with time, so it derivative with respect to time is not equal to zero.

U;= cosf T+ sinfj - Ui, =0(—smOT+cosh) = éUZ
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Up = —sin@7+ cos ] = Uy = O(—cos 01 — sin6)) = -6U,
Note: The derivative of a unit vector with respect to an angle is a unit vector perpendicular to the
angle in the positive direction.

i sl ol B AN 13 o (60 gae Ban s plad g Gl () Al Bas 5l g lad (i

-=pX
d*U, d*U, 3.
r=—2=_4U, T TR

"\ I
Figure (I111.9) : Successive derivation of a uni ctoerect to time

by compensation in relationship (1)

ﬁ:pUp p+U9U9

VI.1.3.AcceIeratior%
® i = BU; + pU; + p U, + pb T, + p 6T,

i = U, + piUs + pils + pb U, + p(—62T7)
a=(p—pb?)U, + (2p6 + pb)U,
a = apU—p) + agu—g)

a,:radial component
ag: transversal component

a=a,’+ay’
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Example : Conversion of polar coordinates to Cartesian coordinates

1-The point A with polar coordinates ((1; 7). has Cartesian coordinates (x,y) =(-1 ;0)

2-The point B with polar coordinates (2%) has Cartesian coordinates (x,y) .....

{x=pc050=cos7r=—1 A(—1:0
S A(—1-
y =psin@ =sint =0 L0

Example : Conversion of Cartesian coordinates to polar coordinates. (Always choose the angle 6
between 0 and 2m).

1- The point A with Cartesian coordinates (—1,—1) has polar coordinatesg(p, 8).....

2- The point B with Cartesian coordinates ( 12, ¥ 3 2 ) has polar coordinates (p, @) ....

Solution :

p=x*+y> =12 T
y m > A(VZY)
@ =arctan==1-0 =— 4
X 4
VI1.2.Cylindrical coordinates system :
When motion takes place on a cylindrical(shw) OF, spiralh (@R- s 31~)surface, cylindrical
coordinates are often used, defined in relation to thesCartesian system. Mobile M is then
represented by :
= the polar coordinates r and 60 of its projeetion “m® on the plane (O, X, y) ;

= jts axial coordinate z.

Z ZJL
3 /N
U
e Zpff-.__ Ug
‘\K ir —~d
s e
= H el
‘-‘._“ i
S~ M
-
'
= ' Ym
oI %,
) . o
r X g i Py
»Y > A

Figure (111.10) : Position vector in cylindrical coordinate(U,; Ug; K)



The position vector OM is written in cylindrical coordinates as follows:

0M=0m+mM=p7p)+zE

VI 2.1.Link between cylindrical and Cartesian coordinates <l Y/ g 4 )lSnll culiiloa Y/ o 485
EA/PVAY

M(x;y;z) = M(p;6;2)

o= (F )
0 = arc tan%

zZ =7Z

M(p;0;z) > M(x;y;2) n
Xx =pcosf
y =psinf
zZ=1Z
The cylindrical base is written in terms of the Cartesian bage as fQllo

U, = co 071+
0 =@ Si 07
V1.2.2.Expression of the velocity vector in cylindrical ceordinates

ﬁ:%:fl):(‘p +Zk)%@,+p%+%?=p@+pip’+zﬁ
We remind you thatg \
28)

So the velocity

¥ =pU, +pbUg + 2k
VI.2. on of the acceleration vector in cylindrical coordinates

d d(pip’+p(97p’+zﬁ)

dt dt

Qu

d=pUu,+pU,+6pU,+pdU,+pbU, + 7k
d = pu, + poUq + poUg + pb U, + p(—62U,) + 7k
d=(p—pb2)U, + (206 + p8)Uy + 7k

Example 2: Express cartesian coordinates (1, -3, 5) as cylindrical coordinates.
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p= |x*+y*=+10

0= arctg% = —3.92

z=z=25

V1.3.Spherical coordinate system :

The spherical base is determined by the unit vectors(w; @; U_(p)) such that :

¢ : is the angle between the position vector OM and the Oz axis.
O : the angle between the vector Om and the axis Ox. m is the projection of M 1nithe e

N\

(O,x,y). See figure

P Z

X3

%1
O

" S
{ - J ~
> f/ -
= —— / A By
3 4 m

I&Wsition vector in spherical coordinates.

A moving point Mis erical coordinates: (r, 6, @) and the position vector is written as :

_—

oM = U,

r=0M; 0<r<R
0=(ox;om)0<0<2m
¢=(02;W)0<(p<7t

V1.3.1.Link between Cartesian and spherical coordinates :

M(x;y;z) = M(r,0,p)
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r= /x2+yz+z2

0 = arc tanz
X

Z
@ = arc cos—
r

M(r,0,9) > M(x;y;z)

Xx = pcosf
{y=psin9
Z=7CoSQ

Knowing that p = rsin¢ so :

X =rsin¢ cos @ n
{y =rsin¢sin
Z =T7CoSQ

V1.3.2.Spherical base as a function of Cartesian base
Wzrsingocos@i’+rsin(psin6 %rﬁ?
U, = sin ¢ cos 67 i +eospk
i > mply plot the unit vectors along

To find the vector Fe; as a function of the

the plane (o, X, y). See figure

|

\

m
— I

Ug

> X
Qigure (111.12) : Projection of vector U, along Cartesian coordinates

Ug = —sinO7+ cos 6]

To find the vector _U; we have :

Uy xT; =T,

. i -7 k

Up=| —sin@ cos 6 0
singpcos@ singsinf cosg

= cos 0 cos ¢ T+ sin 6 cos @] — sin pk
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V1.3.3.Expression of the velocity vector in spherical coordinates

d@rl,) — =
dtr =rU, +rU,

3=
ﬁr = ¢(cosBcosp T+ sin@cosqoj’—sinqoﬁ) + 6(—sin @ sin 87 + sin ¢ cos 0))
ﬁr = <p@)+951.n(pU_9)
So:ﬁ=fm+r<p@+résfn(pU_g)

V1.3.4. Expression of the acceleration vector in spherical coordinates

di d(ff+r<pU_,p)+r9'sfn<pU_)
dc dt

a=

d=(#—rp —r6%in? @)U, + (rf sinp + 276 sin 166,c08¢) Uy

+ (r + 27 — 62 sin ¢ cos @)
N o
Example : convert a point from spherical coordinates to Cartesian coordinates A(2; Tﬂ ; T”).

N

Exercice(1) :
A material point M is identified by its cartes

1. Write down the relationship between cartesian‘€eordinates and cylindrical coordinates (using a

diagram). Q
2. Write the position vectdbin | Inates and deduce the velocity vector in the same
coordinate system.
3. If the position of the paint ISyepresented in cylindrical coordinates by :
p = 4t?
:{9 = wt
z =4t

sion of the velocity vector v in cylindrical coordinates

Solutia z
1. Writing the‘relationship between cartesian coordinates zf.
and cylindrical coordinates (using a diagram). e
S~ M
X =pcosb 1 a7
= i k | v
y =psinf e I
Z =72 I /
i L/
= I,]i
X
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1. Write the position vector in cylindrical coordinates
OM = pr) + zk
3. deduce the velocity vector in the same coordinate system.

doM _ (pU, + zk)

D= = =pU, + pO U, + 2k
dt dt PY T P Ve
p=8t
Jo=w 35 =qa7 2 7oL L7
So.. L—>v 8tUp+4th9+2ﬁk
=57

1_7):8tU +4th9+—k \\

Exercice(2) : The motion of a particle M moving in the plane (xoy) is descrlbed by the following

x(t) =tcost

y(t) = tsint {

1-Determine the components of the velocity vector and its modulus.
- WS .

2-Determine the components of the acceleration vector and its modulus.
- e

3-Determine the expressions for the intrinsic components of acceleration as a function of time

time t. A \ N

4-Deduce the radius of curvature of the trajectory as a function of time.

Solution : \A\

1. Determining the components of the velocity vector and its modulus :
A S N

17=— where : OM = xT+ yj = tcosti+tsint]

v R dOM _dx +dy_,
VST Tt T e

——cost—tsmt
dt

d

—y=sint+tcost
dt

equations: {

- U = (cost —tsint)l + (sint + tcost)]

So its modulusis : v = \/(cos t —tsint)? + (sint + t cost)?

v =+/cos2t — 2tcostsint + t2sinZt + sin t + 2t sint cost + t2 cos t2

14+ ¢t2
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2.Determine the components of the acceleration vector and its modulus.

a =d_ﬁ=dﬂ3+ﬁ-’

d dt dt

dv, d(cost—tsint
dt dt

dv, d(sint+tcost)
dt dt

a, = (—sint —sint — tcos t)

{ay = (cost + cost — tsint)

)=

a, = (—2sint —tcost)
{ay:(Zcost—tsint) \\%

Soits modulusis: @ = /(—2sint — tcost)? + (2 cost — tsint)? = V4 + t3)

A AN\

3. Determine the expressions for the intrinsic components of acceleration as a function of time

: ) 'm\\"

tTd T iye
vz\‘J

v
a, =—
Py

We have : a = \[a,2 + a2, = \/a,? + a,? => a® = a,® + a,,?

a
2 (+HA+) -t

(1413 (1+t?)

a,>=a*—a’>={t*+4) —

™\

Pttt A+ 4A? -2 P+ 4P+ 4 (P +2)°

Nz - _ _
m\"r 1+6) A+  (1+0)

4. Deduce the radius of curvature of the trajectory as a function of time

WehavN

2
2 2 ( 1+ tz) C@+)JA+) QA+

anz——)

b ”za_fjm‘ @+ JE+o
(1+t%
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Chapter VI : Relative motion

I. INTRODUCTION

The motion of a material point can be divided into two distinct motions :
» Motion relative to a fixed reference frame, which we'll call the Absolute reference frame.
(Glhaall ra pall HUY) dzaniin e g8 5 el ma ye ) (M) dpilly 48 all ),
» A movement relative to a moving frame of reference, which we'll call a relative frame of
reference.
(el gra el Y e le 58 5 el e (o2 ye Ul () Al ASpall)
All quantities (position, velocity and acceleration) are identified in relationto the appropriate

reference frame.
I1.Absolute and relative quantities:

A material point M is in motion relative to a moying,referenceiframe R'(0',x'y',z"), itself in
motion relative to a fixed reference frame R (Opx,y;2)¢'1n motion relative to a fixed reference

frame R (O, X, Y, 2).

Figure (IV.1) : Presentation of the two reference points

R(O, x,y, z), considered fixed, which is called the absolute reference frame.
R’ (O, x', y', '), in any motion relative to R, which is the relative reference frame.
The motion of the material point is determined with respect to the absolute reference frame

R(O,x,y,z) and derivations are performed in R in which the base (7,7, E) IS invariant.
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11.1.Absolute motion :

Its position vector OM=7=xi+ yj + zk

- s _ dm _ E—) d_y - g_)

Its absolute speed(velocity) vector : v, (t) = o |, = t+—-j+ k
. L _d¥q| _d*x5 | dys  dzp
Its absolute acceleration vector : a,(t) = 2t |, = ar 2tz k

11.2.Relative motion :
The motion of the material point is determined with respect to the relative reference frame
R'(O',x',y',z") and the derivations are performed in R" in which the base (i ', j

z 4 /_\
(R
o
M -

A@ k'4

= —
L v -
o =2 o
SN ¥ y

—> 2 i'
k x'

= = >

-
— - Y
i ]
x
-
igure 'alative motion.
®
Its position vector O’ T 7+ 7'k

dx' 5 dy'j  dzi 7
dt dt dt

Relative velocity vecto =— =1 —
Rel clera ctor: a T - L+ + k
r dt lg, dt? dt? dt?

_ax' s a¥y'y | dizrp

11.3.Co of velocity vectors :

As defined previously, the absolute velocity of point M is given by :

) dOM
va(t) =g

_ dx9+dy_)+dz_)
. “ac Tad Ta

Using the Chasles relationship
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M 5
“ n 1 |
— —;' > +
 § % O 54 \"
o % j
; 1
0 = . \
- ] : >

X
S N N

Using the Chasles(Jw) relationship : OM = 00’ + O'M
The derivative of OM with respect to time, “given that the, base ) 7’ ,k_’)) can vary in time
with respect to R’, gives :’

9(t)_dm _d(00"+0'M) _do , ;A7 A ,df'+ ,dk’
Vel = gt . dt S dt : t) T at Yar TV ac T a

)

Rearranging the terms gives :

doo’ gkl [dx'— dy - dZ'—
pd 2 | O+ G

v“(t)=[ dt X dt dt dt dt
2 () = Ve +77(t)
We write : %
VeZTar " ac Y ac T?

dx, — dy, — dZ, —>‘|

‘Ur(t)= El +E] +Ek

v, :The speed (velocity) of movement of the mobile reference frame R' relative to the fixed
reference frame R.

v, (t) :The relative velocity is the velocity of M with respect to the mobile reference frame R'.
11.4.Composition of acceleration vectors :

The derivative of the absolute velocity vector with respect to time gives the absolute acceleration

vector defined in the reference frame R.
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. _%(@® _d[do0"  dv ,d7'+ dk’ LA, s A
=00 Tadar T ae Y ar TF ar ac b Tar) Tar

) [,dzf' % ,dzﬁl
+ |x VA

_,_d00’ dx'df'+dy'd7+dz'dﬁ L8
%= "t dt dt dt dt dt dt at 7 Tdt dt

+d2x’7+dy_"+ + +
ar © T ar ) T ar dt dt © dt dt | dt de

—_ (@00 & ,d27+ d2K 'y dx'df'+dy'd7’+
%a=\Tar e TV a4 T Tar dt dt = dt dt a.dtodt
s dx'd?’+dy'd7+dz'dﬁ
dt dt  dt dt | dt dt

a, =a, +a, +a, suchthat:

2y! dzz’—;> (dx'df' dy'd) dz'dk’

—_(®00" & ,d27+ 4%k L. S WA
a, = X VA .
e dt dt y dt dt celer of entrainmen

h riolis acceleration.

— dx'dir | dy'dji
a, =2(——+——
dt dt = dt dt = dt

. dx' dv
a, = d_ +

e The motion
fixed reference

velocity ch

Coriolis a

eference frame in translational motion :

ame R' is in translational motion(4xlas 4S ) with respect to R when the unit

The refere
vectors of reference frame R' do not change over time and maintain the same orientation and

direction as those of reference frame R : 7 =

di dj  dk
dt dt dt
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The entrainment velocity becomes:

_,_do0’
Ve = Tat
The training acceleration becomes
_,_d%00’
AT

And the Coriolis acceleration cancels out : a; = 0

Note:
The Coriolis acceleration cancels out if the mobile reference frame R' is in t al motion

with respect to the fixed reference frame R or if the mobile M is stationa spectto the

mobile reference frame R'.
13 5 R il sl Y1 ) pilly £ S 5 3 R paiall s sl LY

» Case of a reference frame in otion without translation.

We assume that the reference frame R' is rotating about the z-axis with an angular velocity

Wgr g = wkand we consider that O= veetor In rotation about a perpendicular axis has its

time derivative as the vectér p ar velocity wand the rotating vector.

The entrainmenteloc mes:
A _do_O"Jr ,df'+ ,d7+ ,di’
Ve = Tdt S TR AT

- dOOI ' f— —’) 'f— _.’) ! —s -
ve=T+x(a)><l)+y(a)XJ)+z(a)><k)
L R Ay SN
ve=T+(w><xl)+(w><y]>+(a)><zk)
*—d00’+(—’x0'M)
Ve =~ W

For training acceleration:

We have :
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prie WX
Hence :
' (do - o dr
F—<EXL>+(CUXE>
d?00' d=v ,dzj’ ,dzk’
Q=" T* 4 AT
So:

! dwx7 + *xdﬁ
ac 7

t
,(da _;) (
+z7Z | —xk'|+ wx—
dt
L d00 [(do - _, da dj’
a, = + || —xx'i" |+ wa— + ’
dt dt
d(l) -
+ —><zk wXZ—
dt 21
dt

dZOO’

(Z))XOM)

d’00’
Represents the tra 0
dt
(@ x (& x 0'M):Represents | movement of R/R
dw . 3 . .
(— x 0’ M) :Invol tion is non-uniform.

For Coriolis accelerati

. dx'di’ dy'd) dz dk’
T "\dt dt  dt dt dt dt

dx’
a_c’—ZE(w l)+—(a)><])+—(w><k)
=28 % I7+dy,7+dzﬁ
Q=% " T Tar

a. =2(w X 1,)
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Exercice0l :

Let be a moving reference frame R'(0',x',y',z") in motion relative to a fixed one R(0,x,y,z) with

speed Ve (1,0,0). Assume that x',y" and z' are the coordinates of a material point M in the frame

R'such that :
(x' =6t?3t ; y' =-3t* ;z'=3)
we assume that at time t=0 this point is at position O(0,0,0) in the fixed reference frame R.
1. Give the relative speed of this point and its absolute speed.
2. Deduce the coordinates of point M in the fixed reference frame R.

3. Determine the expression for relative and absolute acceleration.

Solution : %
1. Relative and Absolute Speeds
Relative Velocity (V;;,al! inR’:
The velocity of M in R’ is the time derivative of its coordi %
. d
V;el m (x,r K

Compute each component:

3t?) = —6t,

" d
\ at D=0

V! = (12t + 3)i + (—6t)j + OF.

Thus:

Vabs = —)r,el + I—/')e-
Substitute:
V,=(100), Vi =((12t+3),-6t,0).
Vops = (12t + 3 + 1)i + (—6t)] + Ok.

Vops = (12t + )T + (—61)] + Ok.
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2. Coordinates of M inR:

The coordinates of M in R are found by adding the displacement due to the velocity of R’ to the
coordinates of M in R'. At time t, the displacement of R’ in R is given by x,» = V,t along the x-

axIs.

Thus, the coordinates of M in R are:

!

x=x"+Vit, y=y', z=2z".
Substitute x’ = 6t2 + 3t,y' = —3t%,z' =3,and I, = 1:
x = (6t% +3t) + t = 6t% + 4t,

y = —3t?,

z=3. ‘
Thus, the coordinates of M in R are:
(x,y,2) = (6t% + 4t,—3t%;3). %
3. Relative and Absolute Accelerations \x

Relative Acceleration (d..;) in R':

The relative acceleration is the time derivative of ive/velocity:

CO“lpUte ea.Ch C0|||p0| ient:
d d

lor = 121 — 6] + OF.

Absolute Acceleration R:

- _ =1
Agps = Qrel-

dgps = 121 — 6] + Ok.
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Exercice02 :
A moving body is described by the position vector in a moving frame of reference R' by :
0'M = 5ti + (2t? — t)f — 2tk’ This frame of reference is in rectilinear translational motion relative

to a fixed frame of reference R, with velocity vector : v, = 27+ j + k

1.Find the expression for the absolute velocity of M with respect to the reference frame R.
2.Then, deduce the position vector of M in the fixed frame R, knowing that at time t=0, M is at the
point (0,1,-2) in frame R.

3. Calculate the relative @, and absolute acceleration a, of M.
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Chapter V : Dynamics of the material point

|.Definition

Dynamics is the study of motion in relation to the causes that produce it.
This chapter is devoted to dynamics, the relationships that exist between a movement and the

forces that cause it.
I1.Notion of force :

A material point is in motion because of interactions between the pasticle’andiits environment,
which is subject to them. These interactions are called forces. Theseferces,dependjon the nature
of the particle and the nature of its environment.

-Its origin is the point of contact (force/body).

- Its direction: is the direction of the movement supported on the, wire;“in the case of the force:
wire tension, for example.

- Its modulus: is the value of the force in Newtony(N)

The force exerted on any body is the vector suméf allithe forces applied to it.

I11. Inertia principle :(Adasl) 12:4)

Galileo was the first to establish the%pringipleof inertia. This principle states, "If a body is not
subjected to any force, then it\either continues its motion in a straight line at the same speed or

remains at rest if it wastalready, at rest."

The law of inertia States, Anysfree or isolated body moves in a straight line at a constant speed."”

This is the law of Tertia, or Newton's first law (1678).

The principle®ef nertia is valid for a Galilean reference frame (system) in which any free body

moves atia constant speed.

The terrestrial reference frame is suitable for studying a body as long as accelerations are
negligible compared to terrestrial accelerations.

Example:
We throw a ball on the ground and study its motion without taking frictional forces into account.

The ball is in uniform rectilinear motion.

If we study the forces exerted on the ball, we have : P+R=0
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If the ball hits a wall (receives an obstacle), the ball is subjected to another force because its

-

movement changes. In this case, we have : P+R+ F. #+ 0

ol
=
ANNNANNNN

The ball changes direction due to the force of Gentac Nith the wall Fc.
On the other hand, if the ball is at rest, it rémains atwestif SE)= 0.

IV.Mass concept (sl o g¢da)

We all know that the greate ma ,‘he harder it is to change its velocity vector or
alter its movement (its directio er for a person to move a table than to move a
wardrobe."

Mass is a scalar physi that represents the amount of matter that makes up a particle

and reflects the inertia

vector quantity that has the same direction as velocity. It's an important physical concept because

it unites two elements describing motion: mass and velocity.
Note that the direction of the momentum vector is the same as the direction of the velocity
vector.

-

For a system of N particles, the total momentumis: p = Y7, p;
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VI.Principle of conservation of momentum

To verify this principle, we conduct a simple experiment. A body M; interacts with another body
M,, and we neglect any interaction with the external environment on both bodies (isolated
system).

Experience :

We have two carts sliding on a smooth track. The masses of the two carts are m;=2kg and
m,=3 kg. The first cart is pushed with an initial velocity vi=4 m/s, while the second cart is
stationary with v,=0 m/s.

¢ Momentum Before Collision

To calculate momentum, we use the formula: p; = m,v; = 8kg.m.s % P35 = Mhv, =

-1

0kg.m.s™" so the total momentum before collision:

Ptotal befor = P1 + P2 = 8kg.m s71

After the collision, the velocity of the first cart became 0.5m/s, while the velocity of the second
cart became 2.33 m/s.

¢ Momentum after collision

Protat after = P4+ D'3y= 2.05 +3.2.338 = 8kg.m.s™!

Before, during, and after the interaction, we observe that the momentum of the system remains

constant.

—

D1+ D= D Nt P0f the by —p'y =p’z—£=—(ﬁ’—73)

This leads to :Apy, = —Ap3
Theygepresentithe changesin the momentum of the two bodies.
The momentum l0Stdy one body is gained by the other.

Note: This pringiple of conservation of momentum applies only to an isolated system..

VI1.Dynamics of a body (awadl 48 1)

VI11.1.Strength (force) :

Schematically, a force is a factor that can change the speed of an object. Changing the speed can
mean giving it a speed if it was initially zero or altering either its magnitude, its direction, or

both simultaneously.
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Regardless of their nature, and regardless of how they manifest (at a distance or through contact

between two bodies), forces (such as the weight of a body) are vector quantities. Therefore, each

time we consider a force, we must determine its direction.

From the previous equation:Ap; = —Ap, dividing the two terms by the interval of the time At
Ap; AP,

we find : vy the average variations of the momentum vectors during the interval are

equal and opposite in direction. Quantity %1 is called the average force acting on the body over

The force applied to a body :

VI11.2.Newton's laws :
VI1.2.1.Fundamental relationship of dynamics (Newton'% Al ) fagal)

The force applied to‘a reactions due to all the

forces. ﬁl ; ﬁz ;ﬁ3 ; .ﬁn

Relati ndamentale de la Dynamique (RFD ou PFD)
Note:
New: awydefines thendifferential equations of motion.
. - . dv d*7
F = ﬁ =ma = mE = ?
(x| d*x
7, dr | dt?
S - d 2
F:Zﬁ:ma: FrF=m ﬁ: d_y
Fy, dt dt?
ldvz d2Z
dt \dt2
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V11.2.2.Newton's first law: the law of inertia(duas) jae-cyi gl J 5% ¢ g3La)

If a body is free, isolated or moving at constant speed : a = 0 - F=md=0

If the force applied to a body is zero F=0-d=0 the body has uniform motion (constant

speed) is the law of inertia (Newton's 1st law).
VI11.2.3.Newton's third law (action and reaction)Jall 3,5 Jadll ja:

When two bodies interact, based on the principle of conservation of momentam

Apy _ AP dpy AP s
At At dt dt 12 21

1312: Force applied by body 1 to body 2.
F,, :Force applied by body 2 to body 1.

|

—_—
Fi/z < my
112

L J
%
T
o

Flfz = - Fz,fl

V.111.Fundamental irfteragtionSy(Aauay) coieliil)
Different types of forces act on‘bodies.

The main forces result fram fundamental interactions.
V.111.1.Electromagnetie,interaction :

Resultant force ofta, magnetie field and a moving charge “Laplace-Lorentz force

F=qE+qbxB
V.111.2.S5tremg nuclear interaction :

The feeble interaction manifests itself in certain types of nuclear reaction, such as radioactivity.

There are two types of forces:

V.111.3.Forces of distance interaction (the actor and the receiver are not in contact): examples

include gravitational forces, electromagnetic forces, and nuclear cohesion forces.

V.111.3.1.Gravitational interaction force “ Newton in 1650 > : It's a force of attraction between

all particles. Like bodies attracted to the Earth in its vicinity.
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It is an interaction force between two masses. Two masses m and M attract each other, separated

by a distance r.
The force of attraction is given by :

> On the earth's surface :

La terre m)

m¢and r; are the mass and radius of the earth respectively, su

m; = 5.98.10%*kg ;7. = .10
Fy =i

Gravitationgis: g = G%

Numerical application: g=9.8N/kg

> At a height h from t@ earth %‘
L )

(m)
\ R
s
r La terre .///h
Q , mm;
Fpp=mg =G 72
Suchas:r=71.+h

TZ
Where: g’ = gr—g

AN
N
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Mass weight (&S J&)

The weight of a mass represents its gravitational interaction with the earth.p = mg

J—

P
Figure (V.1) : le poids d’une masse.

V.111.4.Linking or contact forces (el i Jagl il 5 58) %
A contact force is any force that occurs when two plane surfaces ¢ INto co
V.111.4.1. Normal Force (ﬁ)

If an object placed on a table, the table exerts an upward actien fo rmal force) on the

object. The reaction of the table (ﬁ ) on the object m i the entire table-object

contact surface and represents the resultant of all th on the contact surface. The
normal force N is the force that prevents the objeet falling through the table, and can have

any value up to the point of breaking the tab

N
Q A
e

v5

Figure (V.2) : normal Force.

-

ol

—

ilibkium: 5+ N=0 » = —N

V.111.4. es/of friction :

The forces of friction are forces that occur when an object moves. Friction opposes the
movement of moving objects. There are two types of friction:
- solid friction (solid-solid contact).

- viscous friction (solid-fluid contact).
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V.111.4.2.1.Friction forces (d<ia¥ s $8)-(solid-solid contact)

The solid object, placed on a solid support, is in motion under the action of the driving force F"e
A force opposite to the driving force I?'e will appear and will slow down the motion; this force
called the force of friction (frictional force) or simply frictionﬁ. It is always in the opposite

direction to the motion (velocity). When the friction is ignored, the surface is said to be
frictionless

A distinction is made between solid and fluid friction forces and between static and dynamic
friction forces:

a-Static friction forces :(QsSwdl Aa b AiSiay) (s ¢8) %
Example: A body resting on a horizontal plane :
Consider the body shown in the figure below. It is subjected ur f
Let fs, be the static friction force and p and N be the ight al reaction force of the

support respectively.
For the body on the table to move, a miniw& ust be applied.

N

F

—

=]l

Mg N

L

statienary as long as F<fs, there is resistance to movement.

- —

eaction of the support is the resultant force given by R=N+ fs

— — >

F=0->N+f+F+P=0->R+F+P=0
By projecting onto the two axes Ox and Oy :

On Oy : P=N et sur Ox : F=fs

The mass starts moving when F>fs

Experience shows that the ratio (fs/N) is constant.

tan<p=£=k=u
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u: is the coefficient of friction and o is the angle of friction.
The coefficient of friction is called static when the body is stationary. The coefficient of static
friction is a ratio between the static frictional force of an object and the normal force, and is

written as follows :

fs

=—=t
Hs =7 = tang

» Definition of the Static Friction : ¢ sSud) di<ia¥) a ggda

The static friction coefficient is a physical property associated with two contacti aces, and
it determines the amount of force required to overcome static frictiomand i
between the surfaces. In other words, it is a measure of how di
object on a given surface.

Sll<iaVl e calzill 4 30U 3 gl jlate 2aad g (el Gpadas Jadi 5

bl mhan o aua A8 ja e D gra sl ubie s (AT Apaal) AS ) ey (S Sl

) ANl
f5 .Static friction force.
Ug: is the coefficient of static friction.
N : is the normal force bet t rfa d\ is often equal to the weight of the object on a
. ®
horizontal surface.
b-Dynamic fric S o diaY) (5 68)
Kinetic or dyn riction 19 the frictional force present when an object is in motion on

The coefficient of dynamic friction is written as :

i

tang = p =

Application exercise:
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Consider a small block(é_s= 41X) of mass m abandoned without initial velocity at point A of an
inclined plane(Jie siws) at an angle 0=30° to the horizontal. Point A is at height h.
1- What is the value of the coefficient of static friction ps that keeps the mass in equilibrium

at point A.

(Oy)

(Ox)
Corrected: %\\
AtequilibriumY F,,, =0=>N+P+f =R+P x

Following (Oy) :—N +p, =0= N =p,

1%}

In order for the body to remain statienary on the,plane, the following conditions must be met

)
We have :
—fs—t __mgsina
STN angD_Tngcosa:

The maximum et coefficient of static friction pscan take is tg .
Notet experic sh at us> pd
The the nsionless coefficients ps s and . ¢ depend on the nature of the surfaces,

When we apply a force Ebn the object to move it to the right, the object will remain immobile if

E’ is not large enough. The frictional force f;acts to the left and keeps the object immobile.
We call this frictional force the force of static friction. If we increase f the static frictional

force increases 75 while the object remains at rest. When the applied force E,, reaches a certain
value, the object will be on the verge of slipping and the frictional force will be maximum,
ffmax- When iexceeds f smax, the object moves to the right. When the object is in motion, the

frictional force becomes less than f s max and is called the force of kinetic friction f;.
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Exercise 1

A block (M) of mass m is thrown from the top of an inclined plane AB=1m at an angle 0a=45° to the
horizontal, with initial velocity va=1m/s.

1- Knowing that the coefficient of friction p=0.5 on AB.

- Demonstrate, what is the nature of the motion on AB?

- Calculate the speed of (M) when it reaches point B.

2- Friction forces are considered negligible on the horizontal plane:

- Demonstrate the nature of the motion on the horizontal plane.

- Will the block (M) stop? Justify your answer.

B Horizontal plane

Solution :

B \Hurizantal plane

1. Motion‘en.th@Inclined Plane AB:
Known data:

e Length of the inclined plane: AB = 1m

e Angle of inclination: a = 45°

e Initial velocity: v, = 1 m/s

o Coefficient of friction: u = 0.5

e Acceleration due to gravity: g = 9.8 m/s?
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(a) Nature of the Motion on AB:

To determine the nature of motion, calculate the net force acting on the block along the inclined
plane.

3. Gravitational force along the plane (Fyayity):
Foravity = mgsina

Substituting g = 9.8 m/s? and sin45° = \/?E:

Faraviy =m - 9.8 \/?i =6.93mN
4. Frictional force (Fqiction):
Foiction = M * Frormal %
The normal force on an inclined plane is F,grma = mgcosa. Suk\ 72:

V2
Ffriction =05-m-98- 7 =3. N
5. Net force (F,) along the incline:
93 7

Fet = Fgravity = Friction =

Since the acceleration is posit

Thus, the motion is uniforml

(b) Speed of the Block ol

The block starts at @7, and travels a distance AB = 1 m with acceleration a =
3.46 m/s?.
Usin ic equati

vE =v3 + 2ad

Substitu
v2=(1)2+2-346-1=146.92=7.92
vp =V7.92 = 281 m/s

2. Motion on the Horizontal Plane:
(a) Nature of Motion:

(O
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On the horizontal plane, friction forces are negligible, and no other horizontal forces act on the
block. Hence, there is no net force along the horizontal plane. According to Newton's first law,

the block will continue moving with a constant velocity.

(b) Will the Block Stop?
Since there is no opposing force to decelerate the block, it will not stop and will continue

moving indefinitely with the velocity it had at point B, which is vy = 2.81 m/s.

Exercise 2

Two bodies M and M’, with masses m and m' respectively, areqconhected byan hextensible
string passing over a pulley of negligible mass. Initially, the body M*is at\a height h above the
ground and is released without any initial velocity. The contact betweemythe®body M and the
horizontal plane is characterized by static and Kinetic€friction, coefficients p, and gy,

respectively. pg = 0.6, u, = 0.4, m = 6kg, h = 1.5m, dad g = 10 m/s?.

M| —,c‘

M'h

1- Give the expressi@n for the 'massm'min for the system to start moving, as a function of m and
us.
2) We now take a massun =4 kgyand the system starts moving. Considering the two phases of

the movement offmass M until it comes to a stop:

a) What is thelpature ofithe movement of mass M? Justify.
b) Calculate the acceleration in the first phase.

c) Deduce theWelocity at the end of this phase.

d) Calculate the acceleration in the second phase.

e) Deduce the total distance D traveled by mass M. Provide its value.
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Solution: i
F
. T
Lo Ml >
Tt
BY T h
Pt

Step 1: Expression for m;;, to start moving
To determine the minimum mass m/;, for the system to start moving, we need to‘analyze the
forces actingon M and M'.
For block M:
o  Weight: Wy, = mg
e Normal force: N = mg

e Static friction: f; = usN = usmg %
For block M':
e Weight: W, =m'g

For the system to start moving, the force exerted must,overcome the maximum static
friction acting on M. This gives:
>

m'g g
Cancel g from both sides: 0

> usm

®
Thus, the minimum massd \
\ Mpin = Ks™M
Substitute values: %
myi, = 0.6 -6 =3.6kg
m

So,m g

Step 2: When m’ = 4 kg

Since m' = 4kg > m/;, = 3.6 kg, the system starts moving. We now analyze the two phases of
motion.

Phase 1: M’ descends to the ground

(a) Nature of the motion:

e The motion is uniformly accelerated because:
o The force due to m’g exceeds the kinetic friction acting on M.
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o Once the system starts moving, the frictional force transitions to kinetic friction
(fx = mrmg), which is constant.

e The net force on the system remains constant, leading to a constant acceleration.
(b) Calculate acceleration in the first phase

We analyze the net force on the system to calculate acceleration. Let the tension in the string be
T.

For M:
T—fi =ma
T — uyymg = ma

For M':

m'g—T=m'a %‘
From these two equations, solve for a by eliminating T
T = ypymg + ma %
ﬁx

Solve for a:

Substitute values:

v? =u? 4+ 2as

Where:

e u = 0 (initial velocity),
e a=1.6 m/sz,
e s=h=15m.

Substitute:

v2=0+4+42-16-15

67



v2 =48
v=+v4.8~= 2.19m/s
The velocity at the end of this phase is:

v=219m/s

Phase 2: After M’ hits the ground

When M’ hits the ground, the tension in the string disappears, and M continues moving under the
effect of kinetic friction until it comes to a stop.

(d) Calculate acceleration in the second phase

The only force acting on M is the kinetic friction, which opposes i ion.' T e
acceleration is:

_ fk
a=——
m

Substitute f,, = u,mg: &
u
a4 =
Simplify: Q

Substitute values: Q

® 0=—4m/s?

The acceleration is: \
a=—4m/s?

(e) Ta ce y M
Tof otal ce D, we calculate the distance traveled during the second phase after M
stops

tart of the second phase:
From phase 1, v = 2.19m/s
Distance in the second phase:
Use the kinematic equation:
v?2 =u? + 2as
Where:
e v = 0 (final velocity),
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e u=219"m/s",
e a=-4 ["m/s" ] 2.

Solve for s:

0=(219)2+2-(-4)-s

(2.19)? = 8s
(2.19)2 48
= =— =06
S 3 3 m

The distance in the second phase is:

s=0.6m
Total distance D: ' t

The total distance traveled by M is: \
D = distance in phase 1 + distance in phase
D=h+s=15+0.6 =2

V.111.4.2.2. Tension forces :dssla ¥ 548l i 3 523

When a cord (or spring ) is attached to a b ), the cord is said to be in tension.

The tension in the cord is defined as the forc cord exerts on the body. This force is

denoted usually by the symbol T.A considered to be massless (i.e., its mass is negligible

compared to the body’s mass -st le(Q2eill Ll ),

Example: Spring “\
| 8

Elongation

Figure (V.3) : Elastic force: Spring tension.
T=—k(l—1,)% = —kxil

k: coefficient of elongation (spring stiffness coefficient).
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Exercise :

A mass m = 15 kg suspended from a spring of stiffness K = 100N / m descends along an
inclined plane which makes an angle a = 30° with the horizontal. Assuming there is no
friction, determine the normal reaction of the support and the acceleration of the mass when

the spring is stretched by a length x = 0.02m.

Given:

7. Mass m = 15kg. \
8. Spring stiffness K = 100 N/m. x

9. Inclined plane angle « = 30°. \
10. Spring elongation x = 0.02 m.
11. Frictionless surface.

Solution :

Force Analysis:

1. Forces Acting on the Mass: 'S
e  Weight (W):
®

where g = N acceleration). Thus:
W =15x 10 = 150N.

e Compo %vt Parallel to the Inclined Plane (W)):
% W, = Wsina = 147 sin30° = 150 x 0.5 = 75N.

o onent of Weight Perpendicular to the Inclined Plane (W,):

V3
W, = Wcosa = 150 cos 30° = 150 X -5 = 127.1N.

e Spring Force (F):
F, = Kx =100x0.02=2N.

2. Normal Reaction (N):
e The normal reaction is equal to the perpendicular component of the weight since there is

no vertical motion:

N=W, =127.1N.
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3. Acceleration (a):
e The net force along the inclined plane is the difference between the parallel component of

the weight and the spring force:

Fo = Wy—F, =73.5—2=715N.

e Using Newton’s Second Law (F.;, = ma):

_ Fext
a = .
m
Substituting the values:
715
a=——=4.77m/s>.

Final Results: \\

12. Normal Reaction:

N =127.1N.
13. Acceleration of the Mass:
a = 4.77 m/s?
Application:
‘ tt

d to its end.

A body is placed horizontally with a spri

%
Fooe=md=P+C+F, =md

By projection on ox : —F, = ma
By projectiononoy:P—-C=0=P =C =mg
So:—kx=ma=>kx+ma=0

2
=03 i+ ix=0oi+wx=0
dt2  m m
Where : w?, = % Which is the differential equation of the second order .
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The Solution of this equation is:
x = Acos(wt + @) — it's a harmonic motion.

With w the pulsation ; A and ¢ are calculated from the initial conditions.

V.111.4.3.Viscous friction (in liquids) (z % dwiayy)

When an object moves through a fluid (liquid or gas) at a relatively low velocity, the force of

friction is proportional to the velocity, and in the opposite direction:

E = —av = —knv  (Formula valid only for low velocitigs)
k :positive coefficient linked to the shape of the object.
n :is the coefficient of viscosity (Kg.m™.s™) of the fluid.
¥ :object velocity vector
A%

Solid in motion

Liquid -
I ®

- x

\% ! v

—
myg

Figure (V.5 :Repr'e Mmrces acting on a solid body moving in a liquid.
= n > 2)

For high velocities :

Examples

01: hexterminal it) speed of a spherical ball in free fall.

k = 6mR
ZFW = md = p+F =md
Projection on oxgives:

a
mg—av=ma=>g——v=a
m

a . a dv
- — = - e
9 mv x=J9 mv dt

Solving the Differential Equation :
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dv dv
dt = 7 =>dt =—
2, u
g m
We put:
g—%v:uﬁ—%dv=du=>d7u=—%dt
du__ﬁ __i _ _%t
> [ —=-—[dt=>Llnw=—-—t=u=_Ce

:g—%v=€e“5tlfatt=0,vo=0=>C=g

. t'
sv="2(1-¢n) \ \‘

IX. Fundamental principle of dynamics (FPD) in a non-galilean refexence frame :

Considering a non-Galilean reference frame R’ in motiongt€lativeito a Galilean reference frame

R:

The equation of motion (Newton's second law) Galilean reference frame R is written

as:

Where R the absolute refe

acceleration composition i?e

d
The equation of % n becomes:
% S Fo = méi, (M) +md (M) + md(M)
This Sito
as:

where the terms —ma, (M) — md.(M) the inertial forces. In particular, we have:

the equation of motion in the non-Galilean (relative) reference frame R’

ma (%) = ma, (M)
= Y Feye — Mo (M) — md (M)

= YFex + Fe + [t

F;, = —md,(M):is the driving inertia force
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ﬁi = —ma,.(M):is the Coriolis force of inertia.
In a non-Galilean reference frame, it is necessary, in addition to the external forces acting on the
material point, to take into account the inertial forces. However, it is important to note that the
inertial forces are not due to any specific interaction. Therefore, they are not considered as real

forces in the same sense as other forces, even though their physical effects are real.
Remarks:

- If (R") is a Galilean reference frame, the inertial forces are zero, and the equation of motion

(PFD) applies without modifications.

The equation of motion in a non-Galilean reference frame isgalso es u the
momentum.

dp (M/R’)l

T =ZFext'l' ie

Ry
If (R") is not Galilean. %\

X.Angular momentum® (¢S adl a )
X.1.Definition :

The angular momentum at agpoint “O” o at8tial point M, of mass (m) and velocity ¥ is the

following vector product: ®

A sz
| —
A LﬂiM ]
e h‘“\.
- 0 o
=, frl : ', _f,/'f
V
x b- |ﬁ M

Figure(V.6) Three-dimensional representation of the angular momentum of a body at a

specific point.
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(the unit of angular momentum is kg.m? .s™).

The angular momentum is a vector perpendicular to the plane formed by OM and %

X.2.Curvilinear movement in the plane : (siwall 8 dxiaial) 48 all)

> —

OM = pu,
B = pu; + pbug

Lyjo = OM x P = puy x m(pu, + pOug)
(pup x mpuy) + (pt, X pOug) n
u, is parallels with mpu, which gives(pu, >tmp %
ZM/O = mp20k \

If the motion is uniformly circular ( p= R et = w= constant) :

ZM/O - mRz k

X1.The angular momentum theor

t
TM/O R R — dv
% i _(vxmv)+<0Mme>

which gives v X mv = 0

E [ d? —_ - —_— 2
W0 = OM x m— = OM X F = Mo (F)
dt dt

The derivative of angular momentum with respect to time gives the moment of force F with

respect to point “O”.

So the moment of force with respect to « O » is :
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If M)o(F) = 0= L, = CSte

OM: is the position vector from the point O (origin or reference point) to the point M where

the force is applied.
F: iis the force vector applied at point M.

M /Om: represent the torque vector (sometimes denote as 7,,) about the paint Q.caused by the

force.

The torque vector points perpendicular to the plane formed by. nd'F direction
determined by the right-hand rule. \

The angular momentum theorem TMC is similar to the funda relationvof the dynamics
PFD: %

The PFD relates the resultant of the forces applied at poi %iaﬁon in P.

The TMC relates the sum of the moments o

s relative to O and the variation of L
relative to this point.
Note:

-

Angular moment plays a role in rotati ’a rﬂe milar to that of force in translation Z—f =F

XI1.Central Forces(‘"*-Bs
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=l

= —f@)&

Example:

Gravitational Forces between two masses m1 and mz:

.

- mm, _—
E =—-6—-2T,
g T2

Rl
J

ey

my; m,: masses of the 2 bodies.

) A 4
Electrostatic Forces between two chargeses g, and g,: \\ \
u, F

ﬁe =k ‘h‘hw

1-2
- > - -
‘ qlq 0 qip 0
. \
q1; q2¢ Charges of the 2 bodies. \
A system subjected to central forces has a consta mentum L = cste
—=7rX =7r X =
dt f r

%ular momentum with respect to the center of

forces is constant. The opposite i.e. 1t angular momentum is constant, then the force is
central.
Gl 5 8 S e aol O UL I A lse 05ST O S pe Bl calS 1

A0S e 0sSE B 580 (8 B (5 10 o el DS (1 pramaa uSall
Exe
The positio or of a body with a mass of 6 kg is given as:

7 = 1(3t? — 6t) + j(—4t3) + k3t + 2) m.

Find:

14. The force F acting on the body.
15. Its angular momentum L with respect to the origin.
16. The linear momentum p of the body and its angular momentum L with respect to time.

N

. dL _ > 5 dp
17. Verify that =T and F = e
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Solution :
Force acting on the body:
F = mad = 6(61 — 24t)),
F = 361 — 144tj.
2. Torque with respect to the origin:
2=7xF.
Substituting the values of 7 and F:

-~

0 j k

T=|13t2—6r —4t> 3t+2|
36 —144t 0
Expanding: \\%
7 = (432t% + 288t)1 + (108t + 72)j + (—288t¥ + 2
3. Linear momentum of the body: x
»+ 3l

p=mv = 6[(6t—6)i+

+ 18k.

Angular momentum with respect to origin:

2t
)
Substituting:
w i j k

3t2—6t —4t3 3t+2
36t —36 —72t2 18

Expanding:

= (1443 + 144t%)i + (54t% + 72t + 72)] + (72t* + 288t3)k.

L, dp
F=-L
This confirms the relationship between force and momentum.
B = (36t — 36)i — 72t%j + 18k.
dp
t

= 360 — 144t}
d ! ]
L = (144t3 + 144t2)1 + (54t2 + 72t + 72)f + (72t* + 288t3)k.
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dL .
< = (43267 + 28807 + (108t + 72)] + (-288t° + 864t”)K

Exercise :

We displace a point mass (m) from its equilibrium position, which is suspended by an

inextensible string of length(l). The position of the mass (m) is determined by the angle (theta)

between the vertical and the direction of the string.

Task: Derive the differential equation of motion using:
1) The fundamental principle of dynamics (using the polar coordinate syste

2) The theorem of angular momentum.

Solution: \m
The forces applied are: wire tension and weight. \

1)- Applying the fundamental principle of dynamics :

P&T

The acceleration in polar coordin iS :

NS
In this case, we h \
So:d = lé@j%&

P i U, o gives us :

—T + mg cos § = —mlH?

e
+ (200 + pB)U,

—mglsin® = mlé
6 +%sin9 =0

Applying the angular momentum theorem :

N
R a
ZFzmc'i ~
T
R \\ ',Ue
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where: L = OM X m#

The velocity in polar coordinates is :

L = 1w, x mlOU, = mi*0k

drL

it 2 o>
T ml“0k

The moment of the forces is :

7(P) = OM x P = —mlgsin 6k

&

?(T)fo&
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Work and Energy

I.Introduction

The aim of this chapter is to present the energy tools used in mechanics to solve problems.
Indeed, sometimes the fundamental principle of dynamics is not enough to solve a problem.
Newton's laws can be used to solve all the problems of classical mechanics. If we know the
position and initial velocity of the particles in a system, as well as all the forces acting on them.
But in practice, we don't always know all the forces at play, and even if we do, the equations to
be solved are too complex. In this case, other concepts such as work and energysmust be used.
Before describing the different types of energy (Kinetic, potential and mechanigal) and using

them in energy theorems, we'll introduce the notions of power andaworkyof a force,

I1.The work :(Jaxdl)

All motion under the action of external forces ~, implies workyby thesexforces. In other words;

work supplied by a force moves a body in its own directigit and Creates motion.

S a3 oo U Jadll AT e o sl o2 JHce Jas QARTIRF) das Al gl 58 cad A8 e S
AR a Doaag g (alall Lealadl s ol as

11.1.Work performed by a constant force: (Auli%s il s saiall Jaall)

Let ( M) be a material pointymowming along astraight line ( AB ) and subjected to a force ( F).

The work of the force is defined as,:

W = F.AB = F.AB.cos a

Figure (..) : Work of a constant force over a rectilinear displacement.
This work can be positive, negative or zero, depending on the sign of cos a :

> If0<a< g = cosa > 0 "it's motor work".
> If:g <a<m= cosa < 0"Resistive work"

T[ mn n
> If:a=;:cosa=0 no work

Unity of work in the system MKSA is « Joule ».
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Note :

Note that work is a scalar quantity, unlike force and displacement, which are vectors.
11.2.The work performed by a variable force: (s_ss 5 8 ddaul s Haiall Jaall)

In the case where the force (F) is variable and the displacement is arbitrary, the work of this

force is calculated for an infinitesimal rectilinear displacement ( dr ). This is referred to as the

elementary work ( dW ), defined by: dW = F. dr

To find the total work between the first pointand m/e integrate this last equation.

;dr = dxi+ dyj + dzk

2

The calculation of work requires knowing the path taken between the two points. For each path,

a specific work is obtained. In general, the work depends on the path taken.

Jadll adiag cale JSday  game Jad e Jpaanll 2l JSU uidadil) cpn adiall lisal) 48 jaa Jaadl Glus Qllaty
i) sl e
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Example :

A particle is subjected to the force F= 2xyt + x? Calculate the work done by the force F when

the particle moves from point (0,0) to point (2,0) along the OX axis.
Solution

1. Work Formula:
The work done by a force is given by the equation:

W=/[F.d7

Where: n
o F =2xyi+ x%]is the force.
e d7 = dxi + dyj is the infinitesimal displacement.

2. Expressing Force and Displacement Along t @

Since the particle moves along the 0 X-axis:

e y = 0 Throughout the motion.
e dy = 0 Because the displacement in

e The displacement is d7 = dxi (only in tion)
Now, the force becomes:
)
% ) = 01 + x2] = x?}.
3. Dot Product 0 cement:
To calculate the wor eed'to take the dot product of the force F and the displacement d#:

F-d?# = (x%)) - (dxi).

Sinc rpendicular t6'7, their dot product is zero:

-

F-d#=0.
4. Tota Done:

Since the dot product is zero:

2
W=f0dx=0.
0

The work done by the force F as the particle moves from (0,0) to (2,0) along the OX-axis is:

W = 0|
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11.Power :dsUaiuy)

The average power ( Pry) is defined as the work done per unit of time.

Aw
™At
. A d Fdr = o
Instant power :P; = limy,_, A—": —w_fr_F 3

dt dt

Note : n
v The unit of power is the « Watt ».
v" This force can be classified into three types: \%
- It is driving, if its power is positive which corresponds to an an
- It is resistive, if its power is negative which corresponds to %
- Finally, it can be of zero power, in which case o=mn/2. \%

IV.Energy (42ual)

In physics, energy is defined as the capacl

material substance: it is a physical quantity that“gharacterizes the state of a system; it can be

stored and exists in many fogms.

®
Ua 5 dil e s o b i ales Jall ) e HUail) 5,08 Ll e d8Uall Calyad ol 5l b
Base JISal 8 as i Lk 533 (e pUal)
IV.1.Kinetic ener% ).
Kinetiesenergy, denete E., is the energy a body possesses due to its motion relative to a

c energy is equal to the work done by the applied forces.
dw = Fdr = mddr

dv —
dw = m—dr = mvdv
dt

W = [mvdv if the body moves from A-B we'll get.

2B

B B
W=fmvdv=mf vdv = m—
A A 2

A
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1 1
W= Em(va —v%g) = Emva — Emsz

YW (F)ssp = Ecgy — Ec(ay = AE. The work of the applied force is equal to the variation in

Kinetic energy of the material point.
Remark :
When E .z > E_4 the work is motor work and vz > v,

A force perpendicular to the displacement (W=0) implies E.z = E_.4 and the Velogity,of the body

remains constant.

IV.1.1.The theorem of change in kinetic energy (4:S al d&al 2

The variation in kinetic energy of a material point subjected to & forces between

two positions A and B is equal to the sum of the work of the
=&£e® &Ec

IV.2.Potential Energy- Forces conservat (@ | AR AN EIA))

1VV.2.1.Definition
o . S _
A force is said to be consgrv tween two points, M; and My, depends only on

the initial position and the on. In other words, the work is independent of the path

en these two points.

taken to move from

IV.2.2.EquivaIent% :
; % s also said that force derives from potential energy according to the
! p
A8l 88 5 AialS il (g Aie B g8l) o) Wl Q5 e 50 o8 5

This relation 1s important because it allows us to determine the force from the potential energy

from which it derives.

Conversely, it also allows us to determine the potential energy if the force is a gradient.

&}\ﬁ&%ﬁﬁqiu@ﬁﬂcw\é&} L@.Mém‘;d\eaﬁ\ﬁ&wﬂjﬂ\ QMM@BL@JYL@.&%M\ oda
S Jiad s sall il 1)
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dw = Fdr
dw = —dE, = w = —AE, = E,(A) — E,(B)

Example 1: The potential energy of a spring(ua:bs 4 4l<ll 48kl

Return force is : F = —kx7 where X is the elongation of the spring.

— 1
dE, = —Fdr = kxdx = E, = Ekx2

Example2 : The force of gravity (Al i<l d8Uall o dum y¥) dulsll 5 8)

In the Cartesian coordinate system, where OZ is the vertical axis oriente % 7
B=F=—mgk _
Using the vectorial displacement expression in Cartesian coordipates; k
ﬁ . o
dr = dxi + dyj

We can deduce:

dz

By integrating this equation, we see that the w displacement between two points A and

B depends only on their vertical po (hei% ) and not on the trajectory taken between
them.
®
= A = —mg(z, — z;) = —mgAh.
If the two points are at'the s el, then the work done by the gravitational force is zero,
which indicates that the ional force is conservative.

= 0), proving that gravity is a conservative force.

force- The force derived from potential. ¢y 4iidall 548l 5 ddaélaal) 5 gal)

A force is said to be conservative, or to derive from a potential, if its work is independent of the
path taken, whatever the probable displacement between the starting point and the end point.
Conservative forces include the force of gravity, spring return force and the tension force of a wire.

Ll 2305 5 el g la ) 558 5 ddlall 5 58 Aadladll (g sall Jadis
Remark:

If the force F is conservative, we say that the path is closed, and we write:
(S g e Blaa lusall o) J g8 Lild o(Aadlaa)ddadatia (F) 380 cilS 1)
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W=jgﬁ'-df=0

A force is conservative if it satisfies one of the three conditions:
e |ts work does not depend on the path taken.
o Itis derived from a potential F = —gradE,(x,y, z)
e T0tF=0

Exercisel:

The force F = (x2 — y2)i + 3xyj moves from point 0(0,0) to point B(2,4) via tWe, paths: y = x2 and

y = 2x.

Is this force conservative? %
Solution:
]

Along the first path (y = 2x)

+%2ax]

y=2x=F=-3x%+
dy = 2dx ;d7 = dxT + dyj] r
w=fﬁd1“’=f(dex+F y) = x

X1
12x%dx = f9x2dx

jo

>

x% —x*)i+ 3x3j

+ dy] = d7 = dxT + 2xdx]

edx + F,dy) = f(x2 — x*)dx + 6x* dx

w .
1 2
x*&% 5xY) dx = x° + §x3 = w = 34.6joule
0
%q al, and thus the force in this case is non-conservative.

Find the one by the force F= xy31 + xyj along three different paths from the point (0,0)
to the point (1,1).

The

VO W

Exertc

c)Determine the work done by F for the displacement of M along a circular trajectory of radius R
centered at 0(0,0).
b) Is this force conservative?

c) If yes, find the potential function U(x,y) from which the force is derived. To solve the
exercise:
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a) Find the work done by the force along three different paths from (0,0) to (1,1):

The work done by a force along a path C is given by:
W = JF - dr,
Cc

Where: F = xy31 + xyj and df = dxi + dyj. The dot product becomes:
F.-dr =xy3dx +xydy.

We compute W for three different paths:

1. Path 1: Straight Line y = x:

Along this path, y = x and dy = dx. Substitute y = x into the integral:

1 1
W= f (x(x)3 dx + x(x) dx) = f (x*+x \%
0 0
Compute the integral:
1

' x‘+ x(0)dy = 0.

,dx =0)

1
(1y3dx + 1y dy) = f y dy.
0 0

Total wo this path:
1 1
W=W +W,=0+5=>.

3. Path 3: Along y-axis, then x-axis:
e Step 1: Move along the y-axis (x = 0, dx = 0)

1
Wy =f 0()3dx+0(y)dy = 0.
0

e Step 2: Move along the x-axis (y = 1, dy = 0)
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1 1
W2=f x(1)3dx+0dy)=f x dx.
0 0

Compute the integral:

Total work along this path:

b) Is the force conservative?

To determine if the force is conservative, compute the curl:

Vxﬁ—a( ) a( 3)
= 9 xy dy xXy*).

Compute each partial derivative:
d 0
32V =, @(xﬁ) y2.
Subtract:
VX E=

Since the curl is not zero (V x F # 0), the force ISypot conservative.

Since the path is closed, the work will eray(The starting point is the same as the ending
point.). e
F

\ - f LdF =0
c)Since the force n servativepthere is no potential function U(x,y) for this force.
Exercise3:
F=3x2T+@y+2)]+yk

field, and what is the potential E},?

Solution:
Check if the force field is a gradient field

We compute the curl of F:
RotF =V xF

Using the determinant method:
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T -]k
RotF = | i i i|
0x dy dz

. (0(y) 0@y+2)\, (0(y) 0BxH\, (0(4y+z) 0Bx*)\-
ROtF_<6y_ 0z )l_(ax oz >1+< ax dy )k

RotF =(1-1)7—(0—0)j+(0—0)k=0

Since "Rot" F = 0, F is indeed(Jxill) a gradient field.

Determine the potential E,:
F= _V)Ep \%
5 OE. OE. 0E, -
F=_ P p - p
<ax ey T K

FromF = 3x27+ (4y +2) ]+ y k, we compare components:

We have:

18. "ai; = _3x2
E, 8=x3
OE.
3. a—;’ =—(4y +2)

—2y%2 —yz +1(2)
4. % — -y

0z
l
@ @ =0 = [I(z) = constant
dz
Fin

E,=-x3-2y*—yz+C

Hence finally:

E,(xy,z) = —x>—=2y? —yz+C
We have:

E,(0,00) =0=C=0 So: E,(x,y,z) = —x*> = 2y* —yz
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IVV.4.Mechanical Energy(Total energy): Law of Conservation

Let us consider a material point subjected to a single force, which is derived from potential

energy (this force F may be the resultant of several applied forces).

For a displacement AB of the material point, we can write at the same time:

h\)ﬁ@d@)_&bdﬁsxmﬁs)ﬂl 038 (5S35 28) auagl) A8 (e Baiuse Baa) 95 8l puzadd Apale Aol yiiail
(gl ds A L Lo A4S Ly dpalall Aa8lAB

Wasp = Epay — Epsy and wyg = E¢p) — Ec(a)

EC(A) + Ep(A) = EC(B) + E p(B) = = cSte = (E + p)

The mechanical energy, or total energy, of the material point is define

(E.+E,) =En
Statement: \
If a material point is subjected only to ayforce potential energy, its mechanical
(total) energy remains conserved.

A_L}m@.u(d._ﬂu‘; ‘mtsag&wmms)ﬂjﬁsmt;mwmm il 1)
Exercise4:
A body of mass M |s released st at the top of a mountain of height H, as shown in the
figure below.

e Find the velocities of the body M at points B, C, and D.
¢ Find the reaction forces of the surface on the body M at points C and D.
Solution

1. Find the velocities of body M at points B, C, and D.

1. Find the reaction forces of the surface on body M at points C and D.
¢ In the absence of friction, the total mechanical energy is conserved:
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Er)w = Er)w = (Edw + (Ep)wy = (Ec)i) + (Ep) )

Taking level (B) as the reference level for the potential energy:

(Ep)) =0
Since v, = 0:
(Ec)(A) =0
MgH = %Mvé - v =.2gH
e AtpointC:
Ep)w=EDey — EJw + Ep) = E@ + (
MgH = %Mvg +MgR > vc=
e Atpoint D:

Ep)w = Epwpy = (Ec)w + (Ep)

the body at point C:

By project to the two axes (I) and (1):

e Along /:
Ma = —-Mg
e Along(l):
MaJ_=NC
Ny =uZ =Ry,
c=MH= R 9
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By applying the fundamental principle of dynamics for the body at point D:

1_5+N)D=M5D

(I IJ—‘

(1)

=zl

P

By projecting onto the two axes (I) and (L):
e Along(/):
Ma" =0
e Along(l):
Mal = Mg + ND g N -
2 ;\
g

v
Ny =M= (

R Mg

. \ N
N
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