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Objectives
By the conclusion of this course, students will have a clear understanding of the various
types of series and the conditions that govern their convergence, along with the different

forms of convergence.
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Mathematics 1 and Mathematics 2.

Course Content
Chapter 1: Simple and Multiple Integrals (3 weeks)

1.1 A review of Riemann integrals and basic calculations.
1.2 Multiple Integrals: Concepts and Methods.

1.3 Utilizing for calculating areas, volumes, etc.

Chapter 2: Improper Integrals (2 weeks)
2.1 Integrals of functions defined over unbounded intervals.

2.2 Integrals of functions defined on bounded intervals with infinite limits at one end.

Chapter 3: Differential Equations (2 weeks)
3.1 Examination of ordinary differential equations.
3.2 Exploration of partial differential equations.

3.3 Special functions.



Chapter 4: Series (3 weeks)
4.1 Numerical series.
4.2 Sequences and series of functions.

4.3 Power series and Fourier series.

Chapter 5: Fourier Transform (3 weeks)
5.1 Definition and properties.

5.2 Utilization in the resolution of differential equations.

Chapter 6: Laplace Transform (2 weeks)
6.1 Definition and properties.

6.2 Utilization in the resolution of differential equations.

Approach to Evaluation
Continuous Assessment: 40%

Final Exam: 60%
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Introduction

his document serves as an instructional tool for the "Mathematics 3" module,

specifically tailored for second-year undergraduate students in science and tech-

nology fields. Its structure is designed to align with the official curriculum while remaining
concise enough for the allotted teaching schedule.

The content is organized into six core chapters. The first half establishes a strong
foundation in advanced calculus, beginning with a review of Riemann integrals before
moving to multiple integrals and their applications in calculating areas and volumes
(Chapter 1). This is followed by a study of improper integrals, including the criteria for
determining their convergence (Chapter 2), and a comprehensive look at solving ordinary
and partial differential equations (Chapter 3).

The second half of the course explores infinite series and integral transforms. It cov-
ers numerical and function series, including Power and Fourier series (Chapter 4).
Finally, the manual introduces two powerful techniques for solving differential equations:
the Fourier Transform (Chapter 5) and the Laplace Transform (Chapter 6). Each
chapter includes definitions, key theorems, and worked examples to reinforce understand-

ing and build essential problem-solving skills.
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L] CHAPTER 1 L]

Simple and Multiples Integrals

1.1 A review of Riemann integrals and basic calcula-
tions

A Riemann Integral Theoretical Structure

Definition 1.1 (Riemann integral: constructive view )
[10] Let f : [p,q] — R. Consider finite partitions of |p,q|, pick one sample in each

subinterval, and sum »_ f(z}) Az;. If all such sums converge to the same finite value

as max Az; — 0, we define

/p’ " f(a). (1.1)

Theorem 1.1 (Coincidence of upper/lower limits)
If the upper and lower sums of f on [p, q] converge to the same limit upon refinement,

q
then f is Riemann integrable, and this limit is equal to / f(z).
p

Proposition 1.2 (Linearity, positivity, additivity)

[2] For integrable f,g and scalars «, 3:

o Additivity: The integral can be split over subintervals: /v flx)de = /q
p

/qv f(x)dx. ’

f(z)dx+

q
o Positivity: If f(x) > 0, tben/ f(z)dx > 0.

p

o Linearity: /pq(af(x) + Bg(x)) de = a/q f(z)dx + ﬁqug(m) dx .

p

Proposition 1.3
LRiemann integrability over I is true for all continuous functions defined on I.

12
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Figure 1.1: Upper rectangles for f(z) = 1+ 3 sin(rz) on [0, 2] with a coarse partition; the

sum tightens as the mesh refines.

Definition 1.2 (Mean value)
[13] The mean value of f on [p,q| is:

1 q
M:q_po@Mm (1.2)

Definition 1.3 (Effective Value)
The effective value of f on [p,q] is the number d such that:

2_ 1 q2:c T
d_q_péf()d. (1.3)

1.1.1 Calculation of Primitives

Definition 1.4

An indefinite integral signifies the complete set of functions that yield a specified

function f(x) when differentiated. The process, represented by the integral sign / ,
functions as the reverse of differentiation and aims to identify a function F(x) referred
to as the antiderivative. The derivative of any constant equals zero, indicating
that the antiderivative lacks uniqueness. Consequently, we incorporate an arbitrary

constant of integration, C, to account for all potential solutions.

/f(:v)dx:F(:C)+C (1.4)
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Here, F(x) is any function such that F'(x) = f(x), and C' can be any real number.

Remark 1.4

The antiderivative of a function, if it exists, is not unique.

Example 1.1

Determine the antiderivative of the function h(z).
4
1. /:L’3dx:£+0,
4
2. /sin(2x) dr = —2cos(z) + C,
3. /6_5z dr = —be > 4 C,

4. /4$612dl’ — 2" + C.

Definition 1.5

The definite integral represents the signed surface of a line defined by two specific

limits. This is depicted as:

/qu(x) d. (1.5)

Figure 1.2: Depiction of the region corresponding to a specified integral

Example 1.2

1
Consider the function f(z) = 1 + §sin(7r:c) on the interval [0,2]. For a uniform

partition of [0, 2] with N subintervals, define the upper sums Uy using right endpoints.




15

2
We verify that Uy — / f(z)dx = 2, as follows:
0

2

/02 (1 + ;sin(ﬁx)> de = [x — 21 cos(rx)| = 2.

™ 0

Integration Techniques

Theorem 1.5 ( Integration by Parts)
[1] We let f = u and g = dv, resulting in:

/udv:uv—/vdu.

Example 1.3

Evaluate the integral / xsin(z) dx: we accept:
e Letu=ux
o Let dv = sin(x) dx

At this stage, we determine du through the differentiation of u, and v is obtained by

integrating dv:
. du=dz
.« v= / sin(z) do = — cos(a)
So:
/ rsin(z) dz = (z)(— cos(x)) — / (= cos(z)) de

= —xcos(z) + /cos(:v) dz

= —xcos(x) +sin(x) + C

Theorem 1.6 (Substitution)

[10] Let y denote a differentiable function and f represent a continuous function such
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that
/f(x) dr = F(z). (1.6)
We have:
/y’f(y) dr = /f(y) dy = F(y). (1.7)
Example 1.4

Evaluate this integral:

/€2$ dx,

d
we take y = 20 = dy = 2dx, dx = ?y’

so/ehda:—/eyd —ﬁ—l—C CeR
- 27y_2 ) *

Euclidean Division for Solving Integrals

The Euclidean division approach serves as an effective simplification strategy. It op-
erates by decomposing the integrand into a polynomial and a simpler rational function,
so facilitating the integration process.

Definition 1.6 (Improper vs. proper rational integrand)

P(x)
Q(x)

A rational integrand R(z) = is improper if deg P > deg ), and proper otherwise.

Proposition 1.7 (Division to reduce degree)

If deg P > deg (), perform polynomial division to write

=S5z @ e e
=5( )+Q(x)’ deg R < deg @,

S0 that/gdx:/S(x) d:c+/gg‘2 dx.

Algorithm (1) Check deg P > deg Q; if yes, divide P by @ to get a polynomial S and
a proper remainder R/Q).
(2) Integrate S term-by-term.
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(3) Handle the proper part / R/Q dz by partial fractions or a substitution, depending on

the factorization of Q).

Example 1.5
3 1
Evaluate / mtj_—; dz. Since deg P = 3 > 2 = deg ), divide to get
x
o+l N 1
—_—— = -
2+ 1 22+ 1’
3 1 1 2
hence/mdx: /xdxjt/ida: = x—+arctanx+0.
x?2+1 x?2+1 2
Example 1.6
202 + 3z +5
Evaluate / 11—12—:1:1—1— dx. Division yields
x —
222 + 3z +5 _2+3x+7 _94 A n B
r2—-1 i r—1 x+1’

with3x +7=A(z+ 1)+ B(x — 1) = A =5, B= —2. Therefore

2 3 5
/ x? —i— Sc-i- /2d +/( +1>d;y:2$+51n|x—1]—21n‘33+1’+c'
o

1.2 Multiple Integrals: Concepts and Methods

1.2.1  Double Integrals

Definition 1.7

[7] In the xy-plane, there is a circular and limited region G where the continuous

function f(x,y) is defined. On the set of real numbers, the double integral of function

{ is shown as:

J| fav)aB (18)

In this context, dB denotes the differential space element within the region G.
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Remark 1.8
The double integral is calculated by dividing the region G into infinitesimally small

sub-regions, approximating the volume of each sub-region, and summing up these

volumes.

Understanding Double Integrals

X

a b
integrals give the double integrals give the
area under a curve volume under a surface
b drb
f f(x)dx f f f(x, y)dxdy
a c Ya

Figure 1.3: A visual representation of the concept of double integrals

Double Integration Properties

Assuming «, 3 be real numbers and £ C R?; we may express f and g as functions of the

variables (z,y). Therefore, we can assert:

1. Linear:
J[(@f + 8oy yydady = o [[ f@.g)da+ 8 [[ g y)dady.  (1.9)
2. Association: For € = Q; U Qy, Q1 NQy = @, so we have :
[ 1@ dzdy = || fpyedy+ || fay)dedy. (1.10)
Q (971 Qo
3. A positive sign: for f a positive function in €Q :

//Q f(z,y)dzdy > 0. (1.11)

4. For the function f, for the variable z and the function ¢ for variable y so the
calculation of the double integral / / (f.g)dzdy in this area D = [p,q| x [v,w] is

equal the multiply the simple integral of each one for it’s variable.

/pq | r@)gty)dady - (/qu(x)d:t).(/wg(y)dy). (1.12)

v
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Example 1.7
Let D = [1,2] x [0,1] and f(z,y) = Inz - (1 +y). Since f(z,y) = Inz - (1 +y) is

separable, we can write:

//Df(m,y)dA: (/flnxdx) (/01(1+y)dy>.

Evaluate the integrals:

2
/1nxm::umx—xﬁ:(mn2—2y-um1—1):2m2—L
1

1 1! 1 1 3
1 = 2} :(1 .12>_< .2>:_
(A(+yﬂy P+2y +3 0+5-0 ;

0

So the final result is:

(2In2—1) -

[\CRNGV]

Techniques of Calculating Double Integrals

1-Fubini’s Theorem

Fubini’s theorem provides a fundamental method for evaluating double integrals by
transforming them into iterated integrals. In a rectangular region GG containing a contin-
uous function f(z,y), the theorem permits the computation of the integral by initially
integrating with respect to one variable and then the other, confirming that the order of
integration does not influence the final outcome.

Theorem 1.9
[13] You may represent the rectangular area G = {(z,y)|p <z < ¢, v <y < w} as

follows: f(x,y) is a continuous function defined on this region.

Then Fubini’s theorem states:

MJ@WM:KLWQWWM:[%%WWW@' (1.13)

The double integral of f over G is similar to the iterated integral derived by first

integrating with regard to y and subsequently with respect to xz, or vice versa.
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Fubini's Theorem: Let R = [a,b] x [c,d] and let f : R — R be continuous. Then

'I‘(f(m - /' <‘/:]f(-1'-.u)r1.1/> iz = /I (l/’;h.f(-r.y)/l-r> dy.

Ly
“tha double 'm‘hﬁml" 5 ?
teraded 'mhﬂa.(s

Figure 1.4: Figure for understanding Fubini’s theorem

Proposition 1.10

[13] Fubini’s Theorem can be applied under the following conditions:

1. f(x,y) is continuous on the region G.

2. The region of integration R is a rectangular region defined by p < x < ¢q and

v<y<w

Example 1.8

Using Fubini’s theorem, we can interchange the order of integration:

//G(xz—l—?f)dA—/02/13(J:2+y2)dydx

Now, calculate the iterated integrals:
379=3

230, 2 21, Yy
/ /(x —|—y)dydx:/ [x y+] dx
0 J1 0 3

y=1

:/02 {3$2+9—(x2+;)] dx

2
= [ (22° + =) dw
0 3
[23 26 ]”3:2 16 52 68
= |-+ —x = — 4+ — = —
3 3 lz=0 3 3 3
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2-Substitution

Substitution simplifies double integrals, particularly in the context of non-rectangular

regions. The formula for variable transformation is as follows:

//D f(z,y) dA://Rf(g(u,v),h(u,v))|J(u,v)\dudv, (1.14)

where R is the transformed region, (u,v) are new variables, and |J(u,v)| is the Jaco-
bian determinant.

Polar Coordinates

x = rcos(0) + xg (115)
y =rsin(f) + xg
where:
dxdy = rdrdf
ox Oz ‘ .
D(z,y) _ ? a0 | _ cost)  —rsind |D(:E,y)| .y cos) —rsinf
D(r,0) 9% % sinf  rcos D(r,0) sinf  rcosf
or 00

rcos’d + rsin® = r.

dr dX=(rdo)dr

(rde)

do

Figure 1.5: demonstration of how to understand polar coordinates
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Example 1.9

Evaluate this integral by :
// et AAD = {(z,y) e R%,2® + > =1 and = > 0}
D

By used polar coordinates we get :

Example 1.10

Eval t:/\/2+ 2 dady, where D = {(z,y) € R | 2> 0,1 < 2% + 1> < 2y}
valuate: | +/2* +y* dzdy, where {(z,9) | x > <z* 4y <2y}

Use polar coordinates: x = rcosf, y = rsinf, dedy = rdrdf, and \/x> + y?> = r.
The region D gives 1 < r < 2sinf andggegg (first quadrant).

The integral becomes:

1.2.2 Triple Integrals

Definition 1.8

[7] The triple integral extends integration to three-dimensional space. It is used to

calculate the volume of a region in 3D. The notation for a triple integral is:

JJ] fa.p.2)av. (1.16)

where E denotes the region in three-dimensional space, and dV signifies the in-

finitesimal volume element.

Remark 1.11

The triple integral is calculated by dividing the region R in three-dimensional space
into infinitesimally small sub-regions. The volume of each sub-region is approximated,

and the contributions from all sub-regions are summed up to compute the total value,
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which can represent volume, mass, or other quantities depending on the integrand.

/.\ 6

TRIPLE
INTEGRAL

JJJf(x, v, 2)dv

Figure 1.6: Example for understanding triple integrals

Triple Integration Properties

For any (z,y,2) in Q C R? let f and g be functions of these variables. Then «a, 3 belong
to R. Here are the properties that are held:

1. Linearity:

///(ochrﬁg)(x,y,z) drdydz = a///f(x,y,z) d:cdydz+ﬁ///g(:c,y,z) dx dydz.
(1.17)

2. Associativity: For € = 2y U Qs with ; N Qs = &, we have:
/// f(x,y,z)dxdydz:// f(x,y,z)dxdydz+/// fz,y,2)dedydz. (1.18)
Q (971 Qo
3. Positivity: For f a positive function in §2:

///Q f(z,y,2)dedydz > 0. (1.19)

4. Separable Functions: Let f(z) be a function solely dependent on z, g(y) be a
function exclusively reliant on y, and h(z) be a function that pertains only to z. For

the area D = [p, q] x [v,w] X [e, j], the triple integral is valid:

[ [ @gtnte) dedydz = ( [ raye) ([ gtyay) - ( [ heydz).

(1.20)
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Example 1.11

Evaluate this integral

///D 2?y2* dr dydz, D = [0,1] x [1,2] x [2,3]

Using the separable functions property:

Methods of Calculating Triple Integrals

1-Fubini’s theorem

1 2 3 371 212
Ry ey R T e W
D 0 1 2 3 0 2

Analogous to double integrals, triple integrals can be computed interactively by inte-

grating one variable sequentially.

Theorem 1.12

Then Fubini’s theorem states:

Example 1.12

Determine this integral

2

fﬁgf%@pwmmwwif%ﬂfmepﬂmmmw:
[ @ = ot = [ 027 = + e =

2

5 6 25 26

5
4 < £ 2 29
/o(z )= Flh— =51

{ﬁé%_yW@M%Dzmw—dxmwﬂxm%

2 22 2 rz 2
/0 (/0 y2+z2—2yz—y2+yzdy)dz :/0 (/0 z2—yzdy)dz :/0 (Z2y|g2—
2

[7] Consider a continuous function f(z,y, z) based on a rectangular region R in the x —

y—z-plane, which can be represented as R = (x,y,z) |[p<z < q,v<y<w e<z < f.

I swvzav = [ st adonis = [ ([ sz dojaz)ay

z

22
2y2|0 )dz =
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Example 1.13

Determine this integral

///D ze Ydrdydz, D =[0,2z] x [0,Inz] x [1,2].

2 2z plnz 2 2z Inz
/ / / ze Ydydrdz = / / :E/ (e ¥)dydxdz =
1 Jo Jo 1 Jo 0
2 (22 [T g gy — /2 /2z ( 1 1)dzdz
/1 /0 z(—e )|y “dadz = A A G xdz =
2 z ;p2

2 2 _
/(/ —x+1dx)dz:/ (——o7 + 2|37)dz =
1_Jo 1 2

2 —2 —14 -5
(—2z2+2zdz):?zgf—l—fo:T—l—iS:?.

_—

2-Substitution

Substitution can simplify triple integrals, particularly in regions with non-standard

shapes. The transformation formula for variable changes is expanded to three dimensions:

///E fl,y,2)dV = ///w f(u,v,w)|J (u, v, w)| dudv dw. (1.21)

Let W denote the transformed region, with (u,v,w) representing the new variables,
and |J(u,v, w)| indicating the Jacobian determinant.

Spherical Coordinates

Spherical coordinates are a system for representing points in three-dimensional space

using three parameters: radial distance (r), polar angle (), and azimuthal angle (¢),

(r,0,9).

Spherical coordinates can be converted to Cartesian coordinates as follows:

x =rsinpcosf
y = rsin@sin 6 (1.22)
2 =TrCcosp
The Jacobian matrix of f is
cosflcosp —rsinfcosy —rcosfsinp
Jy=|sinfcosp rcosfcosy —rsinfsing

sin ¢ 0 T COS
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and its determinant is

det(J;) = r*cos ¢

The change of variables formula is then written as:

/// f(:v,y,z)dxdydz:/// f(r cos 6 cos p, rsin 6 cos @, 7 sin @) 72| cos | dr df dy
D Q

Figure 1.7: Picture to help in comprehending spherical coordinates
Example 1.14

We compute
// drdydz where D ={(z,y,2) € R*|2*+¢y*+2* <1}
D
with the bounds

0<r<1, 0<6<2n,

bo|
IA
©
IA
bo | 3

The formula becomes:

///Df(xay,z)dxdydz:///Qr2|cosgo|drd9dg0

This can be written as:

Which gives:
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Example 1.15

Calculate the following integral:

I = ///\/x2+y2+z2dxdydz,
1%

where V' denotes the sphere centered at (0,0,0) with radius R.

Switching to spherical coordinates, we obtain:

R r2m
I= / / / p*| cos ¢| \/P2 cos? ¢ cos? 0 + p? cos? psin? 0 + p? sin® ¢ dp df dg.
o Jo Jo

This simplifies to:
R 27 pm
I:/ / / p°| cos | dp de db.
o Jo Jo

Subsequent integration produces:

7TR4 7r/2 7T/2

4
I =— cosgbdgzﬁ:m;singb

=R
2 —7/2 T

—7/2

Cylindrical Coordinates

Cylindrical coordinates are a system for representing points in three-dimensional space

using three parameters: radial distance (r), polar angle (¢), and height (z).

f R =R (r0,2) = (z,y,2) = (rcos,rsin, z).

Cylindrical coordinates can be converted to Cartesian coordinates as follows:

x =rcosb,
y = rsinf, (1.23)
z=z.

The Jacobian matrix of the transformation f is expressed as:

cosf —rsinf 0
J(f)=|sin® rcosh 0.
0 0 1
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The determinant of J(6) is:
det(J(f)) =r.

If f(D) = D, the change of variables formula is expressed as:

///Df(x,y,z)da:dydz:///Df(rcosé’,rsiné’,z) det(J(f)) drdfdz.

with dedydz = rdrdfdz.

F-Axis

x-axis

Figure 1.8: Conceptualization of cylindrical coordinates illustrated by graphic

Example 1.16
Calculate the following integral:

! ///,%dfﬁdyd% D=(z,y,2) R 2’ +¢4*<1,0< 2 < 1.
s Y
D

we used the cylindrical coordinates for solving this integral :

x = rcos(f)
y = rsin(0)
2=z
z z
d dxdydz = rdrdfd = = —.
and dxdydz = rdrdfdz, f(z,y,z) x2+y2:>(79) "

For the r area we got it from this condition :
22 4+y? <1 = (r,0) r? <1 =0 0 <7 < 1. we had the z area, 0 < z < 1, and for
the 0 area we always take 0 < 6 < 2.

So we calculate the integral:
2

[ staran = ([T an)( [ an( [ 2z) = @R -
(m)(1)(3) =




1.3 Utilizing for Calculating Areas and Volumes

Calculating the Area

Example 1.17

Determine the area beneath the curve y = 2* from x = 0 to x = 2.

The region is denoted by the integral:

2
A:/ 2% dx.
0

Evaluating the integral:

P
31, 3 3 3
Consequently:
8
A=—.
3
Example 1.18
The integral
/ dx dy,
D

provides the area of the domain D.

We determine the area of the region enclosed by the curves:
y+2°=1 and y=0.
The domain D is defined as:
D={(z,y) eR*|0<y<1—-2"and —1<z<1}.

The area is expressed as:

A= / /1 i 1dydx—/ [/Ol_ledy]dx:/_ll(y |(1)_9”2)dx:/11(1—x2)dx:

—1 2
— L
(Era =i +1- (G =2
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Calculating the Volumes

Example 1.19

Find the volume of: /// (2% + 3* + 2%) dV over the region E defined by cylindrical
E

coordinatesr = 1,0 <0 <, and 0 < z < 2. We want to evaluate the triple integral:

///E(x2+y2+z2)dv

over the region E defined by cylindrical coordinates r = 1, 0 < 6§ < m, and
0<2<2.

In cylindrical coordinates, the volume element dV' is given by:

dV =rdrdfdz

So, the triple integral becomes:

///E(x2+y2—|—22)dv:/Oﬂ/ol/j(ﬁ—l—zﬂ)-rdzdrd&

Now, calculate the iterated integrals:

x ol g2 o3 3172
/ / /(r2+z2)-rdzdrd9:/ / —z+ — dr df
o Jo Jo o Jo |3 3

z=0

= (o (%45 ) an = Cohen = )

Example 1.20

Find the volume of:

/ / /E (r22) dV

across the domain I delineated by cylindrical coordinates 0 <r <2, 0 <60 < %,
and 0 < z < 3.

In cylindrical coordinates, the volume element dV is given by:

dV =rdrdfdz
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So, the triple integral becomes:

///E(TQZ)dV:/O?)/OZ/OQ(TQZ)-Tdede

= [Ce [ran [T =GR Cof) = DD =T




L] CHAPTER 2 L]

Improper Integral

2.1 Improper Integrals of Functions on an Unbounded
Interval

A standard Riemann integral is established for a function that maintains continuity over
a closed and finite interval, exemplified by [p, g|. An improper integral arises when one or

both of these conditions fail to be satisfied. This takes place in two main scenarios:
1. The interval of integration is infinite, for example [p, 00), (—o0, g, or (—o0, 00).

2. The function f(x) possesses one or more infinite discontinuities within a bounded

interval of integration.

Definition 2.1

[10] Define f be an integrable function (in the sense of Riemann) on an unbounded

interval [p,q|,]—00,q],[a,+oo[ or |p,q]. We define that f represents improper inte-
gration over the interval p, +oo[ as follows:

T

lim [ f(t)dt, (2.1)

r——+00 D

existing and finished.

| Limit

T FI{ — X

Figure 2.1: Visual aid for comprehending improper integration

32
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Definition 2.2

[4] The following is our definition of the convergent improper integral:

T

lim [ f(t)dtor lim / ")t (2.2)

r——+00 P

existing and complete. If the limit is non-existent and infinite, then the improper

integral is divergent rather than converging.

TDO2:

b t
ff(x)dx = l;iirlsff(x)dx 2t 00 \

integrale convergente

©
~/

|

Figure 2.2: Graphical representation of convergent improper integral

Definition 2.3

If the improper integral / f(t)dt is evaluated at points p and ¢, and let v be an
P

element of the interval |p, q|. This integral is convergent if the two improper integrals,

v q
/ f(t)dt and / f(t)dt, are convergent, where:
p v

/qu(t)dt _ /p F(O)dt + /vqf(t)dt. (2.3)

Example 2.1

+o0o T
/ eldt = lim eldt = lim (e")|§) = lim (¢® — 1) = +o0. so we have a diver-
0 r——+o00 Jo T—+00 r—+00

gent integral.

Example 2.2

2 d z
/ = Y T limn |z —2||f = lim(In |z — 2| — In(1)) = —o0. so we
1 r—2 w=2)1 x—2 22 92

have diverged integral.
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Remark 2.1

q q
Let it be/ f(t)dt and / g(t)dt improper integrals at q :
p

p
q q
1. The integral / f(t)dt is convergent, and the integral / g(t)dt is also convergent.
p

The integral / f(t)dt + / t)dt is convergent.

2. The integral / f(t)dt is divergent, but the integral / g(t)dt is convergent. The
P

integral / f)dt + / t)dt is divergent.

3. The integrals / t)dt and / t)dt are both divergent, so the nature of inte-

gration cannot be assessed if they include different areas of integration.

Example 2.3

Evaluate this integral:

> gt
A‘@—m@—m

35 €]1,2[ so

2 dt 3 dt 2 dt
/1 t—1)(t—2) /1 G—Di=2 s aona=y T hTE

2

7 /5 dt I 5 dt y —dt +/§ dt i In|t
— = lim _— = |Ilm = 1m — I |t—
LoDt =2) wsie (—10)(t—2) w1y t—1 1 t—2 a1

3 3
1|2 +In |t — 2/|2

O
wlw

—00.
the same thing for I, we found that I, = —oo so the integral [ = Iy + I, divergent

integral because the tow integrals I; and I, they have difference area integration.
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Riemann’s integral[10]
1
The convergence of integrals of the type / t—adt, commonly referred to as p-integrals, is
contingent upon the value of o and the limits of integration.

o dt
o Integrals over an Infinite Interval: For an integral of the form / o with
p

p > 0, the integral converges if a > 1 and diverges if o < 1.

a dt

o Integrals with a Discontinuity at Zero: For an integral of the form / o with
0 03

q > 0, where the function is discontinuous at ¢ = 0, the integral converges if o < 1

and diverges if a > 1.

Example 2.4

+oo dt
1. / 2 convergent Riemann’s integral next to 400 because a = 2 > 1.
1

+oo
2. / " divergent Riemann’s integral next to +00 because o = 1.
3

1 dt 1
. / convergent Riemann’s integral next to 0 because o = 3 < 1.
0

Vit

2 dt
4. / & divergent Riemann’s integral next to 0 because o =5 > 1.
0

Bertrand integral [10]
+oo d
1—(/@ a:‘"(lnxx)ﬁ) convergent = a > 1 or (a = landf > 1).

: d
2_(/0 a:a(hfx)5> convergent = o < 1 or (o = landf > 1).

2.1.1 Improper Integral for Positive Functions

Theorem 2.2 (Comparison Theorem)

Let it be f and g positive and continuous functions in the integral [p,q[ if exist a

v € [p, q| where:

Vt e [v,q[,0 < f(t) <g(t) (2.4)

SO:

q q
1—/ g(t)dt convergent = / f(t)dt convergent.
P P
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q q
2—/ f(t)dt divergent = / g(t)dt divergent.
p

p

Known &
Comparisonsy
function —
@
ff(x)dx
given
function
© » X
Jg(x)dx a
a

Calcworkshop.com

Figure 2.3: Comparison figure for comprehending theorem

Example 2.5

+oo

t
1 V1416

dt, by the comparison theorem we found:

t 1

t
< <
VIO = Vo8

+oo 1
the integral / t—gdt is convergent, since Riemann’s criterion indicates that o =
1

+00
3 > 1.The integral / dt converges using the comparison theorem.
1

t
V146

Example 2.6

1 e_t
/ Wdt, by the comparison theorem we found :
0

O<t<loel<loS < -

VT VT

1] 1
the integral / Wdt, convergent (Riemann’s integral o = 5 < 1)The integral
0

1 ,—t
e ) )
/ ——=dt converges using the comparison theorem.
0

Vit
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Proposition 2.3

Let f and g be positive and continuous functions on the interval [p, q[. For allt € [p, q|,

ft)

g(t) # 0 and %Lm = = m therefore:

a g(t)

q
1. If it was 0 < m < 400 (m # +00) and/

p

g(t)dt convergent = /q f(t)dt

p
convergent.

q
2. If it was 0 < m < 400 (m # 0) and / g(t)dt diverged =
p
intd f(t)dt divergent.

q
3. If it was 0 < m < +oo (m # 0,m # +00) so we have same nature for / f(t)dt
p

and / t)dt — f ~, g (f equivalent g behind q).

Example 2.7

f(x)

tow functions define at [1,+oo] and lim = —= =

1
£t = - m’ 9(t) = 5 , Jim =

SL’ +oo 1
lim ————= = 1 given that the integral / xr)dr = / — convergent be-
1

r—+00 pv/1 + 12 12

cause Riemann’s integral oo = 2 > 1 so the integral / f(z)dx convergent.
1

Remark 2.4
1. Iflim f(t)g(t) exist and finished so / t)dt and / t)dt they have
*>
same nature.
b !
/ f(t F(t)g(t)]> — / f(t)g (t)dt (integration by parts way).
2. The integrals / t)dt and / x)dx they have same nature and we
have :

b B
/a f(t)dt :/a f(e(z))e'(x)dx (substitution way).
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Example 2.8

Calculate the following integral:

Dn(t
—()dt, the function is improper in x =0 so :
0\t )
lig(l) ln(t)t_Tl, we use Integral by parts method:

1
u = 1nt—>u':¥,
Vo= 7 =2Vt

1 _
lim 111(15)7571 = lim(21lntV/t
z—0

z—0 Jg
44 )= —4.

n(t
So the integral / ﬁdt is convergent.
0

Vit

1 11 . 1 .
2 [ = (-2 ai]) =l -2y

Example 2.9

+oo 1
/ ln(sin(;))dt, by the comparison theorem we found :

2

II

1 1 .1 1
sm(g) ~ioo T ln(sm(g)) ~ oo ln(g) = —1In(¢)
+oo z
so the mtegra]/ﬁ —In(t)dt = xEIEOO 2~ In(t)dt = xgr&o (tIn(t) — t)|% = xggloo(m In(x)—
2 2 2
r——In(=)+ =) = +oo.

Im I II
+o00 +0o 1

so the integral /2 —In(t)dt divergent=- /2 ln(sin(;))dt is divergent by the
I I

comparison theorem.

Riemann’s rule

Proposition 2.5

[18] Consider f be a positive function defined on the interval [p, q[. and

lim(q — t)“f(t) = m, (2.5)

t—q

where o« € R and m finished and existing so:

/Ifa<1l= /q f(t)dt convergent.
p

2/Ifa>1,m#0= /q f(t)dt divergent.
p
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Proposition 2.6

q
If / f(t)dt improper integral at p when we apply Riemann’s rule for know this integral
p
nature we calculate : 2leg]n(t —p)f(t) =m.
p

Let it be fa positive function integration in [a,+oo[,p > 0 and

lim (6)*f(t) =m, (2.6)

t——4o00

where o € R and m finished and existing.

1/Ifa>1= / t)dt convergent.

+oo
2/Ifa <1,m # 0= / f(t)dt divergent.

p

Theorem 2.7

[15] Let it be f a positive function and continuous by piece at [p, +oo[ if found tow
A

real numbers a and \ # 0 where f(t) ~; o so the integral / t)dt convergent

if « > 1 and divergent for a < 1. The same thing for interval |p, ],q > 0 where

A
f(t) ~o o so the integral / t)dt convergent if a < 1 and divergent for o > 1.

Example 2.10

umproper itegral a , Dy memann's rule a 1cation we nave :

lim(t — 1) !

t—1 N

1 Var
Ja = 5lgqmWehavet3—1:(t—1)(t2+t+1)so
k = lim finished and exist.

Hl\/tT,/t%LtJrl \/_

- < 1 and k finished and existing = /

convergent.

(\V]

¢—1

Remark 2.8

1 [Cpwde = [ g+ [ pwt, [ p@de limited integral so, [ f(t)dt and
/q f(t)dt they have same nature.

(2

2. Let it be f negative, for improper integral studied at q g(t) = — f(t) is a positive
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q
function then in order to study the nature of integration / g(t)dt we apply the
p

studied methods, /q f(t)dt and /q g(t)dt they have same nature.
p p

q q
3. / f(t)dt and / Af(t)dt tow improper integrals at ¢ and A € R they have same
p p

nature.

4. Some equivalent functions :
Mn(l + h(z)) ~ioo £h(x)
h(z) — 0, x — +o00.
Sin(h(z)) ~ o0 h(2)

h(z) — 0, x — +00.
*eos(h()) ~aoo 1 — h(;)z.

h(z) — 0, x — +oo.

*cosh(h(z)) ~1eo h,(g)Q

h(z) — 0, x — +00.

*arctan(h(z)) ~io0 h(x)

+1

h(z) — 0, x — +00.
#M®) L o h(z) +1
h(z) — 0, x — +o00.
*sinh(h(x)) ~4o0 h(x)

h(z) — 0, x — +00.
%o + aq12% — 1+ ... + ag AT
bBZL’fB —f- bg_l + eeee + bo too bﬂxb '

Example 2.11

+o0 dt
—————— the function is positive and integration and by the comparison
/0 t+1)(t+2) P & v b
theorem we found :
1 1

(t+ 1)t +2) 2

+oo
and the integral /1 5dt convergent (Riemann’s integral a = 2 > 1) so the

+o0 dt
integral / ———— convergent.
%) Gr D +2) &

1
t
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Example 2.12

+00 1
/ In(1 + —)dz, the function is positive and integration and by the comparison
4 x

theorem we found :

1 1
(1 + =) ~ oo —
xr xXr

+oo 1 +oo
and the integral / —dt divergent (Riemann’s integral « = 1) so the integral / In(1+
4T 4

1
—) divergent.
T

Improper Integrals of Functions Defined on a Bounded

Interval

Importants Definitions

Let f : [p,q[— R be a function integrable (in the Riemann sense) on [p, z] for all z € [p, q/.
Define

F(z) = / £(t)dt. (2.7)
Definition 2.4 '
[13] We say that f admits a convergent improper integral on [p, q[ if F'(x) has a limit

as x tends to b. In this case, we write:

T

lim [ f(t)dt = / " F(e) dt. (2.8)

T—q P

If this condition is met, f is considered semi-integrable on the interval [p, q].

Example 2.13

1
Consider the function f(x) = T defined on [—1,0[. We observe that this function
—x

is integrable in the Riemann sense on [—1, ] for all § € [—1,0[. Moreover:

/I1 ft)dt = —2v/—z + 2.

Thus,

lim [ f(t)dt=2.

z—0 J_1

Therefore, f admits a convergent improper integral on [—1,0[.
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Remark 2.9

1. If a function f :]p,q] — R is integrable (in the Riemann sense) on [z,b] for

all x €]p,q|, we say that it admits a convergent improper integral (or is semi-
integrable) on )|p, q] if the function

F(z) = /:f(t) dt, (2.9)

has a limit as x tends to p. In this case, we write:

lim [ f(t)dt

r—a x

/q f(t)dt. (2.10)

For a function defined on an open interval |p, q| and integrable on any interval

[z,y] with p < x < y < q, we say that its improper integral on |p, q| converges

if, for p < v < q, its improper integrals on |p,v] and |v, q[ exist.

Example 2.14

The improper integral

o 1
—dt
[

is divergent because the integral

0 1
—dt
/—11—t2 ’

is divergent.

Definition 2.5 ( Absolute Value Convergent)

[10] Let f : [p,q[— R be a function defined for integration over any interval of the form

[p, q| for any o < q. The improper integral of f is considered absolutely convergent on

q
[p, q[ if the improper integral of | f| converges on [p, q|.

Remark 2.10

q q
1. If/ f(t)dt absolute convergent = / f(t)dt convergent.
p p

2. If /q f(t)dt convergent /q f(t)dt absolute convergent.
P P
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p

3. If /q f(t)dt divergent < /q f(t)dt non absolute convergent.
p

Example 2.15

CoS T
The improper integral on |2, +oc] of the function f(x) = —— is absolutely convergent.
x

Because :

+oo | cos x oo dx
/ | ldaz < / —2da:
2 2 T

T2

+oo dx
/ — dx convergent because a = 2> 1 Riemann’s integral.
2




CHAPTER 3 L]

Differential Equations

3.1 Examination of Ordinary Differential Equations

3.1.1 First-Order Ordinary Differential Equations

Consider ¢ denote a continuous function. A first-order ordinary differential equation is

defined as one that can be stated in the form

[11]y" = o(t,7), (3.1)

We denote the differential function as 7 : J is a subset of the real numbers, mapping to
the real numbers, and represents a solution to the first-order differential equation. Let
7" = ¢(t,7) be defined on the interval J if it satisfies the condition vy = ¢(t,70) for all
teJ.

Example 3.1

The function z : R — R, defined by z(t) = €', serves as the answer to the subsequent
equation:

7' =~ on R, since 7'(t) = ' = x(t), for all t € R.

Differential Equations of Separate Variables

A first-order differential equation is said to have separable variables if it can be represented

in the following form:
p(1)7 = h(z), (3:2)
Thus, ®(y) = H(z) +m, where m € R. Let ® be an antiderivative of 7, and let H be an

antiderivative of h. So

v=®YH(x)+c). (3.3)

44
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Example 3.2
Solve on J = [2,4o00| differential equation

zy'Inz = (Inz + 1)y

We may isolate the variables x and vy by dividing by vxInz,

v (lnz+1)

— =-——250

~ rinz
1 1

ln’y:/ Dt dr+c, ceR,
rlnzx

that’s mean :

Inz+1
v =el R e Ry = emlEmate — py(pIng), m =€ € R.

Example 3.3
Solve on J = R differential equation v = ~y cos(z)

Separate variables:

d

y
— = cos(x)dx
S (z)

Integrate both sides:
In|y| = sin(z) + C

Thus,
v =me® m e R.

Linear Ordinary Differential Equation

Definition 3.1

[17] A linear differential equation is expressed in the following form:
so(@)y + s1(2)y + .+ su(@)y™ = (@), (3.4)
here is the homogeneous equation that corresponds:
so(x)y + s1(2)y + ... + su(z)y™ = 0. (3.5)

Proposition 3.1
T
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1. If v, and 7y, are two solutions of Eq.(3.4). Thus, 71+ and ary; are also solutions
to Eq. (3.4).

2. If Sy is the solution set of Eq.(3.4) and , is a particular solution of Eq.(3.5), so
the solution set of Eq.(3.4) is given by S = (7 + 7«, y € Sp).

First Order Linear Differential Equation

Definition 3.2

[11] A first-order linear differential equation is a first-order differential equation char-

acterized by:

Y = p(t)y + h(t), (3.6)
with ¢, h continuous functions on . The associated homogeneous differential equation
is :

v = p(t)y. (3.7)

Example 3.4

The differential equation v’ = t*y + t is a first-order linear differential equation. The

corresponding homogeneous differential equation is v = t*.

Example 3.5

The differential equation 7' = e*y 4 5t3 is a linear differential equation of order 1.

The associated homogeneous differential equation is, 7' = e*"8+.

Resolution of a Homogeneous Linear Differential Equation
We initiate the process in this manner: The equation 7' = ¢(t)7 represents a relationship
where the rate of change of the function v is directly proportional to the function itself
and a function dependent on the variable ¢. 1/ = (t) We will analyze the equation

®)t where

In|y| = /gp(t)dt + ¢, where ¢ € R. The solution is represented as v = mel ¢
m € N.

The Solution of a Non-Homogeneous Linear Differential Equation
The process of solving a non-homogeneous linear differential equation begins with the iden-

tification of the general solution, denoted as 71, for the corresponding homogeneous equa-
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tion. Subsequently, a specific solution, denoted as 7, is pursued for the non-homogeneous
equation. The general solution, denoted as v,, is derived by combining the homogeneous
solution and the particular solution, expressed as y, = 71 + 7Vs.

Example 3.6

We consider the equation: 2xvy' — v = x.
We start with the relevant homogeneous equation: The generic solution of the homo-

geneous equation 2xy — v =0 is

1 11 1 1
v = 2—7:>71 =me2J = = v =me2"? = 4 = me"®? = 4 = my/x.
x

The specific solution of the non-homogeneous equation is provided by: 7, = m(x)y/x.
S0 7(z) = (@) + 22

2z
2zm/ (z)\/r + 22?;(;) —m(z)Vr =z = 2zm/(2)Vz + m(x)Ve — m(x)Ve = x =

2zm/(z)V/r =2 = m'(z) = 2\1/5
So m(z) = Vz =y, = m(x)Vr = 7, = x.

The definitive answer Is:

also : 2z, — v, = z we find

Yy =7+ = myx+x, meR.

3.1.2 Linear Differential Equations of Order 2 (LDE of Order
2)

Definition 3.3

[11] A second-order linear differential equation with constant coefficients is expressed

in the following form:

$17" + soy + 537 = p(x), (3.8)

where 51, 55,53 € R(a # 0) and ¢ € C'Y)(J C R).

The associated homogeneous equation (or without a second member) is:
s17" + sy + 537 = 0. (3.9)

Proposal if 7, is a general solution of (3.1.2) and ~,represents a specific solution of

(3.3). So 74 = + 7. is a general solution of (3.3).
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Addressing the corresponding homogeneous equation (HE)

517" + 527 + 837 =0

We seek the solution in the form y(x) = €™, 7 € R. So 7/(x) = ry(z) and 7" (x) = r*

so, (3.1.2) became :

v(x),

Y(517% + 591 4 53) = 0. (3.10)

Definition 3.4

The equation s1r>+ o7+ s5 = 0 is referred to as the characteristic equation of (3.1.2).

Proposition 3.2

Following the sign of A = s3 — 45553, we have the following results:

1) A > 0: Eq. (3.1.2) accept tow distinct real roots 1 # 19, and
v(z) = c1€™F + c2e™", 1,0 € R.

is a general solution of Eq. (3.1.2).
2)A =0: Eq. (3.1.2) accept a double root r € R,

v(z) = (x4 co)e’™, c1,00 € R.

3)A < 0: Eq. (3.1.2) accept a two complex roots conjugated r1o = a £+ b, (a,b €
R,b0#0) and

v(z) = e*(¢q cos(bx) + o sin(bx)), ¢1,co € R.

Example 3.7

1. Case 1: Two Distinct Real Roots (A > 0)
Consider the equation: 7" — 67" + 8y = 0.
The characteristic equation is r* —6r +8 = 0, which factors to (r —2)(r —4) = 0.

The roots are distinct and real: vy = 2 and ro = 4. The solution is:

Y(z) = c1*® + cpe*”,  c1,c0 €R
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2. Case 2: One Repeated Real Root (A = 0)

Consider the equation: 7" — 6+ + 9y = 0.

The characteristic equation is > — 6r +9 = 0, which factors to (r — 3)* = 0.

This gives a repeated real root r = —3. The solution is:

T

v(z) = (1 + 02)63 , ¢, €R

3. Case 3: Two Complex Conjugate Roots (A < 0)

Consider the equation: 7" + 44" + 13~ = 0.

The characteristic equation is r°> + 4r + 13 = 0.

—4+/736

The discriminant is A =

42 —4(1)(13) = 16—52 = —36. The complex roots arer = = —243i.

The solution is:

2

v(z) = e **(c1 cos(3z) + c28in(37)), 1,00 € R

Determining the Specific Solution

Step 1: Determine the Initial Guess for 7,

a preliminary assumption for -, that mirrors the structure of ¢(z).

presents the accurate predictions for the most prevalent cases.

Table 3.1: Initial Guess Forms for the Particular Solution (v.)

If the term ¢(z) has the form...

The corresponding guess for 7, (x) is...

(Apz”™ + -+ -+ Ag)e®®

(Apz™ +...)e"" cos(Bx)+
(Bpx" 4 ... )e* sin(fx)

To determine a specific solution 7, for the equation s1v"+s27 +s37 = ¢(x), the Method of
Undetermined Coefficients can be employed. This method is applicable when the function

¢(z) is a polynomial, an exponential, a sine or cosine function, or a product of these types.

The initial step involves formulating

The table below
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Step 2: Apply the Modification Rule This is the most important step and replaces
the repetitive conditions in your original text. You must compare your initial guess for

v« with the terms in your homogeneous solution, ;.

o Case A (No Overlap): If no term in your proposed solution for -, corresponds to
a solution of the homogeneous equation (), then your initial assumption is valid.
This applies when the components of ¢(x) (such as a or a £ ib do not constitute

roots of the characteristic equation.

« Case B (Overlap):If any component of your proposed solution for =, is already
included in -y, it is necessary to multiply your entire proposal by x. This is the

criterion for a clear root of the characteristic equation.

o Case C (Repeated Overlap): If, after multiplying by z, the new guess still
includes a term from =, it is necessary to multiply by x once more (i.e., multi-
ply the original guess by x?). This addresses the scenario of a double root of the

characteristic equation.

Upon applying this rule to obtain the final form of ~,, one can substitute it into the
differential equation to determine the unknown coefficients (A, B, etc.).

Example 3.8

7" — 44" + 4y = (2® + 1)e” the homogeneous equation is v — 4+ 4+ 4y = 0 so the
characteristic equation is: 7 — 4r +4 = 0 we have A = 0,7 = 2 double root so the

solution is
11 = (12 + c2)e*, 1, ¢ € R.

2)We seek a specific solution to the non-homogeneous equation. as the m = 1 a not

root of the characteristic equation so the v,(r) = Q(x)e** such as degQ = 2,

Ye(z) = (az® + bx + c)e” so
VL (x) = (2az + b)e” + (ax® + bz + c)e”

V! () = 2ae” + 2(2az + b)e” + (ax® + bx + c)e” .
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By replacing in (2.1); v/ — 47, + 47, = (2* + 1)e” we find
((a—1)2*+ (b—4a)z +c+b+2a—1)e" =0

a—1= a=2
b—4a=0 b—4a =38
c+2a—-2b—1=1= c=15

the specific solution v, = (22* + 8x + 15)e”

finally the overall answer is

Yo=m+% = (azr+ co)e** + (227 + 8z + 15)e”, ¢y, € R.

Example 3.9

Resolve these differential equations: 7" — 4" + 3y = 3z + 2
The homogeneous equation is:
V' =4y +3y=0
The characteristic equation is:
r? —4r+3=0

Factoring:

(r—1)(r—-3)=0

Thus, the roots are r = 1 and r = 3. The alternate solution is as follows:
71 = 1" + Coe™ = Cre” + Coe™”

The non-homogeneous term is 3x + 2. Consider a specific solution represented as
follows:

v« =Ax+ B

Compute derivatives:

v.=A4, =0

Substitute into the original equation:

0—-4A+3(Ax+ B) =3z +2
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Simplify:
3Az + (3B —4A) =3z + 2

Equating coefficients:

3A=3 = A=1
3B—4A=2 = 3B-4(1)=2 = 3B=6 = B=2

Thus:

The comprehensive solution is as follows:

Vg =+ 7 = Cre” + Coe™ + x4 2

Solving the associated non-homogeneous equation with an arbitrary func-
tion
Technique of Variation of Constants
The equation is:
s17" + soy' + s37 = p(x) where ¢(z) is arbitrary function.
When the function p(z) is arbitrary, the variation of parameters method is effec-
tive. First, solve the associated homogeneous equation to find the basis solutions, let’s
say Yo(z) and v,(x), giving v, = c17.(z) + c2v(x). To determine the specific solu-
tion, we replace the constants ¢; and ¢y with functions F'(x) and E(x), such that ~, =
F(x)ya(x)(z) + E(x)v(z)(x). These functions are then found by solving a specific system
of equations. We modify the constants ¢; and ¢y, and denote a variable by x, thus we

express:

Ve = ci()p(x) + ca(x)h(z)
Ve = ()¢ (x) + (x)h'(x)
where the functions ¢, h are the basis of the solution ~;.

so 7 is solution if only if ¢} (x) and ) (z) they investigate this conditions:

ci(x)p(x) + cy(w)h(z) =0
()@ (2) + ey (2)l (z) = p(w)
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Example 3.10

Examine this equation:

V(@) + 29/(x) +y(z) = tan(z)
The corresponding (HE)is:

v (%) +29/(x) +y(x) =0

Assume two linearly independent solutions for (HE): v (z) = e “(¢1 + cox). We
will now identify the specific solution using the method of variation of parameters.

The parameters c¢;(x) and cy(x) are established by resolving the system of equations:
c(z)e ™ + cdhre ™ =0
—ch(x)e ™ + (1 — x)e™™ = tan(z)

Simplify:
¢ (z) = —ze” tan(x)
cy(x) = tan(x)

Integrate to find ¢, () and co(x):

c(x) = /—xew tan(z) dx
co(z) = /tan(m) dx

The specific solution is provided by:

7 (z) = (—ze® tan(z))e™ " + (—In|cos(z)|)ze™ "

This is the specific solution to the provided differential equation.
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Résoudre (E) : . | Map sur les équations
[ incomus 069 ax”(t) + bx’(t) + c x(t)= d(t) \ différentielles du 2™ ordre
v

\ Equation différentielle du 2nd
ordre AVEC second membre
Résoudre (EO)
Recherche d'une solution ax”(t) + bx'(t) +c x(t) =0 \ Equation différentielle du 2nd
particuliére de (E) : \L ordre SANS second membre
X2(t) :
Résolution de I'équation
caractéristique : ar’+ br+c=0
aX2”(t) + b X2'(t) + ¢ X2(t) = d(t) /
Solutions générales de (EQ) suivant A
X1(t)
/ Equation caractéristique : Solutions de

Solutions générales f(t) de (E) : aribr+e=9 ax by’ +ox=0

f(t) = X1(t) + X2(t) A=0 2 racines réelles distinctes r, et ry X() = et +p et
ol & et p réels

A=0 1 racine réelle double ry X(1) = (A + pt) e
ou A et uréels

Avec 2 conditions initiales A<0 [ 2racines complexes conjuguées X(t)=e"'(A cos (Br) + psin Pr)
a+ifeta-ip ou A et p réels

L'unique solution f de (E)

Figure 3.1: Diagram for the synthesis of second-order differential equations with a sec-

ondary term.
3.2 Exploration of Partial Differential Equations

A function ¢ : ® x ® — R of two real variables defined in the vicinity of the point

A(p, q). If the function z — ¢(x,q) possesses a derivative with regard to z, we denote it

as ¢, (p, q).

The partial derivative with regard to x can be defined as
fo i RXR =R, (z,y) — fi(2,9). (3.11)

The partial derivative with respect to v is defined using the same method, we note

;) _Op Oy

= = ) A2

Successive derivatives

In the same way, we can define the derivative of the function ¢/, with respect to z, we

92
: 1
note it @,» or PR
i o P
also the derivative of the function , with respect to , we note ,., or R
YOz

62

Fael

The derivative of the function gpgﬂ with respect to v, we note QO{;Q or
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et
0xdvy

The derivative of the function ¢, with respect to x, we note ¢/, or

Theorem 3.3

equal:

"o
gpx'y - SO’)/:E‘

Example 3.11

P P Pp 0
Oyox’ 02" 0x2’ Ox0vy

Determine

, for the function ¢(x,v) = 2* + 27> — v

Dy B s Oy R B
By LW =28+, o5 (2,7) 7(978x( ) =27
92 (0,7) = 207, 2 _or, L —2
a(l‘,’?) T, o 2(1’,7) €, ord (ny)/) =29

Definition 3.5

and its partial derivatives relative to these variables takes the form:

O P 0?p
oy Ty O, s , .
o P Oy 0x3’ 0x3

F(lL‘l,.. .)81’181}2,...

)
omax,

is a partial differential equation.

Example 3.12

ou 5 ou
(gp) ~ gy =0
ou
202 + A3 (— £ 2-—) =
T +fy(ax+ 8) T+y+u

3.2.1 Partial Differential Equations of the 1* Order

Definition 3.6

[17] An equation involving a function f of multiple independent variables x, ...

[5] An equation involving a function ¢ with multiple independent variables x, ...

[5] If the partial derivatives ¢, and ¢ are continuous, then these derivatives are

(3.13)

7xn

(3.14)

73:7’1,

and the first-order partial derivatives of ¢ with respect to these variables, specifically
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in the form:

) )
F(xl,...,xn,gp,az,..., af ) =0, (3.15)

It is classified as a first-order partial differential equation (PDE).

Proposition 3.4

Any function (1, ..., z,) which identically satisfies this equation is a solution of it.

Remark 3.5

In the following, we often use the notations w or z instead of ¢. In the case of two

variables x, vy, we have

0F 92y _,,

F(x777§07%a877

Example 3.13

Oy
l—gm =0 p(z,y) =9().
¥
2- = = .
5, ~ 0 ele) =ele)
S—gw = g(x). If g is integral and G is one of its primitives, then aa(gp(x, v)—G(z)) =0,
T T

from where p(z,7v) = G(x) + ¢(7).

Remark 3.6

The generic solution of a first-order partial differential equation relies on an arbitrary

function.

Method of of Characteristic System for Solving the PDE

De

finition 3.7

A prevalent method for addressing linear first-order partial differential equations is

the method of characteristics. This method is applicable to equations expressed in

standard form:

Oy of _
Z(IL‘,’%Z)@‘FK(Z’,*}/,Z)@—N(l’,’y,z), (316)

where Z, K, and N are functions of x, v, and z defined on an open subset of R®. A
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function ®(x,~) serves as a first integral of a differential system and simultaneously
constitutes a solution to the corresponding partial differential equation.

the characteristic system associated with the PDE president of the form is

dx dy dz
= = . 3.17
2o K@z~ N@o2) (3.17)

Eemark 3.7

The PDE solution is reduced to the search for two prime integrals of a system such

that:

q)l(xa7) = C, (DQ(xv’Y) = C2

where the general solution is ®(cy,c2) = 0 with co = ®(cy).

Example 3.14

Ascertain the comprehensive solution of the equation:

Let o(x,7,z) be the function to solve. Rewrite the equation:

Y2y + T2y = —X7.

we use this equality:
dv dy  dz

O AN 7 Vo'

we choose the first equality:

This is a first-order linear PDE. To solve, introduce the characteristic equations:

/xdx: /vdv

= 01:y2—$2;

where C] Is a constant.
d d

2. From @ _
vz -y

, solve:

= —xdr =zdz = 22+ 22 =C,,
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where Cy is another constant.

Thus, the general solution is:
g(z® =7, 2+ 2%) = 0,9(a® = %) = 22 + 2

where g and o are an arbitrary functions.

Example 3.15
Solve the first-order (PDE):

Rewrite the equation in shorthand notation:
Y, + x2u7 =0.

We apply the method of characteristics. The characteristic equations are:

dr _dy _du
72 o2 0
d d
First, solve the characteristic equation —32: = —Z:
0 x
3 3
/xzdx:/72d7 = :C—zl—l—c.
3 3
This yields the first characteristic:
C) =~* -2
d d d
Next, solve a9 Since o implies du = 0, we have:
0 22 0
u = CQ.

In its most basic form, the answer is a functional link among the following character-
istics:

d(v* —2®,u) =0, or equivalently, u = @(v*®—x?),

where ¢ is an arbitrary differentiable function.
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Example 3.16
Resolve the first-order PDE:

1 1
ou @_2

20z T30y
The characteristic equations are:
de dy du
z v

Simplify equations:

d
rdr =~ydy= o
2
d d
First, solve the equation Tx = TV, or equivalently, x dx = ~y dry:
x 2t
22 A
dv = / iy = S =2 1
/ac T yay 7 9 +c
This yields to:
C) =~* - 2%
d d d
Next, solve the equation TW = ?u, or equivalently, v dy = 7u:
v
d 2
/’Yd’V:/*u = lIg—l—c - u—fy2:CQ.
2 2 2
Thus, the second characteristic is:
Cy=u— 72.

The overall solution is represented as a functional relationship among the characteris-

tics.

¢(v* — 2%, u —~*) =0, orequivalently, u = @(y*—1?)+ 97,

where ¢ and ¢ are arbitrary differentiable functions.
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08

Figure 3.2: Illustration of first-order 1% partial differential equations for synthesis

3.2.2 Partial Differential Equations of the 2* Order

Definition 3.8

[5] Let ¢ be a function of two variables, © and 7. A second-order partial differential

equation is defined as a relation of the form

iy, 08 09 Op o Do
A Ox’ 0y’ 0x2 Oz’ 02

F( 0, (3.18)

involving the function ¢ and its partial derivatives up to the second order.

Remark 3.8

The solution to a second-order partial differential equation is contingent upon two

arbitrary functions.

Proposition 3.9

Examine a second order partial differential equation represented in the following man-
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ner:

0z 0%z 0%z Dz 0z
81(%7)@ + 252(377’7)% + 53(13;’7)8772 = F(z,7,7, P 8*7)7 (3.19)

in the context where z = ¢(x, ) represents an unknown function, and s1, sq, S3, F' are

specified functions defined within a domain D C R2.

Definition 3.9

A characteristic for the above equation is a curve in D satisfying the differential

equation:

Classification of PDE of the 2" order

The type of equations depends on their discriminant A = s3 — 5155 .

Definition 3.10
Only when A > 0 can the equation be classified as hyperbolic.

Example 3.18

The equation for vibrating strings:

Pe 0
0x? ot?

where z(xz,t) represents the motion of the point at abscissa x at time t. This is a

hyperbolic equation represented as (s; = 1,5, = 0, 83 = —k?).

Definition 3.11

Only when A = 0 can the equation be said to be of the parabolic form.

Example 3.19

Chaleur equation:

0z 0%z

ot~ “or

where t is the time, z is the temperature of a body and « is a constant. It is a parabolic

equation(s; = o, sy = s3 = 0).
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.

Definition 3.12
The equation is of the elliptic type if and only if A < 0.

Example 3.20

The equation of harmonic functions (or Laplace equation with two variables):

e
ox2 Oy

0,

is elliptic (s; = s3 = 1,85 = 0).

Figure 3.3: Define hyperbolic trajectory

y
Parabola ?
v
S,
(V]
kS P
= a
Focus d
(e}
Directrix Vertex
X

Figure 3.4: Define parabolic trajectory
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Figure 3.5: Define elliptic trajectory

Analysis of the Equation for Vibrating Strings

Let it be
0?2 ,0%2 0z

in which the functions ¢(x) and ¥(z) are defined |—o0, +00[.

Alembert solution

0%z 0%z
2222 =0
0x? ot?
a=1,b=0,c=—k*—=> A=k’
d—x:iﬁzik:mlx:idt:
dt 2

r=kt+c (=x—kt

r=—kt+cy = n=ux+kt

Any class solution C? from the equation of vibrating strings is of the form g(z — kt) +
h(z+ kt) where g and h are arbitrary class functions to define them we use the conditions:
9(x) + h(z) = ¢(z)
o)~ hia) = — [ w(r)r

so the classical solution of the equation 3.2.2 is :

1 r+at

— \\J .
+ 2k x—kt (T)dT

S t) = ;(go(x — k) + o + kL))

Remark 3.10

Consider an equation that contains only partial derivatives with respect to a single

variable. The equation can be analyzed as an ordinary differential equation, with the
integration constants treated as functions of the variable that serves as a parameter. In
a similar manner, if an equation contains only partial derivatives of a specific partial

derivative concerning one of the variables, it is possible to analyze the equation by
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treating the latter partial derivative as an intermediate unknown.

Example 3.21

O f J0 0f of .
L@x? =0= a—x(a—x) = o = g(y) sop(x,y) = xg(y)+h(y). where g, h are arbitrary
functions.

Py 0 0p. Op B
2o = 0= 5, (50) = By = 9(@) 0 pla,y) = hiz) + (7).

3.3 Special functions

Eulerian functions

Definition 3.13
We call the Eulerian integral of the first kind or beta function, the integral depending

on two parameters x and 7y defined as follows
1

Blz,y) = / t" (1 —t)""tdt. or

0
II
Blz,y) = 2/2 sin?® !t cos? ! tdt.
0

Definition 3.14

We call the Eulerian integral of the second kind or gamma function, the integral

depending on the parameter x, defined as follows

+o0
[(z,y) = / t"etdt, or

0
+oo 2

[(x,v) = 2/ 2 le tqt.
0
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Gamma function

2

2

Figure 3.6: Define Gamma function

Hypergeometric function

Definition 3.15

Definition

The hypergeometric function is defined by the series

KXT(a+k+ 100+ Ek+ 11 +c)2"
Fi(a,b,c, z) = Z F(1+a)l(14+b)(c+ 1+ k)k!

k=0

86 100

Figure 3.7: Define hypergeometric function
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Bessel function of the first kind

Definition 3.16
We call the Bessel function the function Jy(x), defined by

™ J-II

Bessel Functions of the First Kind for v € [0, 4]

05
0

Figure 3.8: Define the Bessel function

1 = i(x sin 6—\0) L :
I@) = 50 /_He o = f/ cos(xsin 0 — \Q)df.
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Series

4.1 Numerical Series

4.1.1 Series with Positive Terms

Let be (uy)nen a real numerical sequence.

Definition 4.1

[10] We refer to a real numerical series by its general name u,,

+00
> uk=ug+ur A+ Uy (4.1)
k=0

We denote by s, the partial sum of the first n terms and we have

Sp = Uy + UL+ ... + Up_q. (4.2)

Infinite HA

1/8

Series T

1/4

Zan=a1+az+---+an+~- /4
n=1

1/2

1/2

Figure 4.1: Define numerical series

Proposition 4.1

+oo
The numerical series Zuk is considered convergent if and only if its sequence of
k=0

67
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partial sums (S, )nen converges, meaning that lirjp s, exists and is finite; otherwise,
n—-+0oo

it is classified as divergent.

Example 4.1

Examine the convergence properties of the series characterized by the general term

1
a, = ———— forn > 1.
n2+3n+2

First, we simplify the general term using partial fraction decomposition. The
denominator factors as (n + 1)(n + 2), so we can write:

1 1 1
(n+D(n+2) n+l1 n+2

Ay —

This form suggests that the series is a telescoping series. Let’s examine the sequence

of partial sums, Sy:

g _i( 1 1 >
N n+1 n -+ 2

n=1
_<1 1)+<1 1>+<1 1>+ +( 1 1 )
S \2 3 3 4 4 5 N+1 N+2

In this sum, the second part of each term cancels the first part of the next term. The

1
only terms that do not cancel are the first term, 2 and the last term, “N12

1 1
SN_i_NJrQ

To assess the convergence of the series, we evaluate the limit of the partial sums as
N — oo:

) ) 1 1 1 1
§ = Jim Sy = lim (5-575)=59=3

1
Since the limit of the partial sums is a finite number, the series converges to 7

Theorem 4.2

The convergence characteristics of a series remain unchanged when a finite number of

terms are removed.

Proposition 4.3 (Series Properties)

—+o00 —+00
Let it be Z U, and Z v, tow numerical series A\ an arbitrary number we have
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Figure 4.2: Graph of simple convergence the series.

“+o00 —+o00
1-Y " u, convergent = Y (Au,) convergent.
n=0 n=0
“+o00 —+o00 —+o00
2—2 u,, and Z v, convergent = Z(un + v,) convergent.
n=0 n=0 n=0

Necessary condition for the convergence of series

Theorem 4.4
+oo
1] If li = 0.
[1] r;)un convergent so lim uy, 0

Corollary 4.1

+oo
If nl—g{loo U, 7 0 so nz:%un is divergent.
With regard to the investigation of the character of a series, it is not always possible

to compute its sum. Nevertheless, we are able to ascertain the nature of the series by

employing other methods; in order to do so, we want additional tools.

Example 4.2

Study the nature of this series:

U,=Vn?+1—+/n
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Simplify U,, and calculated the limite:

. . 1 1
i U= i 14 ) = o

The series diverges due to the essential condition for convergence

Example 4.3

Study the nature of this series:

Un:nsin(1>
n

Simplity U,, and calculated the limit:

U sin% Y sin%
n T T nosdso L
n n
, 1 . siny . . .
by use this change — = y so = lim —— =1 The series diverges due to the essential
n Yy——+00 Yy

condition for convergence.

Criteria for Series with Positive Terms

Theorem 4.5 (Comparison criteria)

“+oo “+oo

Let it be Z U, and Z v, two numerical series with positive terms verifying
n=0 n=0

Vn € Nu, <uv,.

(4.3)
or 4.5 is true from a certain rank.
Theorem 4.6
+00 too
1-If Z v, 1S convergent so Z U, 1s convergent.
n=0 n=0
+oo +oo
2-If Z u, is divergent so Z v, is divergent.
n=0 n=0

Remark 4.7

1/The series with the sum of a geometric progression which converges if the ratio q is
between 1 and —1 (|g| < 1).
+00 1

2/Riemann’s series Z — Is convergent when o > 1 and divergent when o < 1.
n
n=1
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+oo

3/Bertrand series Z

———— is convergent when a« > 1 ora =1 and § > 1.
n=1 ne (hl n)ﬁ

b= S0 R PN Y S

1 2 3 nn+l

Figure 4.3: Define Riemann series

Theorem 4.8 (Equivalence Criteria)

“+o0 —+00
Let it be Z u, and Z v, two numerical series with positive terms where u,, ~ v,

n=0 n=
then the two series are of the same nature.

Remark 4.9

The study of the nature of a series amounts to the study of its development limited

to the neighborhood of infinity, because the latter two are equivalent.

Example 4.4

_ _ cos(nm
Study the nature of this series: U, = #
n

, cos(n) 1. L. .
we use comparison theorem | —_— |< — since = »  — Riemann serie converge
n? n? n?
cos(n)

a=2>1so Z 5 the series converges absolutely so is converge by comparison.
n




72

Example 4.5
1
Study th t f thi ies: U, = —————
udy the nature of this series (i< )
1 1
For large n, In(1 + ﬁ) > 3 S0

n—-+o0o

1
UHZT:n2:> lim n? = +oc.
n2

equivalency causes the series to diverge, since Z n? diverges.

Theorem 4.10 (Alembert Criteria)

+o0o
[13] If in a series with positive terms Z u,, the limit of the report tntl
n=0 Un
is equal [, then:
1-The series convergent for | < 1.
2-The series divergent for [ > 1.
3-For | =1 we can not conclude.
Example 4.6
=X Inn
Study the nature of this series: Z —_—
— n!

we applied Alembert criteria:
y Upi1 y Inn+1 n! ) Inn+1 n! y Inn+1 1
im —_ —

= lim — = lim — = lim
n—too n—stoo p 41l lnn  noteo (n+ Dnllnn notee n4+1 Inn
™®nn
l<1= Z — Is convergent.
—= n!
Example 4.7

n!
Study the nature of this series: U, = —
n

we applied Alembert criteria:

U, D nl
lim - = lim (n+1) n_ lim n = +o0 > 0.
n—-+oo Un n—>+o0 n+1 n n—-+oo

The series diverges by Alembert.

Theorem 4.11 (Cauchy Criteria)

+o0o
[10] If in a series with positive terms nz::oun the limit of the nl_lgloo Yy, = 1

is finite and

:0:
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1-If I > 1 so Z uy, Is divergent.
o

2-Ifl <1 so Z u, Is convergent.

n=0
3-If | = 1 so we can not judge.

Example 4.8

+o00
Study the nature of this series: » o

n=1
we applied Cauchy criteria:

+o0o

. : . 2 ..

lim u, = lim V27° = lim 2" = 400> 1 so0 g 2" is divergent.
n—+o00 n—+oo n—+oo o}

Example 4.9

+o0o 1
Study the nature of this series: g —
n

n=1

we applied Cauchy criteria:
1

Lin
lim u, = lim {/—= lim (=)=
n—-+00 n—-+00 n n——+oo n,

—+o00

== lim —=0<15s0 Z — is convergent.
n—+oo n, 1 nn

Theorem 4.12 (Riemann criteria)

+oo

[10] Let it be > w, series with positive terms and Ja € R, Eﬁl nu, =1
n—0 n [e.@]

+oo

I-Ifa>1and 0 <] < 400 = Z u, is convergent.

n=0
+o00

2lfa<land0 << +o00 = Z u, is divergent.
n=0

Example 4.10

+00 1
Study the nature of this series: Z —_—
n=1/n(n+1)
we applied Riemann criteria:
lim n%u,, —a=1),
n—-+00 n
lim ——— =1, so: | # 0 and o = 1 = the series is diverge.
n——+00 TL( /1 + %)
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Theorem 4.13 (Cauchy integral criteria)

400

[10] Let it be ) u, a numerical series with positive terms and decreasing (starts to
n=0

decrease from a certain rank ng), we define the application f(x) as follows f(n) = u,

—+00
S0 Z U, and

“+o00
n=0 no

f(z)dz are the same nature.

Example 4.11

= Inn
Let it be Z —— we applied Cauchy integral criteria: the series with positive terms
n
n=3
. . Inz = Inn
and decreasing from ng = 3, we define the function —, Vz € [3,400] so Z —— and
z n=3

+oo In g o
/ ——dx they have same nature we calculate this integral so :
3 x

too ] 1
/ e - §(ln 2)?|12% = +oo so the integral is divergent and the same for the
3 x

series.

4.1.2 Series Represented by Various Symbols

Definition 4.2

A series is considered to have mixed signs if it contains both positive and negative

terms.

Remark 4.14

Alternating series represent a specific category of series characterized by terms that

can have varying signs.

Definition 4.3

o A series is termed absolutely convergent if the series of its absolute values,
Z |a,|, converges. A fundamental theorem asserts that every completely con-

vergent series is convergent.

o A series is defined as conditionally convergent (or semi-convergent) when the
original series Zan converges, while the series of its absolute values, Z la,|,

diverges.
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Example 4.12
+oo

sinn
0

Z |Smn |by the comparison we have:

ny/n

we study the absolutely convergent that mean:

) sinn 1
|sinn| <1=| ] <
’]’L2
+o00 3
Z —5 Is convergent because it’s a Riemann’s series o = 5 > 1 so by comparison
=172

is absolutely convergent = Z

n| o PN E: smmn
is convergen
ny/n =nvn = nyn

sinn .
is

the series Z |

convergent

Theorem 4.15

All totally convergent series are convergent; however, the reverse is not necessarily

true.

Theorem 4.16 (Abel)

Suppose that u, = w,.v, where w,, and v,, check the following conditions:

1-(vn)n inn is decreasing and lim v, = 0.
n—4oc
“+00

2- s, Is bounded where en is defined as in (B) so the > u, is convergent.
n=0

Theorem 4.17

Suppose that u,, = w,.v,, where w,, and v,, check the following conditions:

1-(vp)n inn Is a decreasing and Erf v, =1, (L €R).

+00 T
2—2 w,, is convergent. So Z U, Is convergent.
n=0 n=0

Example 4.13
Study the nature of this series : U, = a"e™", |a| < 1

Rewrite U,, = v,.w,, = a"e~ " we use Abel theorem. Since Z a", the series converges
geometrically ( |a| < 1).

And 1_1)1;{1 e~ " =0 so by Abel the serie is converge.
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Definition 4.4 (The Alternating Series Test)

An alternating series is characterized by a specific structure that follows this form:

Uy — Uy +uz + ...+ (=), + . (4.4)

where u,, > 0 for all n € N*.

}\ ;\./.\'A'A'/'\'A°A-A-
R P ] vS \?7 v? vllleYl«Sle\Klgh

Figure 4.4: Define alternating series

Theorem 4.18 (Leibniz)

[13] An alternating series consists of terms that change in sign from one to the next.

o0

A series of the form Z(—l)"‘lbn is assured to converge if it satisfies all three of the
n=1

following criteria:

1. The values of b, are required to be positive for every n (i.e., b, > 0).

2. The sequence of terms {b,} is required to be decreasing; specifically, b, 1 < b,

for all n after a certain threshold.

3. The terms must converge to zero. The limit of b,, as n approaches infinity is 0.

Example 4.14

+oo (__1\n
Z ( 2) for study the convergent we use theorem Leibniz:
n=1
—Lisd d lim - —0s0 S Y t
Un = 5 Is decrease sequence and lim 5 =0 so nz::l 5 is convergent.
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4.2 Sequences and Series of Functions

4.2.1 Sequences of Functions

Definition 4.5

A sequence of functions is defined as a sequence in which each term is a function that

depends on a parameter n, denoted as follows:

(fn)neN‘ (4.5)

Categories of Convergences

Simple convergence

Definition 4.6

A sequence of functions (f,,) demonstrates simple convergence to a function f on an

interval I if, for every distinct point x € I, the sequence of values f,(x) converges to

f(@).

Definition 4.7
Let f: I C R — R be a sequence of functions. We state that the sequence (f,)

converges simply to xy on I if and only if the sequence f,(xq) is convergent.

Remark 4.19

The sequence of functions f, converges pointwise to f if the following conditions hold:

1. For all x, the limit of the sequence satisfies:

lim fo(z) = f(a).

n—-+o0o

2. For all x, the absolute difference converges to zero:

lim | fu(z) = f(z)] = 0.

n—-+o0o
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Example 4.15

We study this sequence f,(x) = o \775 5
nx
: : nx . x 1 -
M fe) = M 2 T () = 5 = (@) where s € R so
0xz=0
flx)=141
S TE 10, +o0[
1-For x = 0:

lim |[f.(x)—f(z)] = nl_l)gloo | fn.(0) — £(0)| = 0 so f, is simple convergent for the point

n—+0o
Ty = 0.
2-For x € )0, +o0]:
. L Vnx Lo 1 -
i [ fo(@) = fz)] = lim |1+7\/W - l= lim 21 ) 050 fo(z) — f
simple convergent in |0, +o0[ so f,(z) — f simple convergent in |0, +o0][.

Uniform Convergence

Definition 4.8

Uniform convergence, however, is a more stringent condition. It requires that the

convergence occurs at the same rate across the entire interval. Formally, a sequence
(fn) converges uniformly to f on I if the supremum of the absolute difference between

the functions approaches zero:

lin sup| f,(a) = /(@)] = 0

n—oo zE

Remark 4.20

Uniform convergence necessarily leads to simple convergence.

Theorem 4.21

Ofn .
Let it be (fn)nen a sequence of functions is simply convergent to f if af is bounded
x

then the convergence is uniform.

Example 4.16

nw
We study uniform convergent the sequence f,(z) = L

1+ /na?
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Figure 4.5: Graph of defining the uniform convergence

For the simple convergent we have:

Ox=0
flz) =

1
— z €0, 400]
T

For the uniform convergent, we have:
i supl f(z) = f(a)] = 0

1/gn(x) = | fulz) — f(=)]
2/supgy(x)/z € 1

3/ lim g, (x)

n—-+o0o

1 1
1/For x € 10,400 f(x) = - and g,(x) = (———=—) so we seek for supg,(z) we

z(1+ y/na?
find the derivative of g,(x):
, o —(143y/na?) L L 1
gp(T) = (1 + /nz?)? S0 the sup,ese+gn(T) = }jli%gn(l') = iﬂm
so fn(z) not uniformly convergent to f.

:+OO

Properties of Functions Sequences

Proposition 4.22 (Continuity Theory)

Let it be f : I C ® — R a sequence of functions continuous uniformly converges to

fonI. Then f is continuous.

Proposition 4.23 (Derivation Theory)

Let (fn)ner be a sequence of functions that converges uniformly to the function f.

The sequence of functions (f!),ex converges uniformly to f’.

Proposition 4.24 (Integral Theory)

Let it be (f,)new a sequence of Riemann-integral functions converges uniformly to a
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function f on [a,b], so

lim /ab fo(z)dx = /ab lim f,(z)dz = /ab f(z)dz.

n—-+o0o n—-+oo

4.2.2 series of functions

Definition 4.9

Consider a sequence of functions denoted as f, : I C ® — R. A series of functions

is defined as the infinite sum of the terms of f,,, which we denote as follows:

400
Yo fa(x) = fit fot fo bt ot fap o (4.6)
n=0

Definition 4.10

We denote (s,)new as the partial sums for a sequence of functions f,:

Sn=_ fe="Jo+ ot fst ..+ [ (4.7)
n=0
Simple Convergent
Definition 4.11
+o0o
Consider the series of functions » _ f,(x) defined on the interval I € R. We charac-
n=0

terize it as simply convergent if the series of partial sums (s, )nex converges simply on
I:
lim s,(z)=s(z)= lim |s,(z)—s(x)|=0. (4.8)

n—-4o00 n—+400

Uniform Convergence

Definition 4.12

+o0
We state that the series »  f,(z) converges uniformly on the interval I.
n=0
& lim sup|sy(z) — s(x)] = 0. (4.9)

n—+00
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Remark 4.25
“+oo
To analyze the convergence of the series Z fu(x), one can employ various criteria such
n=0

as comparison criteria, equivalent criteria, Riemann’s criteria, the Alembert criterion,

and Cauchy’s criterion. It is important to note that if f,, is either positive or negative
“+o0o

on the interval I, where x is treated as a constant variable, then »  f,(z) can be

n=0
regarded as a numerical series with a positive general term.

Normally Convergent

Definition 4.13

A series of functions Z fn(z) is said to be normally convergent on an interval
I if the series formed by the supremum of the absolute values of each function is a
convergent numerical series. That is, if:

o

> (sup|fn(:c)|> < 00

n=0 \TE€Il

Normal convergence implies uniform convergence, making it a very strong condition.

Theorem 4.26 ( Weirtrass)

+o0o
[13] Let it be > fu(z) a series of functions define in I € R if we find a numerical
n=0

sequence (C,)neny Where:

Vo € R, [fu(2)] < Ch, (4.10)
+oo +oo
so if it was Z C,, convergent so Z fn(z) normally convergent in I.
n=0 n=0
Example 4.17
400 +o00 "
F iousl le: n = ——
or previously example nz:% f. nz:% T
1/Simple convergent:
Vo € [0, +oo[, fn(z) > 0.

T 14n2
For fixed x we applique role Riemann:

Ja e R, nLHPoon fulz),
n 2,.n

da = 2, where, lim n® = lim lim 2" = lim 2"
n—-+o0 1+ n? n—+oo 1 4+ n2 n—+oo n—+00
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0if zel0,1]
lim 2" =49 1lifz=1

n—+00
+oo ifr €1, 400]
do=2>1:

0if ze€l0,1]
lim n*f,(x) =< lifx=1

n—+00
+oo ifr €1, 400]
+o0
According to Vx € [0,1] = Y f.(x) simply convergent.
n=0
For x € |1, +o0[ we applique Alembert method:

. fari(x) . an 1+ n? n?+1 far1(x)
lim = lim = r =z, so, lim =
e fu@) e T (0 1E o 1 (T 1P e 7 (@)
+oo
x > 1 according to Alembert = an(a:) not simply convergent in |1,+oo[ =

n=0

Z fn(x) not simply convergent in [1,+00l.

Z/Normaﬂy convergent in [0, 1]:
+oo

Z fn(z) normally convergent in [0,1] < > sup|f,(z)| convergent.
n=0

)] = 11—

2'3upx€[0,1] |fn (-1')’ = SUPze(0,1]

l,n

1 4 n?

we calculate the derivative of f,(x) so:
., na"!

(1 _I_ ng) -

1+n?
Zsup\fn Z

+00 1
1+n
we study the nature of this series by using the equivalent method:
1 1 ™=

> 0, Yz € ]0,1] so the sup of the function be at value v = 1 =

——— ~.. —, IS convergent because it’s Riemann series « = 2 > 1 = is
1+n2 T n2 8 Z 1 +n?
“+oo
convergent = Z T2 is convergent so,
n= 0 n
+o0
Z supzejo1]| fo()|is convergent < > f,(z) normally convergent in ]0, 1]
n=0 n=0
For z=0:
+oo
Z fo(z Z fn(0) = 0 is normally convergent in z = 0 so Vx € [0,1] Y f,(x) is
n=0

normal] 'y convergent
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Absolutely Convergent

Definition 4.14

+00 oo
Let it be Y fu(x) series of functions define in I € R we say that Y _ f,(x) absolutely
—0 n=0
n oo
convergent if » | f,(z)| simple convergent in I € R.
n=0

Example 4.18

We study the convergence of the series:

> sin(nz
>
n=0

To determine its convergence, we consider the absolute convergence by examining:

Z Z \sm nx)

n=0

z € R.

sm 7’L£L’

For all x € R, we have |sin(nx)| > 0. To apply the comparison test, note that:

, | sin(nz)| 1
|sin(nz)| <1 = o < 3
[ee]
The series Z — Is a convergent p-series (Riemann zeta function at p = 2), since
n=0
sin(nx 1 sin(nx
p = 2 > 1. By the comparison test, since # < —, the series Z M
n n n=0
sin(nz) .
converges. Therefore, the original series Z is absolutely convergent for all
n=0 n?
x € R.
Properties of Function Series
Continuity theory
Proposition 4.27 (Continuity Theory)
+00
Suppose we have Y _ f,(x) continuous series of functions and uniformly convergent in
n=0

I € R so: s(x)=>_ fulz) is a continuous function in I € R.
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Proposition 4.28 (Derivation Theory)

+o0o
Suppose we have Z fn(x) a series of functions uniformly convergent. Then the series

n=0
—+00

of functions Z /7 uniformly convergent in I € R.
n=0

Proposition 4.29 (Integral theory)

+o00

Suppose we have Z fu(z) a series of Riemann-integral functions uniformly convergent
n=0

on [a,b] € R, so

/fn )dx) /biofn —/abs(x).

4.3 Power Series and Fourier Series

Power Series and Radius of Convergence

A power series centered at x is an infinite series of the form:
(o]

Z (x — xo)". (4.11)

A key feature of any power series is its domain of convergence, which is always
an interval centered at xy. The size of this interval is determined by the radius of
convergence, denoted by R.

The series is guaranteed to converge absolutely for all x within this radius (i.e., for
|z — x| < R) and diverge for all x outside of it (i.e., for |z — x| > R). The convergence
at the endpoints (z = xo = R) must be checked separately. The value of R can be found
using the Ratio Test:

Qn,

R = lim

n—o0

(4.12)

Qp41
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e

i

7

Y a.z" CVA

lim a,x" =0
= x

Feo)

\\?

> a,z" DVG

(a,x"),, bornée

>O_

7~

-

/
/

(a,), non bornée

Figure 4.6: Define the power series

Determination of the Radius of Convergence

Criterion))

Theorem 4.30 (he Ratio Test (Alembert’s
R = lim
Example 4.19
R = lim a3"+1| or, R= lim |an+17|.
n—-+oo a3n+2 n——+oo an+18

Theorem 4.31 (Cauchy Criteria)

R =

lim

1
n—-+o0o n/‘an‘ '

Example 4.20

1
R= lim lim

1
n—-+oo n3/‘an3 ’

or, R =

n—-+0oo anJrl )

Qn

(4.13)

n—+oo0 2n+3/‘a2n+3| '

4.3.1 Some properties of Power Series

Proposition 4.32 (Continuity)

within its convergence domain.

Theorem 4.33 (Derivation)
+oo

The sum of an integer series constitutes a continuous function across any sub-domain

Let it be > a,z"™ power series whose domain of convergence is |—R, R| and the sum

n=0
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400

s(x), either Z na,x" ' deduced from the first by term-to-term derivation, the latter
n=0

has the same domain of convergence as the first, moreover its sum | = s'(x).

Remark 4.34

The above theorem can be generalized to any order of differentiation; specifically,

every series obtained from a given series through n differentiations possesses the same

domain of convergence, and its sum corresponds to the n'™ derivative of the original

series.

Theorem 4.35 (Integral)

—+o00
Let it be Z a,x™ power series whose domain of convergence is |—R, R[ and the sum
n=0

+0o0
an .
s(z), either c+z ?xnﬂ deduced from the first by term-to-term integral, the latter
n=0 "

has the same domain of convergence as the first, moreover its sum m(x) = /s(m)da:.

4.3.2 Power Series (Séries de puissances)

Definition 4.15

A power series is defined as any series expressed in the following form:

+o00

> an(z — xo)", (4.14)

n=0

where a,, is a numerical series.

Remark 4.36

One can consider the change as X = x — x, allowing this expression to transform into

a complete series.

Remark 4.37

The convergence interval of the power series is centered at x.

Remark 4.38

The Mac Laurent series development represents an entire series, on the other hand

that of Taylor represents a power series in the vicinity of the point x.
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Applications of Power Series

Limits Calculating

Corollary 4.2

f we are unable to determine the limit, we can compute the limit of the function’s

development in within close proximity of the desired point.

Example 4.21

e’ —1

we calculated this limit: lim — )
1 z—0 SInx
We have; 1111(1) . We replace e* and sin x by their Mac Laurent developments,
=0 sinx
we obtain:
e’ —1 1+z-—1

lim — = lim —hre s =1.
z—0 SInx z—0 T

Extension by Continuity

Corollary 4.3
To determine whether a function can be extended by continuity at a point where it

is not defined, it suffices to express it as an entire series. If this series is continuously

differentiable, the function can be extended at that point.

Example 4.22

sin
Can we extend the function f(x) = in a continuous function on R. We have:
x

‘ +oo $2n+1 sinz +0o0 2n
Smx_;)(zn+1) Z (2n + 1)

The resulting series is deﬁned and belongs to the class C* in R, so the function f(z)

permits a continuous extension.

Integral Calculation

Corollary 4.4
Every continuous function possesses an anti-derivative; however, many functions have

anti-derivatives that cannot be directly defined, albeit they can be computed via series.

Example 4.23

1
We calculate this integral: / erdx, we have:
0
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—+00 (_1)n

9 +o00 (_1>nx2n 1,
— :> = —_— = dr = —_
Z ‘ nz::() n! /o o nz:%n!(Qn—i—l)

Integration of Ordinary Differential Equations

Corollary 4.5
When tasked with integrating a specific ordinary differential equation (O.D.E) whose

resolution cannot be reduced to a quadrature, we can consistently derive and ap-

proximation solution by assuming that the answer can be expressed as a power series

expansion.

Example 4.24
We solve the differential equation using a power series expansion of y(x)

(z+1)y —ay=-1
y(0) =2 z € [~1,+o0]
Let

o0
= Z anx".
n=0
Then,

=Y na,x" =3 (n+ ay2",
n=1 n=0
where we relabeled the index of the second sum by setting n =mn — 1.
Inserting y(z) and y'(x) into the differential equation:
(x+1) Z (n+ Day1z" —xZan = —1.

n=0

Expanding (z + 1)y’ and collecting terms:

> (n+ Dapz™ + > (n+ Dagpz™ = > aa™ = -1
n=0 n=0 n=0

Shift the indices of the sums to align powers of z":
oo o0 o0
Z na,r" + Z(n + Day2™ — Z 12" = —
n=1 n=0 n=1

Combine terms for ™ and write the equation as:

(n+ 1)aps1 +na, —ap—y =0 forn>1,
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and the constant term aq satisfies:
a1+ ag = —1.
Using the initial condition y(0) = 2, we have:
ag = 2.
From the recurrence relation, compute coefficients a,,:

a1:—1—a0:—1—2:—3,

and so on.

Thus, the solution is:

3 1
y(m):2—3m—§x2+§x3—|—---.

4.3.3 Fourier Series

Definition 4.16

We define a function f as periodic with period p if it meets the following condition:

Vee D, x+peD: flx+p) = f(x), (4.15)

where D denotes the domain of definition of f and p represents the smallest positive

integer satisfying (4.16).

Definition 4.17

We define a function f as monotonic by slice on the interval [a, b] if it can be partitioned

into subintervals where f is monotonic on each subinterval.

Remark 4.39

Let f be a slice-monotonic function that is limited on |a, b|; if it exhibits discontinuities,
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they can only be of the first kind.

Definition 4.18

A trigonometric series is characterized as any series represented in the following format:

fla) = % + +Zoo(an cos(nz) + by sin(nz)), (4.16)

n=0

where ayg, a;, b; are real numbers called coefficients of the series.

Determination of Fourier Coefficients

Consider a 2I1—periodic function that can be represented by a trigonometric series of the

+oo
a
form (4.18), suppose that the series ?0 + Y (an + by) is absolutely convergent, therefore
n=0
(4.18) is uniformly convergent, we can therefore integrate it term by term. Knowing that:

+I1 +I1 [Hifn==~k
/ cos(nz) cos(kx)dr = / sin(nzx) sin(kz)dr = (4.17)
- - Oifn#k
and
+IT HII +II
/ cos(nz)dr = / sin(nz) = / cos(nx) sin(kz)dx = 0,n, k. (4.18)
I I I

The integration of the two members of (4.18) gives:

1 +0
ag = ﬁ/—n f(z)dx. (4.19)
We will now multiply both sides of (4.18) by cos(kz) and thereafter integrate the result
from —II to II, yielding:
1 +0
ap = ﬁLH cos(nx) f(x)dz. (4.20)
Let us multiply both sides of (4.18) by sin(kz) and integrate the result between —II and

II, we obtain:
1 4o
b, = —/ sin(nz) f(z)dx. (4.21)
IT J-m

Thus we found the coefficients of the series. These are called Fourier coeflicients.




91

Theorem 4.40

Any periodic, limited, and monotonous function can be expressed as a Fourier series.

Its sum s(x) = f(x) at points of continuity equals the function value, while at points
of discontinuity, it corresponds to the arithmetic mean of the right-hand and left-hand

limits.

Remark 4.41

The Fourier series expansion of even functions does not contain the by, (b, = 0).

Remark 4.42

The Fourier series expansion of odd functions does not contain the an (ag = a, = 0).

4.3.4 Fourier Series of Periodic Period Functions # 211

Suppose that the function f(x) is 2l-periodic (I # 0,1 # II), if moreover f is monotonic
by slice and bounded then it is developable in Fourier series, whose Fourier coefficients

are worth

+ 1 [+ I 1 [+ I
/ 2)dz, an = f/ F(@) cos("=E), by = f/ Fl@)sin(=0), (4.22)
] L) l L Ja l
In addition we have:
= [z II
_ @+Z(ancos(nl )+ bn sm(nlx)). (4.23)
n=0

Parseval Equality

Theorem 4.43

Let f be a function developable in Fourier series of period 2l we have:

=B S (420

Fourier Series in Complex Form

As previously stated, if f can be represented as a Fourier series, we designate it as follows:

o0 11 11
o Z(ancos(nlx ) + by sm(nlx)), (4.25)
n=0
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where: . .
I FRAIE _;nllz
cos(lfy—¢ e T (4.26)
l 2
and: . .
nllz et — et T
i = 4.27
sin(") S (.27
so we found:
—+o00
fl@)=3 e, (4.28)
where:
CO—%,CTL*& 22 andc_n:a —;Z , (4.29)
or simply:
1 +I1 _snllx 4 30
= — |
Cn, 21’[/41 f(z)e : (4.30)

Example 4.25

We determine the Fourier series of this function f(z) = |sin(z)| we have

1)The function f being periodic, bounded and monotonic per slice therefore can be

developed in Fourier series.

2 Lo d 1
Jao = [ f(@)de ==

1 I 0¢f nis odd
ay, = ﬁ/ f(x)cosnxdr = a, 4
I

II(1 — n?)
and we have the function f is even, then b, = 0.

n 1S even

We can therefore write:
4

= _——— and:
s, 1 — ) an
2 I 4
flz) = o + 21: {1 = n2) cos(2nz).
+00 4
3)Deduction of ) =)’ f(x) is is continuous in xqg = 0 = f(0) = 0 so:
T —n

+z°:°4_1
(1 —n2) 2

1
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Figure 4.7: Graph of a,, coefficient.

Figure 4.8: Graph of b, coefficient.

- 0 m

Figure 4.9: Graph of design Fourier series.




CHAPTER 5 L]

Fourier Transformation

The Fourier transform (FT) serves as a significant mathematical instrument that transi-
tions a function from its time or spatial domain into the frequency domain, broadening
the application of Fourier series to encompass non-periodic functions.

Definition 5.1

[12] L' is the set of summable functions.

Definition 5.2

[12] L? denotes the collection of functions whose squares are summable.

Definition 5.3

The set L' consists of functions specified on R, which may be discontinuous at a finite

number of points, but are continuous elsewhere and exhibit absolute integrability over

R.

Definition 5.4
Let it be f : R — C, f is said to be rapidly decreasing, and we note f € S if f € C'™

and if,

Vs,m € N, 3G, : |z f P (2)] < Gom, Vo € R. (5.1)

Definition 5.5
Let it be f : R — C, f is a test function if it is indefinitely differentiable with

compact support, and we note f € D, in other words

feC®and 3p,qe R : p<q,VreR/[pq, f(x)=0. (5.2)

Definition 5.6 (Fourier Transformation)

[12] Let it be f : ® — R, a locally and absolutely integrable function on R. The

94
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function denoted F' : R — C, as a result,

F)w) =5 [~ fetar (5.3)

Definition 5.7 (Inverse Fourier Transformation)

[8] Let C — R retrieves the original function from its frequency representation:

Ft) = = | R @) . (5.4)

")

Remark 5.1

The variable t is referred to as a temporal variable as it often represents time. The

variable x is referred to as a frequency variable since it often represents frequency or

pulsation. The expression f(t) is referred to as a signal.

Signal s(r) Fourier Transform S(w)
W, I
cosine wave single frequency

sollne [

uniform band of

sinc function frequencies
Gaussian Gaussian
double exponential Lorentzian

Figure 5.1: Design a Fourier transformation

Example 5.1

Analyze the Heaviside function:

0if t<0
1if t>0.

H(t) =

The (FT) of the Heaviside function is computed as follows:

1 oo , 1 foo 1 , —1
F H t — 7/ H t —iwt dt — 7/ —wt dt —iwt throo — )
(H(1)) 21 J—co (t)e 27 Jo ¢ —z’w\/27re =0 wV 2T




96

5.1 Properties of Fourier Transformation

5.1.1 Linearity

For constants a and b, and functions fi(¢) and f5(t), the (FT) is characterized as follows:

Flafi(t) +bf2(t)] = aF[f1()] + bF[fa()] (5.5)

Linearity of the Inverse Fourier Transform

Let a and 3 denote two arbitrary complex numbers, and let f (w) and §(w) represent two

functions that are locally integrable and absolutely integrable over C. Then:

F af + 83| (t) = af () + Bg(t). (5.6)

Differentiation in the Time Domain

The (FT) of the n-th derivative of f(t) is expressed as:

7 (%) = i) 65.7)

Differentiation in the Frequency Domain

For the n-th derivative of f (w), the inverse Fourier transform is given by:

dn f
dw™

(w) =-F ()" f(1)). (5.8)

Translation in ¢

For a time shift ¢, the Fourier transform satisfies:

Pt~ o)) = e f(w). (5.9)

Remark 5.2
A translation in the time domain results in a linear phase shift in the frequency domain,

—iwto

represented by e . This operation does not influence the magnitude of the (F'T).
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Scaling in ¢ (Time Domain Contraction)

For scaling ¢ by a factor a, the (FT) is given by:

w

F(f(at)) = —F () | (5.10)

_m -

5.1.2 Shift Theorem

A temporal shift in the original function is equivalent to a phase shift in the frequency

domain.

Ff(t —7)] = )0, (5.11)

The (FT) of f(t) = e~ is expressed as:

Flw) = Zeif. (5.12)

5.1.3 Modulation
F(e“'f(t) = F(w — wo. (5.13)

5.1.4 Conjugation
F(F) = F(w). (5.14)

5.1.5 Convolution

The convolution product of the real or complex functions f and ¢ is the function f * g

defined as follows:
+o0o

(fx9)@) = [ fla—glt)d. (5.15)
The convolution product of the real or complex functions f and g is defined as the function

f*g.
F(f*g)(t) = F(f)(w).F(g)(w). (5.16)

5.1.6 Continuity

fel=F(f)eCR). (5.17)
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5.1.7 Behavior at infinity

lim F(f)(w)=0. (5.18)

Remark 5.3
The Fourier transform % (f) has the following properties depending on the symmetry

and nature of f(t):

o If f(t) is a real and even function, then its Fourier transform .7 (f) is also real

and even.

o If f(t) is a real and odd function, then its Fourier transform % (f) is wholly

imaginary and odd.
o If f(t) is imaginary and even, then .Z(f) is imaginary and even.

o If f(t) is an imaginary and even function, then its Fourier transform .7 (f) is

also imaginary and even.

5.1.8 Theorem of Plancherel

Let it be the functions f, g € S we have:

| gt = [ E( @) @) (519

—0o0 —00

5.1.9 Theorem Parseval

Let f(t) be a finite energy function (f € L?) and F(f)(w) denote its (FT). These are the

assignments f(t) and F'(f)(w) possess equivalent energy. That is to say:

[ rwra = [T RGP (5.20)

o0
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Remark 5.4

The selection of parameters in the Fourier Transform can profoundly influence the out-

come. Comprehending the characteristics and dynamics of functions in both temporal

and spectral domains is essential for precise analysis.

5.2 Utilization in the Resolution of Differential Equa-
tions

The Fourier transform enables the explicit resolution of a linear differential equation by

converting it into a more manageable form.

Results for Constant-Coefficient Linear Differential Equations

Proposition 5.5

Let f be an integrable function on R taking values in C, such that . (f) = F. Then
we have:
" f ,
F %(t) = (2imw)"F(w), neN. (5.21)
In general:
d d?
F <dJ;(t)> = (2itw)F(w), F (dtf(t)> = (2i7w)*F(w). (5.22)

Consider the differential equation:
Zn:oan—jy(”_j) (1) =g(t), yOt) =y(®). (5.23)
=
The (FT) is used .# to both sides:
>,y (4°0) = Fal0) (5.24)
=

With ¢ (t) = y(t). Making use of the (FT) to both sides of (5.2) and using its properties,
we obtain:

znj an i F (y" (1)) = Flg(t)). (5.25)
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Using Proposition 5.5, (5.2) this becomes:

[Xn: ay—j(2imw)" | F(w) = F(g(t)). (5.26)

j=0

Permitting .# (y(t)) = F(w), currently, we possess:

F(w) = {En: an_j(inw)”_j] F(g(t)). (5.27)

J=0

This can be written as:
F(w) = Z(h(t))F(9(t)) = F(h(t) * 9(1)), (5.28)
where * denotes convolution. Using the inverse (FT) instead:
y(t) = h(t) * g(t).

the function f should be defined on and be integrable. R that takes values in C, and

let its Fourier transform be denoted as .% (f) = F. Subsequently, we present:

FUf0) = =@ FE0) = (52) T
and in general: .
Fe o) = (o) T

Solving a Differential Equation Using the Fourier Transform

Example 5.2

Examine the subsequent ordinary differential equation:

du
m +au =0, u(0)=up.

Applying the Fourier Transform, we get:

(iw + a)U(w) = up.

Solving for U(w), we find:

Ug

w+a
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Example 5.3

Solve the following starting point problem using the (FT):
u"(t) — +4u(t) = cos(3t),
1.0n both sides of the ODE, apply the (FT).
F{u"(t) + 4u(t)} = F{cos(3t)}

2.Solve for the transformed variable U(w) using the properties of the Fourier Trans-

form.
s

(iw)?U(w) + 4U (w) = 759

3.Determine using the Inverse (FT) method: u(t).

ut) = F~H{U(w)}

Solving Partial Differential Equations (PDEs)

Example 5.4
Examine the one-dimensional heat equation:
0 0?
E)itL = ka—;;, u(z,0) = f(z), u(0,t)=wu(L,t)=0.

What we get when we use the (FT) on the x and t variables is:
iwU (w,t) = —kw?U(w,t) (after inverse transform).

Solving for U(w,t) and then applying the inverse Fourier Transform gives the so-
lution.

1. Apply Fourier Transform in x and t:
iwU(w,t) = —kw?U(w, t)

2. Solve for U(w,t):
Uw,t) = c(w)e

3. Use Initial Condition to Find c(w):

Uw,0) = F{f(x)}
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4. Substitute Back to Find u(z,t):

u(z,t) = FH{U(w,t)}

u(z,t) = c(w)sin (mrx) ¢kt
n=1 L
Example 5.5
Determine the solution to the wave equation:
0? 0? 0
aTZ - CQT;;, u(z,0) = sin(z), a%“’ 0)=0 (5.29)

where 0 < x < L and t > 0.

1. Apply Fourier transform in x and t:

iwU(w,t) = —kw?U(w, t)
Uw,t) = c(w)e ™

2. Use initial condition to find c(w):

U(w,0) = F{sin(z)}

3. Substitute back to find u(x,t):

u(z,t) = FH{U(w,t)}

2 foo 1 . Ckw?
u(z,t) = —/0 msm(m)e Mt

Remark 5.6

By transforming temporal or geographical concerns to frequency domain issues, the

Fourier transform solves differential equations. This method is widely used in science

and engineering.




L] CHAPTER 6 L]

Laplace Transformation

The Laplace Transform (LT) is an integral transform that plays a crucial role in various
fields of science and engineering. The main function is to transform linear ordinary
differential equations, which may pose challenges when addressed in their original form
(the "time domain"), into straightforward algebraic problems (in the "frequency domain").
Upon resolving the algebraic problem, the application of the inverse Laplace transform
facilitates the determination of the solution to the original equation. This approach offers
a structured framework for examining and addressing issues associated with dynamic
systems.

Definition 6.1 (Laplace transform)

[9] Let f : [0, 4+00] — R or C and s € C, where the Laplace transform of a function
f(t) is defined as:

LU} = Pls) = [ e f(t)a. (6.1)

0

Definition 6.2

Any zero function is defined as a causative function for t < 0.

Definition 6.3 (Existence of the Laplace transform)

[9] Let f(t) be a piecewise continuous function defined on the closed interval [0, p],

(p > 0). We define that a function f exhibits an exponential « order at infinity if:

JA >0, 3a > 0, Vs > a, wehave |f(t)| = Ae™. (6.2)

103
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AU OO LN e
P& = [ o 19=cosy
, o
. > 1t =
“ /0 e ! cos(t)dt =05
‘ N

Figure 6.1: Design of the Laplace transformation

Theorem 6.1

Any function continues piecewise, checking f € D and,

38,0<B<1: %g%tﬂf(t)\zo, (6.3)

admits a Laplace transform (it exists).

Remark 6.2
The equality (6.1) is equivalent to

lim |e™"f()] = 0. (6.4)

t—4o00

Definition 6.4 (Singularityof the Laplace transformation)

Let it be f(t), g(t) two piecewise continuous functions having an order exponential to

infinity on [0, p|, (a > 0) if:

LLf(0)} = LLg()} = () = g(t), VL € [0, p]. (6.5)

Definition 6.5 (Inverse Laplace Transformation)

£t = = / T et (s)ds. (6.6)

271 —100
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6.1 Properties of the Laplace Transform

6.1.1 Linearity

The Laplace transform is a linear operation, which indicates that it adheres to the fol-
lowing property:

L{pf(t) +a9(t)} = pL{f ()} + ¢L{g(D)}. (6.7)
Example 6.1

Calculate the Laplace transform of the function f(t) = cos(kt). We possess:

eikt + e—ikt

cos(kt) = —y %0
ikt | —ikt
£(cos(kt)) = .c(e*';)
1
2£( zkt) + c( fzkt)
_ 1 o —st ikt —st _—ikt
1 —2[/06 edt+/oe e "M dt]
Lo (%0 (Cstik)t  (—s—ik)t g _ S
2[/0 e dt+/0 e dt] T
6.1.2 Derivative
The (LT) of a function’s derivative is expressed as:
L{f(D)} = sL{f ()} = £(0). (6.8)
6.1.3 Integration
The (LT) of a function’s integral is expressed as:
t 1
L{[ 1(ryar} = ~£{f®). (6.9)
0 s

6.1.4 The Transformation’s Translation

Let f(t) be a function that meets the criteria outlined in Theorem 6.1; consequently, we

obtain

L(e™™f(t)) = F(p+w). (6.10)
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6.1.5 Time Delay

Let f(t) be a function that meets the criteria of Theorem 6.1; thus, we obtain

L(f(t—7)) = F(p). (6.11)

6.1.6 Convolution

The (LT) of convolution as follows:

L{f(t) x g(t)} = F(s)-G(s). (6.12)

Remark 6.3

if the limits exist so:

1—%1_{% f(t) = lim sF(s).

—+00

2- lim f(t) = lim sF(s).

t—4o00 s—0

6.2 Utilization in the Resolution of Differential Equa-
tions
This study will analyze the differential equation:
apr ™ (t) + a1z V() 4 - - + anz(t) = (1), (6.13)
under the beginning conditions:
gD(0)=x; foralli 0<i<n-—1, (6.14)

where the zeroth-order derivative is equal to the function itself (2% (t) = z(t)).

Let ag # 0, and consider the functions f(t) and z(t), along with their derivatives up
to order n, to be original. Applying the (LT) to both sides of Equation (6.13), and using
the differentiation rule and linearity of the (LT), (6.13) becomes:

(aop" + ap™ ™" + -+ +an) X(p) = F(p) + B(p), (6.15)
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where:
X(p)=L{z(t)}, F(p)=L{f(D)},

and:

B(p) = zolaop™ ' Har1p" 2+ -+ an_1)+x1(agp” 2+ ap” P4 Fan_o)+

The solution to (6.15) is given by:

F(p) + B(p)

X(p) = :
®) app™ + ar1p" Tt + -+ ap

Thus, the solution to (6.13) is:
o(t) = L7H{X(p)}-

Solving Ordinary Differential Equations (ODEs)

Example 6.2
Consider the first-order ODE:

dy —2t
— 4+ 3y = 0)=1

Compute the (LT) of both sides:

e840y - )

1
Y(s) —y(0) +3Y(s) =
Y () = 9(0) +3Y (s) = —
Substitute y(0) = 1:
1
Y(s)—1+3Y(s) =
SY(s) =143V (s) = —
2. Solve for Y (s):
1
3)Y(s)=1
(s+3Y(s) =1+

1 1
_|_
s+3  (s+3)(s+2)

Y(s) =

1 A B

(s+3)(s+2) s+3+s+2

t "|‘.Tn_1<(l0).

(6.16)

(6.17)

3. Find y(t) by taking the inverse (LT): Break Y (s) into partial fractions:
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Solve for A and B: A=1,B = —1:

1 1 1
Vi(s) = _
) =3 552 513
1
Y —
(S) s+ 2

Taking the inverse (LT) so the soution is:

y(t) =™

Example 6.3

Examine the second-order ODE:

y'(t) + 2y (1) +y(t) =0, y(0)=1, ¥(0)=-2

1. Take the (LT) of both sides:

L{y"O)} +2L{y' (1)} + L{y()} = £{0}

sV (s) — sy(0) — '(0) +2(sY (s) — y(0)) + Y(s) = 0

2. Substitute initial conditions:
%Y (s) —s(1) — (=2) +2(sY(s) = 1)+ Y(s) =0

$?Y(s) —s+2+2sY(s) =2+ Y(s) =0
(s*+2s+1)Y(s) =s5—4

3. Solve for Y (s):
s—4

o=ty

s 4
Yis) = (s+1)2 (s+1)2

Taking the inverse (LT) so the soution is:

y(t) = e (1 - 4t)

4. Determine y(t) through the utilization of the inverse (LT): Decompose Y (s):
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Example 6.4

Let the second-order ODE:

y'(t) +4y'(t) +4y(t) = 2u(t), y(0)=0, ¥'(0)=1

1. Submit the (LT) on both sides:
L{y"(O)} +4L{y' (1)} + AL{y(1)} = L{2u(t)}

s*Y (s) = sy(0) — /' (0) + 4(sY (s) — y(0)) +4Y (s) = i

Substitute y(0) = 0 and y'(0) = 1:

s*Y (s) — 1 +4sY (s) +4Y (s) = 2

S

2
(s*+4s+4)Y(s) == +1
s

2. Solve for Y (s):

241
Yis) = (s +2)2

25s+3
Y=oy

3. Determine y(t) through the utilization of the inverse (LT): Decompose Y (s):

ORSE (532)2

The answer can be obtained by using the inverse (LT) function:

y(t) =2+ 3te™

Remark 6.4

The Laplace Transform is an effective instrument for resolving linear differential equa-
tions and streamlining the mathematical analysis of dynamic systems. Its linearity and

many attributes render it a versatile method in engineering and applied mathematics.
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Fonction

Figure 6.2: Table of some transforms

transtormée

w cus a+(p+A) sina

(p+A)"+w?
(p+A) cosat+wsin
(P+2)"+w?

n! Im(p+iw)” 1
(p2+w?) T
| Re(p+iw)" !

o T
(p2+w2)"F
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