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Introduction

This document serves as an instructional tool for the "Mathematics 3" module,

specifically tailored for second-year undergraduate students in science and tech-

nology fields. Its structure is designed to align with the official curriculum while remaining

concise enough for the allotted teaching schedule.

The content is organized into six core chapters. The first half establishes a strong

foundation in advanced calculus, beginning with a review of Riemann integrals before

moving to multiple integrals and their applications in calculating areas and volumes

(Chapter 1). This is followed by a study of improper integrals, including the criteria for

determining their convergence (Chapter 2), and a comprehensive look at solving ordinary

and partial differential equations (Chapter 3).

The second half of the course explores infinite series and integral transforms. It cov-

ers numerical and function series, including Power and Fourier series (Chapter 4).

Finally, the manual introduces two powerful techniques for solving differential equations:

the Fourier Transform (Chapter 5) and the Laplace Transform (Chapter 6). Each

chapter includes definitions, key theorems, and worked examples to reinforce understand-

ing and build essential problem-solving skills.
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Chapter 1

Simple and Multiples Integrals

1.1 A review of Riemann integrals and basic calcula-

tions

A Riemann Integral Theoretical Structure
Definition 1.1 (Riemann integral: constructive view )

[10] Let f : [p, q] → R. Consider finite partitions of [p, q], pick one sample in each

subinterval, and sum
∑

f(x∗
i ) ∆xi. If all such sums converge to the same finite value

as max ∆xi → 0, we define ∫ q

p
f(x). (1.1)

Theorem 1.1 (Coincidence of upper/lower limits)
If the upper and lower sums of f on [p, q] converge to the same limit upon refinement,

then f is Riemann integrable, and this limit is equal to
∫ q

p
f(x).

Proposition 1.2 (Linearity, positivity, additivity)
[2] For integrable f, g and scalars α, β:

• Additivity: The integral can be split over subintervals:
∫ v

p
f(x) dx =

∫ q

p
f(x) dx+∫ v

q
f(x) dx.

• Positivity: If f(x) ≥ 0, then
∫ q

p
f(x) dx ≥ 0.

• Linearity:
∫ q

p
(αf(x) + βg(x)) dx = α

∫ q

p
f(x) dx + β

∫ q

p
g(x) dx .

Proposition 1.3
Riemann integrability over I is true for all continuous functions defined on I.

12
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Figure 1.1: Upper rectangles for f(x) = 1 + 1
2 sin(πx) on [0, 2] with a coarse partition; the

sum tightens as the mesh refines.

Definition 1.2 (Mean value)
[13] The mean value of f on [p, q] is:

M = 1
q − p

∫ q

p
f(x) dx. (1.2)

Definition 1.3 (Effective Value)
The effective value of f on [p, q] is the number d such that:

d2 = 1
q − p

∫ q

p
f 2(x) dx. (1.3)

1.1.1 Calculation of Primitives
Definition 1.4

An indefinite integral signifies the complete set of functions that yield a specified

function f(x) when differentiated. The process, represented by the integral sign
∫

,

functions as the reverse of differentiation and aims to identify a function F (x) referred

to as the antiderivative. The derivative of any constant equals zero, indicating

that the antiderivative lacks uniqueness. Consequently, we incorporate an arbitrary

constant of integration, C, to account for all potential solutions.

∫
f(x) dx = F (x) + C (1.4)
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Here, F (x) is any function such that F ′(x) = f(x), and C can be any real number.

Remark 1.4
The antiderivative of a function, if it exists, is not unique.

Example 1.1
Determine the antiderivative of the function h(x).

1.
∫

x3 dx = x4

4 + C,

2.
∫

sin(2x) dx = −2 cos(x) + C,

3.
∫

e−5x dx = −5e−5x + C,

4.
∫

4xex2
dx = 2ex2 + C.

Definition 1.5
The definite integral represents the signed surface of a line defined by two specific

limits. This is depicted as: ∫ q

p
f(x) dx. (1.5)

Figure 1.2: Depiction of the region corresponding to a specified integral

Example 1.2

Consider the function f(x) = 1 + 1
2 sin(πx) on the interval [0, 2]. For a uniform

partition of [0, 2] with N subintervals, define the upper sums UN using right endpoints.
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We verify that UN →
∫ 2

0
f(x) dx = 2, as follows:

∫ 2

0

(
1 + 1

2 sin(πx)
)

dx =
[
x − 1

2π
cos(πx)

]2

0
= 2.

Integration Techniques

Theorem 1.5 ( Integration by Parts)
[1] We let f = u and g = dv, resulting in:∫

u dv = uv −
∫

v du.

Example 1.3

Evaluate the integral
∫

x sin(x) dx: we accept:

• Let u = x

• Let dv = sin(x) dx

At this stage, we determine du through the differentiation of u, and v is obtained by

integrating dv:

• du = dx

• v =
∫

sin(x) dx = − cos(x)

So:
∫

x sin(x) dx = (x)(− cos(x)) −
∫

(− cos(x)) dx

= −x cos(x) +
∫

cos(x) dx

= −x cos(x) + sin(x) + C

Theorem 1.6 (Substitution)
[10] Let y denote a differentiable function and f represent a continuous function such
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that ∫
f(x) dx = F (x). (1.6)

We have: ∫
y′f(y) dx =

∫
f(y) dy = F (y). (1.7)

Example 1.4
Evaluate this integral:

∫
e2x dx,

we take y = 2x =⇒ dy = 2dx, dx = dy

2 ,

so
∫

e2x dx =
∫ ey

2 , dy = ey

2 + C, C ∈ R.

Euclidean Division for Solving Integrals

The Euclidean division approach serves as an effective simplification strategy. It op-

erates by decomposing the integrand into a polynomial and a simpler rational function,

so facilitating the integration process.

Definition 1.6 (Improper vs. proper rational integrand)

A rational integrand R(x) = P (x)
Q(x) is improper if deg P ≥ deg Q, and proper otherwise.

Proposition 1.7 (Division to reduce degree)
If deg P ≥ deg Q, perform polynomial division to write

P (x)
Q(x) = S(x) + R(x)

Q(x) , deg R < deg Q,

so that
∫

P
Q

dx =
∫

S(x) dx +
∫

R(x)
Q(x) dx.

Algorithm (1) Check deg P ≥ deg Q; if yes, divide P by Q to get a polynomial S and

a proper remainder R/Q.

(2) Integrate S term-by-term.
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(3) Handle the proper part
∫

R/Q dx by partial fractions or a substitution, depending on

the factorization of Q.

Example 1.5

Evaluate
∫ x3 + x + 1

x2 + 1 dx. Since deg P = 3 ≥ 2 = deg Q, divide to get

x3 + x + 1
x2 + 1 = x + 1

x2 + 1 ,

hence
∫ x3 + x + 1

x2 + 1 dx =
∫

x dx +
∫ 1

x2 + 1 dx = x2

2 + arctan x + C.

Example 1.6

Evaluate
∫ 2x2 + 3x + 5

x2 − 1 dx. Division yields

2x2 + 3x + 5
x2 − 1 = 2 + 3x + 7

x2 − 1 = 2 + A

x − 1 + B

x + 1 ,

with 3x + 7 = A(x + 1) + B(x − 1) ⇒ A = 5, B = −2. Therefore
∫ 2x2 + 3x + 5

x2 − 1 dx =
∫

2 dx+
∫ ( 5

x − 1 − 2
x + 1

)
dx = 2x+5 ln |x−1|−2 ln |x+1|+C.

1.2 Multiple Integrals: Concepts and Methods

1.2.1 Double Integrals
Definition 1.7

[7] In the xy-plane, there is a circular and limited region G where the continuous

function f(x, y) is defined. On the set of real numbers, the double integral of function

f is shown as:

∫∫
G

f(x, y) dB (1.8)

In this context, dB denotes the differential space element within the region G.
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Remark 1.8
The double integral is calculated by dividing the region G into infinitesimally small

sub-regions, approximating the volume of each sub-region, and summing up these

volumes.

Figure 1.3: A visual representation of the concept of double integrals

Double Integration Properties

Assuming α, β be real numbers and Ω ⊂ R2; we may express f and g as functions of the

variables (x, y). Therefore, we can assert:

1. Linear: ∫∫
(αf + βg)(x, y)dxdy = α

∫∫
f(x, y)dx + β

∫∫
g(x, y)dxdy. (1.9)

2. Association: For Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ⊘, so we have :∫∫
Ω

f(x, y)dxdy =
∫∫

Ω1
f(x, y)dxdy +

∫∫
Ω2

f(x, y)dxdy. (1.10)

3. A positive sign: for f a positive function in Ω :∫∫
Ω

f(x, y)dxdy ≥ 0. (1.11)

4. For the function f , for the variable x and the function g for variable y so the

calculation of the double integral
∫∫

(f.g)dxdy in this area D = [p, q] × [v, w] is

equal the multiply the simple integral of each one for it’s variable.∫ q

p

∫ w

v
f(x)g(y)dxdy = (

∫ q

p
f(x)dx).(

∫ w

v
g(y)dy). (1.12)
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Example 1.7
Let D = [1, 2] × [0, 1] and f(x, y) = ln x · (1 + y). Since f(x, y) = ln x · (1 + y) is

separable, we can write:
∫∫

D
f(x, y) dA =

(∫ 2

1
ln x dx

)(∫ 1

0
(1 + y) dy

)
.

Evaluate the integrals:
∫ 2

1
ln x dx = [x ln x − x]21 = (2 ln 2 − 2) − (1 ln 1 − 1) = 2 ln 2 − 1,

∫ 1

0
(1 + y) dy =

[
y + 1

2y2
]1

0
=
(

1 + 1
2 · 12

)
−
(

0 + 1
2 · 02

)
= 3

2 .

So the final result is:

(2 ln 2 − 1) · 3
2 .

Techniques of Calculating Double Integrals

1-Fubini’s Theorem

Fubini’s theorem provides a fundamental method for evaluating double integrals by

transforming them into iterated integrals. In a rectangular region G containing a contin-

uous function f(x, y), the theorem permits the computation of the integral by initially

integrating with respect to one variable and then the other, confirming that the order of

integration does not influence the final outcome.

Theorem 1.9
[13] You may represent the rectangular area G = {(x, y) | p ≤ x ≤ q, v ≤ y ≤ w} as

follows: f(x, y) is a continuous function defined on this region.

Then Fubini’s theorem states:

∫∫
R

f(x, y) dA =
∫ q

p

∫ w

v
f(x, y) dy dx =

∫ d

c

∫ q

p
f(x, y) dx dy. (1.13)

The double integral of f over G is similar to the iterated integral derived by first

integrating with regard to y and subsequently with respect to x, or vice versa.
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Figure 1.4: Figure for understanding Fubini’s theorem

Proposition 1.10
[13] Fubini’s Theorem can be applied under the following conditions:

1. f(x, y) is continuous on the region G.

2. The region of integration R is a rectangular region defined by p ≤ x ≤ q and

v ≤ y ≤ w.

Example 1.8
Using Fubini’s theorem, we can interchange the order of integration:

∫∫
G

(x2 + y2) dA =
∫ 2

0

∫ 3

1
(x2 + y2) dy dx

Now, calculate the iterated integrals:

∫ 2

0

∫ 3

1
(x2 + y2) dy dx =

∫ 2

0

[
x2y + y3

3

]y=3

y=1
dx

=
∫ 2

0

[
3x2 + 9 − (x2 + 1

3)
]

dx

=
∫ 2

0
(2x2 + 26

3 ) dx

=
[2
3x3 + 26

3 x
]x=2

x=0
= 16

3 + 52
3 = 68

3 .
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2-Substitution

Substitution simplifies double integrals, particularly in the context of non-rectangular

regions. The formula for variable transformation is as follows:

∫∫
D

f(x, y) dA =
∫∫

R
f(g(u, v), h(u, v))|J(u, v)| du dv, (1.14)

where R is the transformed region, (u, v) are new variables, and |J(u, v)| is the Jaco-

bian determinant.

Polar Coordinates

 x = rcos(θ) + x0

y = rsin(θ) + x0

(1.15)

where:

dxdy = rdrdθ

D(x, y)
D(r, θ) =


∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

 =

 cosθ −rsinθ

sinθ rcosθ

 |D(x, y)
D(r, θ) | = |

cosθ −rsinθ

sinθ rcosθ
| =

rcos2θ + rsin2 = r.

Figure 1.5: demonstration of how to understand polar coordinates
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Example 1.9
Evaluate this integral by :∫∫

D
ex2+y2

dA D = {(x, y) ∈ ℜ2, x2 + y2 = 1 and x ≥ 0}

By used polar coordinates we get :
∫∫

D
ex2+y2

dA =
∫ π

2

− π
2

∫ 1

0
er2 · r dr dθ = (

∫ 1

0
rer2)(

∫ π
2

− π
2

dθ) = (1
2er2)|10)(θ|

π
2
− π

2
) =

(e

2 . − 1
2)(π

2 + π

2 ) = (e − 1)π
2 .

Example 1.10

Evaluate:
∫

D

√
x2 + y2 dxdy, where D = {(x, y) ∈ R2 | x ≥ 0, 1 ≤ x2 + y2 ≤ 2y}.

Use polar coordinates: x = r cos θ, y = r sin θ, dxdy = r dr dθ, and
√

x2 + y2 = r.

The region D gives 1 ≤ r ≤ 2 sin θ and π

6 ≤ θ ≤ π

2 (first quadrant).

The integral becomes:
∫ π

2

π
6

∫ 2 sin θ

1
r · r dr dθ = 56

√
2

36 − π

9 .

1.2.2 Triple Integrals
Definition 1.8

[7] The triple integral extends integration to three-dimensional space. It is used to

calculate the volume of a region in 3D. The notation for a triple integral is:

∫∫∫
E

f(x, y, z) dV, (1.16)

where E denotes the region in three-dimensional space, and dV signifies the in-

finitesimal volume element.

Remark 1.11
The triple integral is calculated by dividing the region R in three-dimensional space

into infinitesimally small sub-regions. The volume of each sub-region is approximated,

and the contributions from all sub-regions are summed up to compute the total value,
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which can represent volume, mass, or other quantities depending on the integrand.

Figure 1.6: Example for understanding triple integrals

Triple Integration Properties

For any (x, y, z) in Ω ⊂ R3, let f and g be functions of these variables. Then α, β belong

to R. Here are the properties that are held:

1. Linearity:
∫∫∫

(αf +βg)(x, y, z) dx dy dz = α
∫∫∫

f(x, y, z) dx dy dz+β
∫∫∫

g(x, y, z) dx dy dz.

(1.17)

2. Associativity: For Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅, we have:
∫∫∫

Ω
f(x, y, z) dx dy dz =

∫∫∫
Ω1

f(x, y, z) dx dy dz +
∫∫∫

Ω2
f(x, y, z) dx dy dz. (1.18)

3. Positivity: For f a positive function in Ω:
∫∫∫

Ω
f(x, y, z) dx dy dz ≥ 0. (1.19)

4. Separable Functions: Let f(x) be a function solely dependent on x, g(y) be a

function exclusively reliant on y, and h(z) be a function that pertains only to z. For

the area D = [p, q] × [v, w] × [e, j], the triple integral is valid:
∫ q

p

∫ w

v

∫ j

e
f(x)g(y)h(z) dx dy dz =

(∫ q

p
f(x) dx

)
·
(∫ w

v
g(y) dy

)
·
(∫ j

e
h(z) dz

)
.

(1.20)
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Example 1.11
Evaluate this integral

∫∫∫
D

x2yz3 dx dy dz, D = [0, 1] × [1, 2] × [2, 3]

Using the separable functions property:

∫∫∫
D

x2yz3 dx dy dz =
∫ 1

0
x2 dx ·

∫ 2

1
y dy ·

∫ 3

2
z3 dz =

[
x3

3

]1

0

[
y2

2

]2

1

[
z4

4

]3

2
= (1

3) (3
2) (65

4 ) = 65
8 .

Methods of Calculating Triple Integrals

1-Fubini’s theorem

Analogous to double integrals, triple integrals can be computed interactively by inte-

grating one variable sequentially.

Theorem 1.12
[7] Consider a continuous function f(x, y, z) based on a rectangular region R in the x−

y−z-plane, which can be represented as R = (x, y, z) | p ≤ x ≤ q, v ≤ y ≤ w e ≤ z ≤ f .

Then Fubini’s theorem states:∫∫∫
E

f(x, y, z)dV =
∫ q

p
(
∫ w

v
(
∫ f

e
f(x, y, z)dz)dy)dx =

∫ w

v
(
∫ f

e
(
∫ q

p
f(x, y, z) dx)dz)dy.

Example 1.12
Determine this integral

∫∫∫
D

2x − y dx dy dz, D = [0, y − z] × [0, z2] × [0, 2].

∫ 2

0

∫ z2

0

∫ y−z

0
(2x − y)dxdydz =

∫ 2

0
(
∫ z2

0
(
∫ y−z

0
(2x − y)dx)dy)dz =∫ 2

0
(
∫ z2

0
(x2 − yx)|y−z

0 )dy)dz =
∫ 2

0
(
∫ z2

0
(y − z)2 − y2 + yzdy)dz =∫ 2

0
(
∫ z2

0
y2 +z2 −2yz −y2 +yzdy)dz =

∫ 2

0
(
∫ z2

0
z2 −yzdy)dz =

∫ 2

0
(z2y|z2

0 − z

2y2|z2

0 )dz =∫ 2

0
(z4 − z5

2 )dz = z5

5 |20 − z6

12 |20 = 25

5 − 26

12 .
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Example 1.13
Determine this integral

∫∫∫
D

xe−y dx dy dz, D = [0, 2z] × [0, ln x] × [1, 2].

∫ 2

1

∫ 2z

0

∫ ln x

0
xe−ydydxdz =

∫ 2

1

∫ 2z

0
x
∫ ln x

0
(e−y)dydxdz =∫ 2

1

∫ 2z

0
x(−e−y)|ln x

0 dxdz =
∫ 2

1

∫ 2z

0
x(−1

x
− 1)dxdz =∫ 2

1
(
∫ 2z

0
−x + 1dx)dz =

∫ 2

1
(−x2

2 |2z
0 + x|2z

0 )dz =∫ 2

1
(−2z2 + 2zdz) = −2

3 z3|21 + z2|21 = −14
3 + 3 = −5

3 .

2-Substitution

Substitution can simplify triple integrals, particularly in regions with non-standard

shapes. The transformation formula for variable changes is expanded to three dimensions:∫∫∫
E

f(x, y, z) dV =
∫∫∫

W
f(u, v, w)|J(u, v, w)| du dv dw. (1.21)

Let W denote the transformed region, with (u, v, w) representing the new variables,

and |J(u, v, w)| indicating the Jacobian determinant.

Spherical Coordinates

Spherical coordinates are a system for representing points in three-dimensional space

using three parameters: radial distance (r), polar angle (θ), and azimuthal angle (φ),

(r, θ, φ).

Spherical coordinates can be converted to Cartesian coordinates as follows:

x = r sin φ cos θ

y = r sin φ sin θ

z = r cos φ

(1.22)

The Jacobian matrix of f is

Jf =


cos θ cos φ −r sin θ cos φ −r cos θ sin φ

sin θ cos φ r cos θ cos φ −r sin θ sin φ

sin φ 0 r cos φ


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and its determinant is

det(Jf ) = r2 cos φ

The change of variables formula is then written as:
∫∫∫

D
f(x, y, z) dx dy dz =

∫∫∫
Ω

f(r cos θ cos φ, r sin θ cos φ, r sin φ) r2| cos φ| dr dθ dφ

Figure 1.7: Picture to help in comprehending spherical coordinates

Example 1.14
We compute

∫∫∫
D

dx dy dz where D = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1}

with the bounds

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, −π

2 ≤ φ ≤ π

2
The formula becomes:

∫∫∫
D

f(x, y, z) dx dy dz =
∫∫∫

Ω
r2| cos φ| dr dθ dφ

This can be written as:
(∫ 1

0
r2 dr

)(∫ 2π

0
dθ
)(∫ π

2

− π
2

cos φ dφ

)

Which gives:
4
3π.
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Example 1.15
Calculate the following integral:

I =
∫∫∫

V

√
x2 + y2 + z2 dx dy dz,

where V denotes the sphere centered at (0, 0, 0) with radius R.

Switching to spherical coordinates, we obtain:

I =
∫ R

0

∫ 2π

0

∫ π

0
ρ2| cos ϕ|

√
ρ2 cos2 ϕ cos2 θ + ρ2 cos2 ϕ sin2 θ + ρ2 sin2 ϕ dρ dθ dϕ.

This simplifies to:

I =
∫ R

0

∫ 2π

0

∫ π

0
ρ3| cos ϕ| dρ dϕ dθ.

Subsequent integration produces:

I = πR4

2

∫ π/2

−π/2
cos ϕ dϕ = πR4

2 sin ϕ
∣∣∣∣π/2

−π/2
= πR4.

Cylindrical Coordinates

Cylindrical coordinates are a system for representing points in three-dimensional space

using three parameters: radial distance (r), polar angle (θ), and height (z).

f : ℜ3 → ℜ3 , (r, θ, z) → (x, y, z) = (r cos θ, r sin θ, z).

Cylindrical coordinates can be converted to Cartesian coordinates as follows:

x = r cos θ,

y = r sin θ,

z = z.

(1.23)

The Jacobian matrix of the transformation f is expressed as:

J(f) =


cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

 .
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The determinant of J(θ) is:

det(J(f)) = r.

If f(D) = D, the change of variables formula is expressed as:∫∫∫
D

f(x, y, z) dx dy dz =
∫∫∫

D
f(r cos θ, r sin θ, z) det(J(f)) dr dθ dz.

with dxdydz = rdrdθdz.

Figure 1.8: Conceptualization of cylindrical coordinates illustrated by graphic

Example 1.16
Calculate the following integral:

I =
∫∫∫
D

z√
x2 + y2 dx dy dz, D = (x, y, z) ∈ ℜ3 : x2 + y2 ≤ 1, 0 ≤ z ≤ 1.

we used the cylindrical coordinates for solving this integral :
x = r cos(θ)

y = r sin(θ)

z = z

and dxdydz = rdrdθdz, f(x, y, z) = z√
x2 + y2 =⇒(r,θ)=

z

r
.

For the r area we got it from this condition :

x2 + y2 ≤ 1 =⇒(r,θ) r2 ≤ 1 =⇒(r,θ) 0 ≤ r ≤ 1. we had the z area, 0 ≤ z ≤ 1, and for

the θ area we always take 0 ≤ θ ≤ 2π.

So we calculate the integral:∫ 2Π

0

∫ 1

0

∫ 1

0
zdzdrdθ = (

∫ 2Π

0
dθ)(

∫ 1

0
dr)(

∫ 1

0
zdz) = (θ|2π

0 )(r|10)(
z2

2 |10) =

(2π)(1)(1
2) = π.
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1.3 Utilizing for Calculating Areas and Volumes

Calculating the Area
Example 1.17

Determine the area beneath the curve y = x2 from x = 0 to x = 2.

The region is denoted by the integral:

A =
∫ 2

0
x2 dx.

Evaluating the integral:

A =
[

x3

3

]2

0
= 23

3 − 03

3 = 8
3 .

Consequently:

A = 8
3 .

Example 1.18
The integral ∫∫

D
dx dy,

provides the area of the domain D.

We determine the area of the region enclosed by the curves:

y + x2 = 1 and y = 0.

The domain D is defined as:

D = {(x, y) ∈ R2 | 0 ≤ y ≤ 1 − x2 and − 1 ≤ x ≤ 1}.

The area is expressed as:

A =
∫ 1

−1

∫ 1−x2

0
1 dy dx =

∫ 1

−1
[
∫ 1−x2

0
1 dy]dx =

∫ 1

−1
(y |1−x2

0 )dx =
∫ 1

−1
(1 − x2)dx =

(−x3

3 + x) |1−1=
1
3 + 1 − (−1

3 + 1) = 2
3 .
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Calculating the Volumes
Example 1.19

Find the volume of:
∫∫∫

E
(x2 + y2 + z2) dV over the region E defined by cylindrical

coordinates r = 1, 0 ≤ θ ≤ π, and 0 ≤ z ≤ 2. We want to evaluate the triple integral:

∫∫∫
E

(x2 + y2 + z2) dV

over the region E defined by cylindrical coordinates r = 1, 0 ≤ θ ≤ π, and

0 ≤ z ≤ 2.

In cylindrical coordinates, the volume element dV is given by:

dV = r dr dθ dz

So, the triple integral becomes:

∫∫∫
E

(x2 + y2 + z2) dV =
∫ π

0

∫ 1

0

∫ 2

0
(r2 + z2) · r dz dr dθ

Now, calculate the iterated integrals:

∫ π

0

∫ 1

0

∫ 2

0
(r2 + z2) · r dz dr dθ =

∫ π

0

∫ 1

0

[
r3

3 z + z3

3

]z=2

z=0
dr dθ

= (
∫ π

0
dθ).(

∫ 1

0

(
2r3

3 + 8
3

)
dr) = (r4

6 |10)(θ|π0 ) = (π

6 ).

Example 1.20
Find the volume of:

∫∫∫
E

(r2z) dV

across the domain E delineated by cylindrical coordinates 0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4 ,

and 0 ≤ z ≤ 3.

In cylindrical coordinates, the volume element dV is given by:

dV = r dr dθ dz
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So, the triple integral becomes:

∫∫∫
E

(r2z) dV =
∫ 3

0

∫ π
4

0

∫ 2

0
(r2z) · r dr dθ dz

=
∫ 3

0
z.
∫ 2

0
r3dr.

∫ π
4

0
dθ = (z2

2 |30).(
r4

4 |20).(θ|
π
4
0 ) = (9

2)(16
4 )(π

4 ) = 9π

2



Chapter 2

Improper Integral

2.1 Improper Integrals of Functions on an Unbounded

Interval

A standard Riemann integral is established for a function that maintains continuity over

a closed and finite interval, exemplified by [p, q]. An improper integral arises when one or

both of these conditions fail to be satisfied. This takes place in two main scenarios:

1. The interval of integration is infinite, for example [p, ∞), (−∞, q], or (−∞, ∞).

2. The function f(x) possesses one or more infinite discontinuities within a bounded

interval of integration.

Definition 2.1
[10] Define f be an integrable function (in the sense of Riemann) on an unbounded

interval [p, q[ , ]−∞, q] , [a, +∞[ or ]p, q]. We define that f represents improper inte-

gration over the interval [p, +∞[ as follows:

lim
x→+∞

∫ x

p
f(t)dt, (2.1)

existing and finished.

Figure 2.1: Visual aid for comprehending improper integration

32
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Definition 2.2
[4] The following is our definition of the convergent improper integral:

lim
x→+∞

∫ x

p
f(t)dt or lim

x→a

∫ x

q
f(t)dt, (2.2)

existing and complete. If the limit is non-existent and infinite, then the improper

integral is divergent rather than converging.

Figure 2.2: Graphical representation of convergent improper integral

Definition 2.3

If the improper integral
∫ x

p
f(t)dt is evaluated at points p and q, and let v be an

element of the interval ]p, q]. This integral is convergent if the two improper integrals,∫ v

p
f(t)dt and

∫ q

v
f(t)dt, are convergent, where:

∫ q

p
f(t)dt =

∫ v

p
f(t)dt +

∫ q

v
f(t)dt. (2.3)

Example 2.1∫ +∞

0
etdt = lim

x→+∞

∫ x

0
etdt = lim

x→+∞
(et)|x0) = lim

x→+∞
(ex − 1) = +∞. so we have a diver-

gent integral.

Example 2.2∫ 2

1
= dx

x − 2 = lim
x→2

∫ x

1

dx

x − 2 = lim
x→2

ln |x − 2||x1 = lim
x→2

(ln |x − 2| − ln(1)) = −∞. so we

have diverged integral.
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Remark 2.1

Let it be
∫ q

p
f(t)dt and

∫ q

p
g(t)dt improper integrals at q :

1. The integral
∫ q

p
f(t)dt is convergent, and the integral

∫ q

p
g(t)dt is also convergent.

The integral
∫ q

p
f(t)dt +

∫ q

p
g(t)dt is convergent.

2. The integral
∫ q

p
f(t)dt is divergent, but the integral

∫ q

p
g(t)dt is convergent. The

integral
∫ q

p
f(t)dt +

∫ q

p
g(t)dt is divergent.

3. The integrals
∫ q

p
f(t)dt and

∫ q

p
g(t)dt are both divergent, so the nature of inte-

gration cannot be assessed if they include different areas of integration.

Example 2.3
Evaluate this integral:∫ 2

1

dt

(t − 1)(t − 2)
∃3

2 ∈ ]1, 2[ so∫ 2

1

dt

(t − 1)(t − 2) =
∫ 3

2

1

dt

(t − 1)(t − 2) +
∫ 2

3
2

dt

(t − 1)(t − 2) ⇒ I = I1 + I2

I1 =
∫ 3

2

1

dt

(t − 1)(t − 2) = lim
x→1

∫ 3
2

x

dt

(t − 1)(t − 2) = lim
x→1

∫ 3
2

1

−dt

t − 1+
∫ 3

2

1

dt

t − 2 = lim
x→1

− ln |t−

1||
3
2
x + ln |t − 2||

3
2
x = −∞.

the same thing for I2 we found that I2 = −∞ so the integral I = I1 + I2 divergent

integral because the tow integrals I1 and I2 they have difference area integration.
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Riemann’s integral[10]

The convergence of integrals of the type
∫ 1

tα
dt, commonly referred to as p-integrals, is

contingent upon the value of α and the limits of integration.

• Integrals over an Infinite Interval: For an integral of the form
∫ ∞

p

dt

tα
with

p > 0, the integral converges if α > 1 and diverges if α ≤ 1.

• Integrals with a Discontinuity at Zero: For an integral of the form
∫ q

0

dt

tα
with

q > 0, where the function is discontinuous at t = 0, the integral converges if α < 1

and diverges if α ≥ 1.

Example 2.4

1.
∫ +∞

1

dt

t2 convergent Riemann’s integral next to +∞ because α = 2 > 1.

2.
∫ +∞

3

dt

t
divergent Riemann’s integral next to +∞ because α = 1.

3.
∫ 1

0

dt√
t

convergent Riemann’s integral next to 0 because α = 1
2 < 1.

4.
∫ 2

0

dt

t5 divergent Riemann’s integral next to 0 because α = 5 > 1.

Bertrand integral [10]

1-(
∫ +∞

e

dx

xα(ln x)β
) convergent ⇒ α > 1 or (α = 1andβ > 1).

2-(
∫ 1

e

0

dx

xα(ln x)β
) convergent ⇒ α < 1 or (α = 1andβ > 1).

2.1.1 Improper Integral for Positive Functions
Theorem 2.2 (Comparison Theorem)

Let it be f and g positive and continuous functions in the integral [p, q[ if exist a

v ∈ [p, q[ where:

∀t ∈ [v, q[ , 0 ≤ f(t) ≤ g(t) (2.4)

so:

1-
∫ q

p
g(t)dt convergent ⇒

∫ q

p
f(t)dt convergent.
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2-
∫ q

p
f(t)dt divergent ⇒

∫ q

p
g(t)dt divergent.

Figure 2.3: Comparison figure for comprehending theorem

Example 2.5∫ +∞

1

t√
1 + t6

dt, by the comparison theorem we found:

t√
1 + t6

≤ t√
t6

≤ 1
t3

the integral
∫ +∞

1

1
t3 dt is convergent, since Riemann’s criterion indicates that α =

3 > 1.The integral
∫ +∞

1

t√
1 + t6

dt converges using the comparison theorem.

Example 2.6∫ 1

0

e−t

√
t
dt, by the comparison theorem we found :

0 < t ≤ 1 → e−t ≤ 1 → e−t

√
t

≤ 1√
t

the integral
∫ 1

0

1√
t
dt, convergent (Riemann’s integral α = 1

2 < 1)The integral∫ 1

0

e−t

√
t
dt converges using the comparison theorem.
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Proposition 2.3
Let f and g be positive and continuous functions on the interval [p, q[. For all t ∈ [p, q[,

g(t) ̸= 0 and lim
t→q

f(t)
g(t) = m therefore:

1. If it was 0 ≤ m < +∞ (m ̸= +∞) and
∫ q

p
g(t)dt convergent ⇒

∫ q

p
f(t)dt

convergent.

2. If it was 0 < m ≤ +∞ (m ̸= 0) and
∫ q

p
g(t)dt diverged ⇒

intq
pf(t)dt divergent.

3. If it was 0 < m < +∞ (m ̸= 0, m ̸= +∞) so we have same nature for
∫ q

p
f(t)dt

and
∫ q

p
g(t)dt → f ∼q g (f equivalent g behind q).

Example 2.7

f(t) = 1
t
√

1 + t2
, g(t) = 1

t2 tow functions define at [1, +∞[ and lim
x→+∞

= f(x)
g(x) =

lim
x→+∞

x2

x
√

1 + x2
= 1 given that the integral

∫ +∞

1
g(x)dx =

∫ +∞

1

1
t2 convergent be-

cause Riemann’s integral α = 2 > 1 so the integral
∫ +∞

1
f(x)dx convergent.

Remark 2.4

1. If lim
t→b

f(t)g(t) exist and finished so :
∫ b

a
g(t)f ′(t)dt and

∫ b

a
f(t)g′(t)dt they have

same nature.∫ b

a
f

′(t)g(t)dt = F (t)g(t)|ba −
∫ b

a
f(t)g′(t)dt (integration by parts way).

2. The integrals
∫ b

a
f(t)dt and

∫ β

α
f(ε(x))ε′(x)dx they have same nature and we

have :∫ b

a
f(t)dt =

∫ β

α
f(ε(x))ε′(x)dx (substitution way).
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Example 2.8
Calculate the following integral:∫ 1

0

ln(t)√
t

dt, the function is improper in x = 0 so :

lim
x→0

∫ 1

x
ln(t)t−1

2 , we use integral by parts method:

u = ln t → u′ = 1
t
,

v′ = t
−1
2 → v = 2

√
t.

lim
x→0

∫ 1

x
ln(t)t−1

2 = lim
x→0

(2 ln t
√

t
∣∣∣1
x
−2

∫ 1

x

1√
t
dt) = lim

x→0
(−2 ln x

√
x−4

√
t
∣∣∣1
x
) = lim

x→0
(−2 ln x

√
x−

4 +
√

x) = −4.

So the integral
∫ 1

0

ln(t)√
t

dt is convergent.

Example 2.9∫ +∞

2
Π

ln(sin(1
t
))dt, by the comparison theorem we found :

sin(1
t
) ∼+∞

1
t

→ ln(sin(1
t
)) ∼+∞ ln(1

t
) = − ln(t)

so the integral
∫ +∞

2
Π

− ln(t)dt = lim
x→+∞

∫ x

2
Π

− ln(t)dt = lim
x→+∞

(t ln(t) − t)|x2
Π

= lim
x→+∞

(x ln(x)−

x − 2
Π ln( 2

Π) + 2
Π) = +∞.

so the integral
∫ +∞

2
Π

− ln(t)dt divergent⇒
∫ +∞

2
Π

ln(sin(1
t
))dt is divergent by the

comparison theorem.

Riemann’s rule

Proposition 2.5
[18] Consider f be a positive function defined on the interval [p, q[. and

lim
t→q

(q − t)αf(t) = m, (2.5)

where α ∈ ℜ and m finished and existing so:

1/If α < 1 ⇒
∫ q

p
f(t)dt convergent.

2/If α ≥ 1, m ̸= 0 ⇒
∫ q

p
f(t)dt divergent.
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Proposition 2.6

If
∫ q

p
f(t)dt improper integral at p when we apply Riemann’s rule for know this integral

nature we calculate : lim
t→p

(t − p)αf(t) = m.

Let it be fa positive function integration in [a, +∞[ , p > 0 and

lim
t→+∞

(t)αf(t) = m, (2.6)

where α ∈ ℜ and m finished and existing.

1/If α > 1 ⇒
∫ +∞

p
f(t)dt convergent.

2/Ifα ≤ 1, m ̸= 0 ⇒
∫ +∞

p
f(t)dt divergent.

Theorem 2.7
[15] Let it be f a positive function and continuous by piece at [p, +∞[ if found tow

real numbers α and λ ̸= 0 where f(t) ∼+∞
λ

tα
so the integral

∫ +∞

p
f(t)dt convergent

if α > 1 and divergent for α ≤ 1. The same thing for interval ]p, q] , q > 0 where

f(t) ∼0
λ

tα
so the integral

∫ 0

p
f(t)dt convergent if α < 1 and divergent for α ≥ 1.

Example 2.10∫ 2

1

dt√
t3 − 1

improper integral at 1, by Riemann’s rule application we have :

lim
t→1

(t − 1)α 1√
t3 − 1

∃α = 1
2 , lim

t→1

√
t − 1√
t3 − 1

we have t3 − 1 = (t − 1)(t2 + t + 1) so

k = lim
t→1

√
t − 1

√
t − 1

√
(t2 + t + 1)

= 1√
3

finished and exist.

α = 1
2 < 1 and k finished and existing ⇒

∫ 2

1

dt√
t3 − 1

convergent.

Remark 2.8

1.
∫ q

p
f(t)dt =

∫ v

p
f(t)dt +

∫ q

v
f(t)dt,

∫ v

p
f(t)dt limited integral so,

∫ q

p
f(t)dt and∫ q

v
f(t)dt they have same nature.

2. Let it be f negative, for improper integral studied at q g(t) = −f(t) is a positive
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function then in order to study the nature of integration
∫ q

p
g(t)dt we apply the

studied methods,
∫ q

p
f(t)dt and

∫ q

p
g(t)dt they have same nature.

3.
∫ q

p
f(t)dt and

∫ q

p
λf(t)dt tow improper integrals at q and λ ∈ ℜ they have same

nature.

4. Some equivalent functions :

*ln(1 + h(x)) ∼+∞ ±h(x)

h(x) −→ 0 , x −→ +∞.

*sin(h(x)) ∼+∞ h(x)

h(x) −→ 0 , x −→ +∞.

*cos(h(x)) ∼+∞ 1 − h(x)2

2 .

h(x) −→ 0 , x −→ +∞.

*cosh(h(x)) ∼+∞
h′(x)2

2 + 1

h(x) −→ 0 , x −→ +∞.

*arctan(h(x)) ∼+∞ h(x)

h(x) −→ 0 , x −→ +∞.

*eh(x) ∼+∞ h(x) + 1

h(x) −→ 0 , x −→ +∞.

*sinh(h(x)) ∼+∞ h(x)

h(x) −→ 0 , x −→ +∞.

*aαxα + aα−1x
α − 1 + .... + a0

bβxβ + bβ−1 + .... + b0
∼+∞

aαxα

bβxb
.

Example 2.11∫ +∞

0

dt

(t + 1)(t + 2) , the function is positive and integration and by the comparison

theorem we found :
1

(t + 1)(t + 2) ∼+∞
1
t2

and the integral
∫ +∞

1

1
t2 dt convergent (Riemann’s integral α = 2 > 1) so the

integral
∫ +∞

0

dt

(t + 1)(t + 2) convergent.



41

Example 2.12∫ +∞

4
ln(1 + 1

x
)dx, the function is positive and integration and by the comparison

theorem we found :

ln(1 + 1
x

) ∼+∞
1
x

and the integral
∫ +∞

4

1
x

dt divergent (Riemann’s integral α = 1) so the integral
∫ +∞

4
ln(1+

1
x

) divergent.

Improper Integrals of Functions Defined on a Bounded

Interval

Importants Definitions

Let f : [p, q[→ R be a function integrable (in the Riemann sense) on [p, x] for all x ∈ [p, q[.

Define

F (x) =
∫ x

a
f(t) dt. (2.7)

Definition 2.4
[13] We say that f admits a convergent improper integral on [p, q[ if F (x) has a limit

as x tends to b. In this case, we write:

lim
x→q

∫ x

p
f(t) dt =

∫ q

p
f(t) dt. (2.8)

If this condition is met, f is considered semi-integrable on the interval [p, q[.

Example 2.13

Consider the function f(x) = 1√
−x

defined on [−1, 0[. We observe that this function

is integrable in the Riemann sense on [−1, β] for all β ∈ [−1, 0[. Moreover:∫ x

−1
f(t) dt = −2

√
−x + 2.

Thus,

lim
x→0

∫ x

−1
f(t) dt = 2.

Therefore, f admits a convergent improper integral on [−1, 0[.
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Remark 2.9

1. If a function f :]p, q] → R is integrable (in the Riemann sense) on [x, b] for

all x ∈]p, q], we say that it admits a convergent improper integral (or is semi-

integrable) on )]p, q] if the function

F (x) =
∫ q

x
f(t) dt, (2.9)

has a limit as x tends to p. In this case, we write:

lim
x→a

∫ q

x
f(t) dt =

∫ q

p
f(t) dt. (2.10)

2. For a function defined on an open interval ]p, q[ and integrable on any interval

[x, y] with p < x < y < q, we say that its improper integral on ]p, q[ converges

if, for p < v < q, its improper integrals on ]p, v] and [v, q[ exist.

Example 2.14
The improper integral ∫ ∞

−∞

1
1 − t2 dt,

is divergent because the integral
∫ 0

−1

1
1 − t2 dt,

is divergent.

Definition 2.5 ( Absolute Value Convergent)
[10] Let f : [p, q[→ R be a function defined for integration over any interval of the form

[p, q[ for any α < q. The improper integral of f is considered absolutely convergent on

[p, q[ if the improper integral of |f | converges on [p, q[.

Remark 2.10

1. If
∫ q

p
f(t)dt absolute convergent ⇒

∫ q

p
f(t)dt convergent.

2. If
∫ q

p
f(t)dt convergent ⇏

∫ q

p
f(t)dt absolute convergent.
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3. If
∫ q

p
f(t)dt divergent ⇔

∫ q

p
f(t)dt non absolute convergent.

Example 2.15

The improper integral on ]2, +∞] of the function f(x) = cos x

x2 is absolutely convergent.

Because :∫ +∞

2

| cos x|
x2 dx ≤

∫ +∞

2

dx

x2 dx∫ +∞

2

dx

x2 dx convergent because α = 2 > 1 Riemann’s integral.



Chapter 3

Differential Equations

3.1 Examination of Ordinary Differential Equations

3.1.1 First-Order Ordinary Differential Equations

Consider φ denote a continuous function. A first-order ordinary differential equation is

defined as one that can be stated in the form

[11]y′ = φ(t, γ), (3.1)

We denote the differential function as γ0 : J is a subset of the real numbers, mapping to

the real numbers, and represents a solution to the first-order differential equation. Let

γ′ = φ(t, γ) be defined on the interval J if it satisfies the condition γ′
0 = φ(t, γ0) for all

t ∈ J .

Example 3.1
The function x : R −→ R, defined by x(t) = et, serves as the answer to the subsequent

equation:

γ′ = γ on ℜ, since x′(t) = et = x(t), for all t ∈ ℜ.

Differential Equations of Separate Variables

A first-order differential equation is said to have separable variables if it can be represented

in the following form:

φ(γ)γ′ = h(x), (3.2)

Thus, Φ(γ) = H(x) + m, where m ∈ R. Let Φ be an antiderivative of γ, and let H be an

antiderivative of h. So

γ = Φ−1(H(x) + c). (3.3)

44
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Example 3.2
Solve on J = [2, +∞[ differential equation

xγ′ ln x = (lnx + 1)y

We may isolate the variables x and γ by dividing by γx ln x,
γ′

γ
= (ln x + 1)

x ln x
so

ln γ =
∫ ln x + 1

x ln x
dx + c, c ∈ ℜ,

that’s mean :

γ = e
∫ ln x+1

x ln x
dx+c, c ∈ ℜ. γ = eln |x ln x+c| = m(x ln x), m = ec ∈ ℜ.

Example 3.3
Solve on J = ℜ differential equation γ′ = γ cos(x)

Separate variables:
dγ

γ
= cos(x) dx

Integrate both sides:

ln |γ| = sin(x) + C

Thus,

γ = mesin(x) m ∈ ℜ.

Linear Ordinary Differential Equation
Definition 3.1

[17] A linear differential equation is expressed in the following form:

s0(x)γ + s1(x)γ′ + ... + sn(x)γ(n) = φ(x), (3.4)

here is the homogeneous equation that corresponds:

s0(x)γ + s1(x)γ′ + ... + sn(x)γ(n) = 0. (3.5)

Proposition 3.1
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1. If γ1 and γ2 are two solutions of Eq.(3.4). Thus, γ1+γ2 and αγ1 are also solutions

to Eq. (3.4).

2. If S0 is the solution set of Eq.(3.4) and γ∗ is a particular solution of Eq.(3.5), so

the solution set of Eq.(3.4) is given by S = (γ + γ∗, y ∈ S0).

First Order Linear Differential Equation

Definition 3.2
[11] A first-order linear differential equation is a first-order differential equation char-

acterized by:

γ′ = φ(t)γ + h(t), (3.6)

with φ, h continuous functions on ℜ. The associated homogeneous differential equation

is :

γ′ = φ(t)γ. (3.7)

Example 3.4
The differential equation γ′ = t2γ + t is a first-order linear differential equation. The

corresponding homogeneous differential equation is γ′ = t2γ.

Example 3.5
The differential equation γ′ = e2t+8y + 5t3 is a linear differential equation of order 1.

The associated homogeneous differential equation is, γ′ = e2t+8γ.

Resolution of a Homogeneous Linear Differential Equation

We initiate the process in this manner: The equation γ′ = φ(t)γ represents a relationship

where the rate of change of the function γ is directly proportional to the function itself

and a function dependent on the variable t. γ′

γ
= φ(t) We will analyze the equation

ln |γ| =
∫

φ(t)dt + c, where c ∈ ℜ. The solution is represented as γ = me
∫

φ(t)dt, where

m ∈ ℜ.

The Solution of a Non-Homogeneous Linear Differential Equation

The process of solving a non-homogeneous linear differential equation begins with the iden-

tification of the general solution, denoted as γ1, for the corresponding homogeneous equa-
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tion. Subsequently, a specific solution, denoted as γ∗, is pursued for the non-homogeneous

equation. The general solution, denoted as γg, is derived by combining the homogeneous

solution and the particular solution, expressed as yg = γ1 + γ∗.

Example 3.6
We consider the equation: 2xγ′ − γ = x.

We start with the relevant homogeneous equation: The generic solution of the homo-

geneous equation 2xγ′ − γ = 0 is

γ′ = 1
2x

γ ⇒ γ1 = me
1
2

∫
1
x ⇒ γ1 = me

1
2 ln x ⇒ γ1 = meln x

1
2 ⇒ γ1 = m

√
x.

The specific solution of the non-homogeneous equation is provided by: γ∗ = m(x)
√

x.

So γ′
∗(x) = m′(x)

√
x + m(x)

2
√

x
also : 2xγ′

∗ − γ∗ = x we find

2xm′(x)
√

x + 2xm(x)
2
√

x
− m(x)

√
x = x ⇒ 2xm′(x)

√
x + m(x)

√
x − m(x)

√
x = x ⇒

2xm′(x)
√

x = x ⇒ m′(x) = 1
2
√

x
.

So m(x) =
√

x ⇒ yp = m(x)
√

x ⇒ γ∗ = x.

The definitive answer is:

γg = γ1 + γ∗ = m
√

x + x, m ∈ ℜ.

3.1.2 Linear Differential Equations of Order 2 (LDE of Order

2)
Definition 3.3

[11] A second-order linear differential equation with constant coefficients is expressed

in the following form:

s1γ
′′ + s2γ

′ + s3γ = φ(x), (3.8)

where s1, s2, s3 ∈ ℜ(a ̸= 0) and φ ∈ C0(J)(J ⊂ ℜ).

The associated homogeneous equation (or without a second member) is:

s1γ
′′ + s2γ

′ + s3γ = 0. (3.9)

Proposal if γ1 is a general solution of (3.1.2) and γ∗represents a specific solution of

(3.3). So γg = γ1 + γ∗ is a general solution of (3.3).
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Addressing the corresponding homogeneous equation (HE)

s1γ
′′ + s2γ

′ + s3γ = 0

We seek the solution in the form γ(x) = erx, r ∈ ℜ. So γ′(x) = rγ(x) and γ′′(x) = r2γ(x),

so, (3.1.2) became :

γ(s1r
2 + s2r + s3) = 0. (3.10)

Definition 3.4
The equation s1r

2 +s2r+s3 = 0 is referred to as the characteristic equation of (3.1.2).

Proposition 3.2
Following the sign of ∆ = s2

2 − 4s2s3, we have the following results:

1) ∆ > 0: Eq. (3.1.2) accept tow distinct real roots r1 ̸= r2, and

γ(x) = c1e
r1x + c2e

r2x, c1, c2 ∈ ℜ.

is a general solution of Eq. (3.1.2).

2)∆ = 0: Eq. (3.1.2) accept a double root r ∈ ℜ,

γ(x) = (c1x + c2)erx, c1, c2 ∈ ℜ.

3)∆ < 0: Eq. (3.1.2) accept a two complex roots conjugated r1,2 = a ± ib, (a, b ∈

ℜ, b ̸= 0) and

γ(x) = eax(c1 cos(bx) + c2 sin(bx)), c1, c2 ∈ ℜ.

Example 3.7

1. Case 1: Two Distinct Real Roots (∆ > 0)

Consider the equation: γ′′ − 6γ′ + 8γ = 0.

The characteristic equation is r2 −6r +8 = 0, which factors to (r−2)(r −4) = 0.

The roots are distinct and real: r1 = 2 and r2 = 4. The solution is:

γ(x) = c1e
2x + c2e

4x, c1, c2 ∈ R
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2. Case 2: One Repeated Real Root (∆ = 0)

Consider the equation: γ′′ − 6γ′ + 9γ = 0.

The characteristic equation is r2 − 6r + 9 = 0, which factors to (r − 3)2 = 0.

This gives a repeated real root r = −3. The solution is:

γ(x) = (c1x + c2)e3x, c1, c2 ∈ R

3. Case 3: Two Complex Conjugate Roots (∆ < 0)

Consider the equation: γ′′ + 4γ′ + 13γ = 0.

The characteristic equation is r2 + 4r + 13 = 0. The discriminant is ∆ =

42−4(1)(13) = 16−52 = −36. The complex roots are r = −4 ±
√

−36
2 = −2±3i.

The solution is:

γ(x) = e−2x(c1 cos(3x) + c2 sin(3x)), c1, c2 ∈ R

Determining the Specific Solution

To determine a specific solution γ∗ for the equation s1γ
′′+s2γ

′+s3γ = φ(x), the Method of

Undetermined Coefficients can be employed. This method is applicable when the function

φ(x) is a polynomial, an exponential, a sine or cosine function, or a product of these types.

Step 1: Determine the Initial Guess for γ∗ The initial step involves formulating

a preliminary assumption for γ∗ that mirrors the structure of φ(x). The table below

presents the accurate predictions for the most prevalent cases.

Table 3.1: Initial Guess Forms for the Particular Solution (γ∗)
If the term φ(x) has the form... The corresponding guess for γ∗(x) is...

Pn(x) (A polynomial of degree n) Anxn + · · · + A1x + A0

Pn(x)eαx (Anxn + · · · + A0)eαx

Pn(x)eαx cos(βx) or (Anxn + . . . )eαx cos(βx)+

Pn(x)eαx sin(βx) (Bnxn + . . . )eαx sin(βx)
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Step 2: Apply the Modification Rule This is the most important step and replaces

the repetitive conditions in your original text. You must compare your initial guess for

γ∗ with the terms in your homogeneous solution, γ1.

• Case A (No Overlap): If no term in your proposed solution for γ∗ corresponds to

a solution of the homogeneous equation (γ1), then your initial assumption is valid.

This applies when the components of φ(x) (such as a or a ± ib do not constitute

roots of the characteristic equation.

• Case B (Overlap):If any component of your proposed solution for γ∗ is already

included in γ1, it is necessary to multiply your entire proposal by x. This is the

criterion for a clear root of the characteristic equation.

• Case C (Repeated Overlap): If, after multiplying by x, the new guess still

includes a term from γ1, it is necessary to multiply by x once more (i.e., multi-

ply the original guess by x2). This addresses the scenario of a double root of the

characteristic equation.

Upon applying this rule to obtain the final form of γ∗, one can substitute it into the

differential equation to determine the unknown coefficients (A, B, etc.).

Example 3.8
γ′′ − 4γ′ + 4γ = (x2 + 1)ex the homogeneous equation is γ′′ − 4γ′ + 4γ = 0 so the

characteristic equation is: r2 − 4r + 4 = 0 we have ∆ = 0, r = 2 double root so the

solution is

γ1 = (c1x + c2)e2x, c1, c2 ∈ ℜ.

2)We seek a specific solution to the non-homogeneous equation. as the m = 1 a not

root of the characteristic equation so the γ∗(x) = Q(x)e2x such as degQ = 2,

γ∗(x) = (ax2 + bx + c)ex so

γ′
∗(x) = (2ax + b)ex + (ax2 + bx + c)ex

γ′′
∗ (x) = 2aex + 2(2ax + b)ex + (ax2 + bx + c)ex .
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By replacing in (2.1); γ′′
∗ − 4γ′

∗ + 4γ∗ = (x2 + 1)ex we find

((a − 1)x2 + (b − 4a)x + c + b + 2a − 1)ex = 0


a − 1 = 1

b − 4a = 0

c + 2a − 2b − 1 = 1 ⇒


a = 2

b − 4a = 8

c = 15

the specific solution γ∗ = (2x2 + 8x + 15)ex

finally the overall answer is

γg = γ1 + γ∗ = (c1x + c2)e2x + (2x2 + 8x + 15)ex, c1, c2 ∈ ℜ.

Example 3.9
Resolve these differential equations: γ′′ − 4γ′ + 3γ = 3x + 2

The homogeneous equation is:

γ′′ − 4γ′ + 3γ = 0

The characteristic equation is:

r2 − 4r + 3 = 0

Factoring:

(r − 1)(r − 3) = 0

Thus, the roots are r = 1 and r = 3. The alternate solution is as follows:

γ1 = C1e
r1x + C2e

r2x = C1e
x + C2e

3x

The non-homogeneous term is 3x + 2. Consider a specific solution represented as

follows:

γ∗ = Ax + B

Compute derivatives:

γ′
∗ = A, γ′′

∗ = 0

Substitute into the original equation:

0 − 4A + 3(Ax + B) = 3x + 2
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Simplify:

3Ax + (3B − 4A) = 3x + 2

Equating coefficients:

3A = 3 ⇒ A = 1

3B − 4A = 2 ⇒ 3B − 4(1) = 2 ⇒ 3B = 6 ⇒ B = 2

Thus:

γ∗ = x + 2

The comprehensive solution is as follows:

γg = γ1 + γ∗ = C1e
x + C2e

3x + x + 2

Solving the associated non-homogeneous equation with an arbitrary func-

tion

Technique of Variation of Constants

The equation is:

s1γ
′′ + s2γ

′ + s3γ = ρ(x) where φ(x) is arbitrary function.

When the function ρ(x) is arbitrary, the variation of parameters method is effec-

tive. First, solve the associated homogeneous equation to find the basis solutions, let’s

say γa(x) and γb(x), giving γh = c1γa(x) + c2γb(x). To determine the specific solu-

tion, we replace the constants c1 and c2 with functions F (x) and E(x), such that γ∗ =

F (x)γa(x)(x)+E(x)γb(x)(x). These functions are then found by solving a specific system

of equations. We modify the constants c1 and c2, and denote a variable by x, thus we

express:

γ∗ = c1(x)φ(x) + c2(x)h(x)

γ′
∗ = c′

1(x)φ′(x) + c′
2(x)h′(x)

where the functions φ, h are the basis of the solution γ1.

so γ1 is solution if only if c′
1(x) and c′

2(x) they investigate this conditions:

c′
1(x)φ(x) + c′

2(x)h(x) = 0

c′
1(x)φ′(x) + c′

2(x)h′(x) = ρ(x)
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Example 3.10
Examine this equation:

γ′′(x) + 2γ′(x) + γ(x) = tan(x)

The corresponding (HE)is:

γ′′(x) + 2γ′(x) + γ(x) = 0

Assume two linearly independent solutions for (HE): γ1(x) = e−x(c1 + c2x). We

will now identify the specific solution using the method of variation of parameters.

The parameters c1(x) and c2(x) are established by resolving the system of equations:
c′

1(x)e−x + c′
2xe−x = 0

−c′
2(x)e−x + c′

2(1 − x)e−x = tan(x)

Simplify: 
c′

1(x) = −xex tan(x)

c′
2(x) = tan(x)

Integrate to find c1(x) and c2(x):
c1(x) =

∫
−xex tan(x) dx

c2(x) =
∫

tan(x) dx

The specific solution is provided by:

γ1(x) = (−xex tan(x))e−x + (− ln | cos(x)|)xe−x

.

This is the specific solution to the provided differential equation.
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Figure 3.1: Diagram for the synthesis of second-order differential equations with a sec-

ondary term.

3.2 Exploration of Partial Differential Equations

A function φ : ℜ × ℜ → ℜ of two real variables defined in the vicinity of the point

A(p, q). If the function x → φ(x, q) possesses a derivative with regard to x, we denote it

as φ′
x(p, q).

The partial derivative with regard to x can be defined as

f ′
x : ℜ × ℜ → ℜ, (x, y) −→ f ′

x(x, y). (3.11)

The partial derivative with respect to γ is defined using the same method, we note

φ′
x = ∂φ

∂x
, φ′

γ = ∂φ

∂γ
. (3.12)

Successive derivatives

In the same way, we can define the derivative of the function φ′
x with respect to x, we

note it φ′′
x2 or ∂2φ

∂x2 .

also the derivative of the function φ′
x with respect to γ, we note φ′′

xγ or ∂2φ

∂γ∂x
.

The derivative of the function φ′
yγ with respect to γ, we note φ′′

γ2 or ∂2φ

∂γ2 .
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The derivative of the function φ′
γ with respect to x, we note φ′′

γx or ∂2φ

∂x∂γ
.

Theorem 3.3
[5] If the partial derivatives φ′′

γx and φ′′
xγ are continuous, then these derivatives are

equal:

φ′′
xγ = φ′′

γx. (3.13)

Example 3.11

Determine ∂2φ

∂γ∂x
,
∂2φ

∂γ2 ,
∂2φ

∂x2 ,
∂2φ

∂x∂γ
, for the function φ(x, γ) = x2 + xγ2 − γ

∂φ

∂x
(x, γ) = 2x + γ2, ∂2φ

∂x2 (x, γ) = 2, ∂2φ

∂γ∂x
(x, γ) = 2γ.

∂φ

∂γ
(x, γ) = 2xγ, ∂2φ

∂γ2 (x, γ) = 2x, ∂2φ

∂x∂γ
(x, γ) = 2γ.

Definition 3.5
[5] An equation involving a function φ with multiple independent variables x1, ..., xn

and its partial derivatives relative to these variables takes the form:

F (x1, ..., xn, φ,
∂φ

∂x1
, ...,

∂2φ

∂x2
1
,
∂2φ

∂x2
2
, ...)∂x1∂x2, ...,

∂mφ

∂mxn

) = 0, (3.14)

is a partial differential equation.

Example 3.12

1-(∂u

∂x
)2 − u

∂u

∂γ
= 0.

2-x2 + γ2(∂u

∂x
+ 2∂u

∂γ
) = x + γ + u.

3.2.1 Partial Differential Equations of the 1st Order
Definition 3.6

[17] An equation involving a function f of multiple independent variables x1, ..., xn

and the first-order partial derivatives of φ with respect to these variables, specifically
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in the form:

F (x1, ..., xn, φ,
∂φ

∂x1
, ...,

∂φ

∂xn

) = 0, (3.15)

It is classified as a first-order partial differential equation (PDE).

Proposition 3.4
Any function φ(x1, ..., xn) which identically satisfies this equation is a solution of it.

Remark 3.5
In the following, we often use the notations u or z instead of φ. In the case of two

variables x, γ, we have

F (x, γ, φ,
∂f

∂x
,
∂φ

∂γ
) = 0.

Example 3.13

1-∂φ

∂x
= 0 ⇔ φ(x, y) = φ(γ).

2-∂φ

∂γ
= 0 ⇔ φ(x, γ) = φ(x).

3-∂φ

∂x
= g(x). If g is integral and G is one of its primitives, then ∂

∂x
(φ(x, γ)−G(x)) = 0,

from where φ(x, γ) = G(x) + φ(γ).

Remark 3.6
The generic solution of a first-order partial differential equation relies on an arbitrary

function.

Method of of Characteristic System for Solving the PDE

Definition 3.7
A prevalent method for addressing linear first-order partial differential equations is

the method of characteristics. This method is applicable to equations expressed in

standard form:

Z(x, γ, z)∂φ

∂x
+ K(x, γ, z)∂f

∂y
= N(x, γ, z), (3.16)

where Z, K, and N are functions of x, γ, and z defined on an open subset of R3. A
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function Φ(x, γ) serves as a first integral of a differential system and simultaneously

constitutes a solution to the corresponding partial differential equation.

the characteristic system associated with the PDE president of the form is

dx

Z(x, γ, z) = dy

K(x, γ, z) = dz

N(x, γ, z) . (3.17)

Remark 3.7
The PDE solution is reduced to the search for two prime integrals of a system such

that:

Φ1(x, γ) = c1, Φ2(x, γ) = c2

where the general solution is Φ(c1, c2) = 0 with c2 = Φ(c1).

Example 3.14
Ascertain the comprehensive solution of the equation:

γz
∂φ

∂x
+ xz

∂φ

∂γ
= −xγ.

Let φ(x, γ, z) be the function to solve. Rewrite the equation:

γzφx + xzφγ = −xγ.

we use this equality:
dx

γz
= dγ

xz
= dz

−xγ

we choose the first equality:

This is a first-order linear PDE. To solve, introduce the characteristic equations:∫
xdx =

∫
γdγ

=⇒ C1 = y2 − x2,

where C1 is a constant.

2. From dx

γz
= dz

−xγ
, solve:

=⇒ −xdx = zdz =⇒ x2 + z2 = C2,



58

where C2 is another constant.

Thus, the general solution is:

g(x2 − γ2, z2 + x2) = 0, g(x2 − γ2) = z2 + x2

where g and φ are an arbitrary functions.

Example 3.15
Solve the first-order (PDE):

γ2 ∂u

∂x
+ x2 ∂u

∂γ
= 0.

Rewrite the equation in shorthand notation:

γ2ux + x2uγ = 0.

We apply the method of characteristics. The characteristic equations are:

dx

γ2 = dγ

x2 = du

0 .

First, solve the characteristic equation dx

γ2 = dγ

x2 :

∫
x2 dx =

∫
γ2 dγ =⇒ x3

3 = γ3

3 + c.

This yields the first characteristic:

C1 = γ3 − x3.

Next, solve du

0 = dγ

x2 . Since du

0 implies du = 0, we have:

u = C2.

In its most basic form, the answer is a functional link among the following character-

istics:

ϕ(γ3 − x3, u) = 0, or equivalently, u = φ(γ3 − x3),

where φ is an arbitrary differentiable function.



59

Example 3.16
Resolve the first-order PDE:

1
x

∂u

∂x
+ 1

γ

∂u

∂γ
= 2.

The characteristic equations are:

dx
1
x

= dγ
1
γ

= du

2 .

Simplify equations:

x dx = γ dγ = du

2 .

First, solve the equation dx
1
x

= dγ
1
γ

, or equivalently, x dx = γ dγ:

∫
x dx =

∫
γ dγ =⇒ x2

2 = γ2

2 + c.

This yields to:

C1 = γ2 − x2.

Next, solve the equation dγ
1
γ

= du

2 , or equivalently, γ dγ = du

2 :

∫
γ dγ =

∫ du

2 =⇒ γ2

2 = u

2 + c =⇒ u − γ2 = C2.

Thus, the second characteristic is:

C2 = u − γ2.

The overall solution is represented as a functional relationship among the characteris-

tics.

ϕ(γ2 − x2, u − γ2) = 0, or equivalently, u = φ(γ2 − x2) + γ2,

where ϕ and φ are arbitrary differentiable functions.
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Figure 3.2: Illustration of first-order 1st partial differential equations for synthesis

3.2.2 Partial Differential Equations of the 2st Order
Definition 3.8

[5] Let φ be a function of two variables, x and γ. A second-order partial differential

equation is defined as a relation of the form

F (x, γ, φ,
∂φ

∂x
,
∂φ

∂γ
,
∂2φ

∂x2 ,
∂2φ

∂x∂γ
,
∂2φ

∂γ2 = 0, (3.18)

involving the function φ and its partial derivatives up to the second order.

Example 3.17

1-∂2φ

∂x2 = 0,

2- ∂2φ

∂x∂γ
= 0.

Remark 3.8
The solution to a second-order partial differential equation is contingent upon two

arbitrary functions.

Proposition 3.9
Examine a second order partial differential equation represented in the following man-
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ner:

s1(x, γ)∂2z

∂x2 + 2s2(x, γ) ∂2z

∂x∂γ
+ s3(x, γ)∂2z

∂γ2 = F (x, γ, z,
∂z

∂x
,

∂z

∂γ
), (3.19)

in the context where z = φ(x, γ) represents an unknown function, and s1, s2, s3, F are

specified functions defined within a domain D ⊂ ℜ2.

Definition 3.9
A characteristic for the above equation is a curve in D satisfying the differential

equation:

s1(
∂γ

∂x
)2 − 2s2(

∂γ

∂x
) + s3 = 0. (3.20)

Classification of PDE of the 2nd order

The type of equations depends on their discriminant ∆ = s2
2 − s1s2 .

Definition 3.10
Only when ∆ > 0 can the equation be classified as hyperbolic.

Example 3.18
The equation for vibrating strings:

∂2z

∂x2 = k2 ∂2z

∂t2

where z(x, t) represents the motion of the point at abscissa x at time t. This is a

hyperbolic equation represented as (s1 = 1, s2 = 0, s3 = −k2).

Definition 3.11
Only when ∆ = 0 can the equation be said to be of the parabolic form.

Example 3.19
Chaleur equation:

∂z

∂t
= α

∂2z

∂x2 ,

where t is the time, z is the temperature of a body and α is a constant. It is a parabolic

equation(s1 = α2, s2 = s3 = 0).
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Definition 3.12
The equation is of the elliptic type if and only if ∆ < 0.

Example 3.20
The equation of harmonic functions (or Laplace equation with two variables):

∂2z

∂x2 + ∂2z

∂γ2 = 0,

is elliptic (s1 = s3 = 1, s2 = 0).

Figure 3.3: Define hyperbolic trajectory

Figure 3.4: Define parabolic trajectory
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Figure 3.5: Define elliptic trajectory

Analysis of the Equation for Vibrating Strings

Let it be
∂2z

∂x2 = k2 ∂2z

∂t2 , x ∈ ℜ, t ≥ 0z(x, 0) = φ(x), ∂z

∂t
(x, 0) = Ψ(x). (3.21)

in which the functions φ(x) and Ψ(x) are defined ]−∞, +∞[ .

Alembert solution
∂2z

∂x2 − k2 ∂2z

∂t2 = 0

a = 1, b = 0, c = −k2 → ∆ = k2

dx

dt
= ±k

2 = ±k ⇒ dx = ±dt ⇒ x = kt + c1

x = −kt + c2 ⇒

 ζ = x − kt

η = x + kt

Any class solution C2 from the equation of vibrating strings is of the form g(x − kt) +

h(x+kt) where g and h are arbitrary class functions to define them we use the conditions:
g(x) + h(x) = φ(x)

g(x) − h(x) = −1
k

∫ x

0
Ψ(τ)dτ

so the classical solution of the equation 3.2.2 is :

z(x, t) = 1
2(φ(x − kt) + φ(x + kt)) + 1

2k

∫ x+at

x−kt
Ψ(τ)dτ .

Remark 3.10
Consider an equation that contains only partial derivatives with respect to a single

variable. The equation can be analyzed as an ordinary differential equation, with the

integration constants treated as functions of the variable that serves as a parameter. In

a similar manner, if an equation contains only partial derivatives of a specific partial

derivative concerning one of the variables, it is possible to analyze the equation by
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treating the latter partial derivative as an intermediate unknown.

Example 3.21

1-∂2f

∂x2 = 0 ⇒ ∂

∂x
(∂f

∂x
) ⇒ ∂f

∂x
= g(γ) so φ(x, y) = xg(γ)+h(y). where g, h are arbitrary

functions.

2- ∂2φ

∂x∂γ
= 0 ⇒ ∂

∂y
(∂φ

∂x
) ⇒ ∂φ

∂x
= g(x) so φ(x, y) = h(x) + φ(γ).

3.3 Special functions

Eulerian functions
Definition 3.13

We call the Eulerian integral of the first kind or beta function, the integral depending

on two parameters x and γ defined as follows

β(x, γ) =
∫ 1

0
tx−1(1 − t)γ−1dt. or

β(x, γ) = 2
∫ Π

2

0
sin2x−1 t cos2γ−1 tdt.

Definition 3.14
We call the Eulerian integral of the second kind or gamma function, the integral

depending on the parameter x, defined as follows

Γ(x, γ) =
∫ +∞

0
tx−1e−tdt, or

Γ(x, γ) = 2
∫ +∞

0
t2x−1e−t2

dt.
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Figure 3.6: Define Gamma function

Hypergeometric function
Definition 3.15

Definition

The hypergeometric function is defined by the series

F1(a, b, c, z) =
+∞∑
k=0

Γ(a + k + 1)Γ(b + k + 1)Γ(1 + c)zk

Γ(1 + a)Γ(1 + b)Γ(c + 1 + k)k! .

Figure 3.7: Define hypergeometric function
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Bessel function of the first kind
Definition 3.16

We call the Bessel function the function Jλ(x), defined by

Jλ(x) = 1
2Π

∫ Π

−Π
ei(x sin θ−λθ)dθ = 1

π

∫ Π

−Π
cos(x sin θ − λθ)dθ.

Figure 3.8: Define the Bessel function



Chapter 4

Series

4.1 Numerical Series

4.1.1 Series with Positive Terms

Let be (un)n∈N a real numerical sequence.

Definition 4.1
[10] We refer to a real numerical series by its general name un

+∞∑
k=0

uk = u0 + u1 + ... + un + ... (4.1)

We denote by sn the partial sum of the first n terms and we have

sn = u0 + u1 + ... + un−1. (4.2)

Figure 4.1: Define numerical series

Proposition 4.1

The numerical series
+∞∑
k=0

uk is considered convergent if and only if its sequence of

67
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partial sums (sn)n∈N converges, meaning that lim
n→+∞

sn exists and is finite; otherwise,

it is classified as divergent.

Example 4.1
Examine the convergence properties of the series characterized by the general term

an = 1
n2 + 3n + 2 for n ≥ 1.

First, we simplify the general term using partial fraction decomposition. The

denominator factors as (n + 1)(n + 2), so we can write:

an = 1
(n + 1)(n + 2) = 1

n + 1 − 1
n + 2

This form suggests that the series is a telescoping series. Let’s examine the sequence

of partial sums, SN :

SN =
N∑

n=1

( 1
n + 1 − 1

n + 2

)

=
(1

2 − 1
3

)
+
(1

3 − 1
4

)
+
(1

4 − 1
5

)
+ · · · +

( 1
N + 1 − 1

N + 2

)

In this sum, the second part of each term cancels the first part of the next term. The

only terms that do not cancel are the first term, 1
2 , and the last term, − 1

N + 2 .

SN = 1
2 − 1

N + 2

To assess the convergence of the series, we evaluate the limit of the partial sums as

N → ∞:

S = lim
N→∞

SN = lim
N→∞

(1
2 − 1

N + 2

)
= 1

2 − 0 = 1
2

Since the limit of the partial sums is a finite number, the series converges to 1
2 .

Theorem 4.2
The convergence characteristics of a series remain unchanged when a finite number of

terms are removed.

Proposition 4.3 (Series Properties)

Let it be
+∞∑
n=0

un and
+∞∑
n=0

vn tow numerical series λ an arbitrary number we have
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Figure 4.2: Graph of simple convergence the series.

1-
+∞∑
n=0

un convergent ⇒
+∞∑
n=0

(λun) convergent.

2-
+∞∑
n=0

un and
+∞∑
n=0

vn convergent ⇒
+∞∑
n=0

(un ± vn) convergent.

Necessary condition for the convergence of series

Theorem 4.4

[1] If
+∞∑
n=0

un convergent so lim
n→+∞

un = 0.

Corollary 4.1

If lim
n→+∞

un ̸= 0 so
+∞∑
n=0

un is divergent.

With regard to the investigation of the character of a series, it is not always possible

to compute its sum. Nevertheless, we are able to ascertain the nature of the series by

employing other methods; in order to do so, we want additional tools.

Example 4.2
Study the nature of this series:

Un =
√

n2 + 1 −
√

n
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Simplify Un and calculated the limite:

lim
n→+∞

Un = lim
n→+∞

n(
√

1 + 1
n2 +

√
1
n

) = +∞.

The series diverges due to the essential condition for convergence.

Example 4.3
Study the nature of this series:

Un = n sin
( 1

n

)
Simplify Un and calculated the limit:

Un =
sin 1

n
1
n

⇒ lim
n→+∞

sin 1
n

1
n

by use this change 1
n

= y so ⇒ lim
y→+∞

sin y

y
= 1 The series diverges due to the essential

condition for convergence.

Criteria for Series with Positive Terms

Theorem 4.5 (Comparison criteria)

Let it be
+∞∑
n=0

un and
+∞∑
n=0

vn two numerical series with positive terms verifying

∀n ∈ N un ≤ vn. (4.3)

or 4.5 is true from a certain rank.

Theorem 4.6

1-If
+∞∑
n=0

vn is convergent so
+∞∑
n=0

un is convergent.

2-If
+∞∑
n=0

un is divergent so
+∞∑
n=0

vn is divergent.

Remark 4.7
1/The series with the sum of a geometric progression which converges if the ratio q is

between 1 and −1 (|q| < 1).

2/Riemann’s series
+∞∑
n=1

1
nα

is convergent when α > 1 and divergent when α ≤ 1.
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3/Bertrand series
+∞∑
n=1

1
nα(ln n)β

is convergent when α > 1 or α = 1 and β > 1.

Figure 4.3: Define Riemann series

Theorem 4.8 (Equivalence Criteria)

Let it be
+∞∑
n=0

un and
+∞∑
n=0

vn two numerical series with positive terms where un ∼+∞ vn

then the two series are of the same nature.

Remark 4.9
The study of the nature of a series amounts to the study of its development limited

to the neighborhood of infinity, because the latter two are equivalent.

Example 4.4

Study the nature of this series: Un = cos(nπ)
n2

we use comparison theorem | cos(nπ)
n2 |< 1

n2 since ⇒
∑ 1

n2 Riemann serie converge

α = 2 > 1 so
∑ cos(nπ)

n2 the series converges absolutely so is converge by comparison.
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Example 4.5

Study the nature of this series: Un = 1
ln(1 + 1

n2 )
For large n, ln(1 + 1

n2 )
∑ 1

n2 , so:

Un

∑ 1
1

n2
= n2 ⇒ lim

n→+∞
n2 = +∞.

equivalency causes the series to diverge, since
∑

n2 diverges.

Theorem 4.10 (Alembert Criteria)

[13] If in a series with positive terms
+∞∑
n=0

un the limit of the report un+1

un

is finite and

is equal l, then:

1-The series convergent for l < 1.

2-The series divergent for l > 1.

3-For l = 1 we can not conclude.

Example 4.6

Study the nature of this series:
+∞∑
n=1

ln n

n! :

we applied Alembert criteria:

lim
n→+∞

un+1

un

= lim
n→+∞

ln n + 1
n + 1!

n!
ln n

= lim
n→+∞

ln n + 1
(n + 1)n!

n!
ln n

= lim
n→+∞

ln n + 1
n + 1

1
ln n

= 0 =

l < 1 ⇒
+∞∑
n=1

ln n

n! is convergent.

Example 4.7

Study the nature of this series: Un = n!
n

we applied Alembert criteria:

lim
n→+∞

Un+1

Un

= lim
n→+∞

(n + 1)!
n + 1

n!
n

= lim
n→+∞

n = +∞ > 0.

The series diverges by Alembert.

Theorem 4.11 (Cauchy Criteria)

[10] If in a series with positive terms
+∞∑
n=0

un the limit of the lim
n→+∞

n
√

un = l:
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1-If l > 1 so
+∞∑
n=0

un is divergent.

2-If l < 1 so
+∞∑
n=0

un is convergent.

3-If l = 1 so we can not judge.

Example 4.8

Study the nature of this series:
+∞∑
n=1

2n2

we applied Cauchy criteria:

lim
n→+∞

n
√

un = lim
n→+∞

n
√

2n2 = lim
n→+∞

2n = +∞ > 1 so
+∞∑
n=1

2n2 is divergent.

Example 4.9

Study the nature of this series:
+∞∑
n=1

1
nn

we applied Cauchy criteria:

lim
n→+∞

n
√

un = lim
n→+∞

n

√
1
n

= lim
n→+∞

( 1
n

)n
n == lim

n→+∞

1
n

= 0 < 1 so
+∞∑
n=1

1
nn

is convergent.

Theorem 4.12 (Riemann criteria)

[10] Let it be
+∞∑
n=0

un series with positive terms and ∃α ∈ ℜ, lim
n→+∞

nαun = l

1-If α > 1 and 0 ≤ l < +∞ ⇒
+∞∑
n=0

un is convergent.

2-If α ≤ 1 and 0 < l ≤ +∞ ⇒
+∞∑
n=0

un is divergent.

Example 4.10

Study the nature of this series:
+∞∑
n=1

1√
n(n + 1)

we applied Riemann criteria:

lim
n→+∞

nαun, −α = 1),

lim
n→+∞

n

n(
√

1 + 1
n
)

= 1, so: l ̸= 0 and α = 1 ⇒ the series is diverge.
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Theorem 4.13 (Cauchy integral criteria)

[10] Let it be
+∞∑
n=0

un a numerical series with positive terms and decreasing (starts to

decrease from a certain rank n0), we define the application f(x) as follows f(n) = un

so
+∞∑
n=0

un and
∫ +∞

n0
f(x)dx are the same nature.

Example 4.11

Let it be
+∞∑
n=3

ln n

n
we applied Cauchy integral criteria: the series with positive terms

and decreasing from n0 = 3, we define the function ln x

x
, ∀x ∈ [3, +∞[ so

+∞∑
n=3

ln n

n
and∫ +∞

3

ln x

x
dx they have same nature we calculate this integral so :∫ +∞

3

ln x

x
dx = 1

2(ln x)2|+∞
x=3 = +∞ so the integral is divergent and the same for the

series.

4.1.2 Series Represented by Various Symbols
Definition 4.2

A series is considered to have mixed signs if it contains both positive and negative

terms.

Remark 4.14
Alternating series represent a specific category of series characterized by terms that

can have varying signs.

Definition 4.3

• A series is termed absolutely convergent if the series of its absolute values,∑
|an|, converges. A fundamental theorem asserts that every completely con-

vergent series is convergent.

• A series is defined as conditionally convergent (or semi-convergent) when the

original series
∑

an converges, while the series of its absolute values,
∑

|an|,

diverges.
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Example 4.12
+∞∑
n=1

sin n

n
√

n
we study the absolutely convergent that mean:

+∞∑
n=1

| sin n

n
√

n
|by the comparison we have:

| sin n| ≤ 1 ⇒ |sin n

n
3
2

| ≤ 1
n

3
2

+∞∑
n=1

1
n

3
2

is convergent because it’s a Riemann’s series α = 3
2 > 1 so by comparison

the series
+∞∑
n=1

| sin n

n
√

n
| is convergent ⇒

+∞∑
n=1

sin n

n
√

n
is absolutely convergent ⇒

+∞∑
n=1

sin n

n
√

n
is

convergent

Theorem 4.15
All totally convergent series are convergent; however, the reverse is not necessarily

true.

Theorem 4.16 (Abel)
Suppose that un = wn.vn where wn and vn check the following conditions:

1-(vn)n inN is decreasing and lim
n→+∞

vn = 0.

2- sn is bounded where en is defined as in (B) so the
+∞∑
n=0

un is convergent.

Theorem 4.17
Suppose that un = wn.vn where wn and vn check the following conditions:

1-(vn)n inN is a decreasing and lim
n→+∞

vn = l, (l ∈ ℜ).

2-
+∞∑
n=0

wn is convergent. So
+∞∑
n=0

un is convergent.

Example 4.13
Study the nature of this series : Un = ane−n, |a| < 1

Rewrite Un = vn.wn = ane−n we use Abel theorem. Since
∑

an, the series converges

geometrically ( |a| < 1).

And lim
n→+∞

e−n = 0 so by Abel the serie is converge.
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Definition 4.4 (The Alternating Series Test)
An alternating series is characterized by a specific structure that follows this form:

u1 − u2 + u3 + ... + (−1)n+1un + ..., (4.4)

where un ≥ 0 for all n ∈ N∗.

Figure 4.4: Define alternating series

Theorem 4.18 (Leibniz)
[13] An alternating series consists of terms that change in sign from one to the next.

A series of the form
∞∑

n=1
(−1)n−1bn is assured to converge if it satisfies all three of the

following criteria:

1. The values of bn are required to be positive for every n (i.e., bn > 0).

2. The sequence of terms {bn} is required to be decreasing; specifically, bn+1 ≤ bn

for all n after a certain threshold.

3. The terms must converge to zero. The limit of bn as n approaches infinity is 0.

Example 4.14
+∞∑
n=1

(−1)n

n2 for study the convergent we use theorem Leibniz:

vn = 1
n2 is decrease sequence and lim

n→+∞

1
n2 = 0 so

+∞∑
n=1

(−1)n

n2 is convergent.
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4.2 Sequences and Series of Functions

4.2.1 Sequences of Functions
Definition 4.5

A sequence of functions is defined as a sequence in which each term is a function that

depends on a parameter n, denoted as follows:

(fn)n∈N . (4.5)

Categories of Convergences

Simple convergence

Definition 4.6
A sequence of functions (fn) demonstrates simple convergence to a function f on an

interval I if, for every distinct point x ∈ I, the sequence of values fn(x) converges to

f(x).

Definition 4.7
Let f : I ⊂ R −→ R be a sequence of functions. We state that the sequence (fn)

converges simply to x0 on I if and only if the sequence fn(x0) is convergent.

Remark 4.19
The sequence of functions fn converges pointwise to f if the following conditions hold:

1. For all x, the limit of the sequence satisfies:

lim
n→+∞

fn(x) = f(x).

2. For all x, the absolute difference converges to zero:

lim
n→+∞

|fn(x) − f(x)| = 0.
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Example 4.15

We study this sequence fn(x) =
√

nx

1 +
√

nx2 .

1/ lim
n→+∞

fn(x) = lim
n→+∞

√
nx

1 +
√

nx2 = lim
n→+∞

( x
1√
n

+ x2 ) = 1
x

= f(x) where x ∈ ℜ∗+ so

f(x) =


0 x = 0
1
x

x ∈ ]0, +∞[
1-For x = 0:

lim
n→+∞

|fn(x)−f(x)| = lim
n→+∞

|fn(0)−f(0)| = 0 so fn is simple convergent for the point

x0 = 0.

2-For x ∈ ]0, +∞[:

lim
n→+∞

|fn(x)−f(x)| = lim
n→+∞

|
√

nx

1 +
√

nx2 − 1
x

| = lim
n→+∞

1
x(1 +

√
nx2) = 0 so fn(x) −→ f

simple convergent in ]0, +∞[ so fn(x) −→ f simple convergent in ]0, +∞[.

Uniform Convergence

Definition 4.8
Uniform convergence, however, is a more stringent condition. It requires that the

convergence occurs at the same rate across the entire interval. Formally, a sequence

(fn) converges uniformly to f on I if the supremum of the absolute difference between

the functions approaches zero:

lim
n→∞

sup
x∈I

|fn(x) − f(x)| = 0

Remark 4.20
Uniform convergence necessarily leads to simple convergence.

Theorem 4.21

Let it be (fn)n∈N a sequence of functions is simply convergent to f if ∂fn

∂x
is bounded

then the convergence is uniform.

Example 4.16

We study uniform convergent the sequence fn(x) =
√

nx

1 +
√

nx2 .
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Figure 4.5: Graph of defining the uniform convergence

For the simple convergent we have:

f(x) =


0 x = 0
1
x

x ∈ ]0, +∞[
For the uniform convergent, we have:

lim
n→+∞

sup|fn(x) − f(x)| = 0

1/gn(x) = |fn(x) − f(x)|

2/supgn(x)/x ∈ I

3/ lim
n→+∞

gn(x)

1/For x ∈ ]0, +∞[: f(x) = 1
x

and gn(x) = ( 1
x(1 +

√
nx2 ) so we seek for supgn(x) we

find the derivative of gn(x):

g′
n(x) = −(1 + 3

√
nx2)

(1 +
√

nx2)2 so the supx∈ℜ∗+gn(x) = lim
x→0

gn(x) = lim
x→0

1
(1 +

√
nx2)2 = +∞

so fn(x) not uniformly convergent to f .

Properties of Functions Sequences

Proposition 4.22 (Continuity Theory)
Let it be f : I ⊂ ℜ −→ ℜ a sequence of functions continuous uniformly converges to

f on I. Then f is continuous.

Proposition 4.23 (Derivation Theory)
Let (fn)n∈R be a sequence of functions that converges uniformly to the function f .

The sequence of functions (f ′
n)n∈ℜ converges uniformly to f ′.

Proposition 4.24 (Integral Theory)
Let it be (fn)n∈ℜ a sequence of Riemann-integral functions converges uniformly to a
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function f on [a, b], so

lim
n→+∞

∫ b

a
fn(x)dx =

∫ b

a
lim

n→+∞
fn(x)dx =

∫ b

a
f(x)dx.

4.2.2 series of functions
Definition 4.9

Consider a sequence of functions denoted as fn : I ⊂ ℜ −→ ℜ. A series of functions

is defined as the infinite sum of the terms of fn, which we denote as follows:

+∞∑
n=0

fn(x) = f1 + f2 + f3 + ... + fn + fn+1 + ..... (4.6)

Definition 4.10
We denote (sn)n∈ℜ as the partial sums for a sequence of functions fn:

sn =
n∑

n=0
fk = f0 + f2 + f3 + ... + fn. (4.7)

Simple Convergent

Definition 4.11

Consider the series of functions
+∞∑
n=0

fn(x) defined on the interval I ∈ ℜ. We charac-

terize it as simply convergent if the series of partial sums (sn)n∈ℜ converges simply on

I:

lim
n→+∞

sn(x) = s(x) ⇒ lim
n→+∞

|sn(x) − s(x)| = 0. (4.8)

Uniform Convergence

Definition 4.12

We state that the series
+∞∑
n=0

fn(x) converges uniformly on the interval I.

⇔ lim
n→+∞

sup|sn(x) − s(x)| = 0. (4.9)
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Remark 4.25

To analyze the convergence of the series
+∞∑
n=0

fn(x), one can employ various criteria such

as comparison criteria, equivalent criteria, Riemann’s criteria, the Alembert criterion,

and Cauchy’s criterion. It is important to note that if fn is either positive or negative

on the interval I, where x is treated as a constant variable, then
+∞∑
n=0

fn(x) can be

regarded as a numerical series with a positive general term.

Normally Convergent

Definition 4.13

A series of functions
∑

fn(x) is said to be normally convergent on an interval

I if the series formed by the supremum of the absolute values of each function is a

convergent numerical series. That is, if:

∞∑
n=0

(
sup
x∈I

|fn(x)|
)

< ∞

Normal convergence implies uniform convergence, making it a very strong condition.

Theorem 4.26 (Weirtrass)

[13] Let it be
+∞∑
n=0

fn(x) a series of functions define in I ∈ ℜ if we find a numerical

sequence (Cn)n∈N where:

∀x ∈ ℜ, |fn(x)| ≤ Cn, (4.10)

so if it was
+∞∑
n=0

Cn convergent so
+∞∑
n=0

fn(x) normally convergent in I.

Example 4.17

For previously example:
+∞∑
n=0

fn =
+∞∑
n=0

xn

1 + n2 .

1/Simple convergent:

∀x ∈ [0, +∞[, fn(x) = xn

1 + n2 ≥ 0.

For fixed x we applique role Riemann:

∃α ∈ ℜ, lim
n→+∞

nαfn(x),

∃α = 2, where, lim
n→+∞

nα xn

1 + n2 = lim
n→+∞

n2xn

1 + n2 lim
n→+∞

xn = lim
n→+∞

xn
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lim
n→+∞

xn =


0 if x ∈ [0, 1[

1 if x = 1

+∞ ifx ∈ ]1, +∞[
∃α = 2 > 1 :

lim
n→+∞

nαfn(x) =


0 if x ∈ [0, 1[

1 if x = 1

+∞ ifx ∈ ]1, +∞[

According to ∀x ∈ [0, 1] ⇒
+∞∑
n=0

fn(x) simply convergent.

For x ∈ ]1, +∞[ we applique Alembert method:

lim
n→+∞

fn+1(x)
fn(x) = lim

n→+∞

xn+1

1 + (n + 1)2
1 + n2

xn
= n2 + 1

1 + (n + 1)2 x = x, so, lim
n→+∞

fn+1(x)
fn(x) =

x > 1 according to Alembert ⇒
+∞∑
n=0

fn(x) not simply convergent in ]1, +∞[ ⇒
+∞∑
n=0

fn(x) not simply convergent in [1, +∞[.

2/Normally convergent in [0, 1]:
+∞∑
n=0

fn(x) normally convergent in [0, 1] ⇔
+∞∑
n=0

sup|fn(x)| convergent.

1-|fn(x)| = | xn

1 + n2

2-supx∈[0,1]|fn(x)| = supx∈[0,1]
xn

1 + n2

we calculate the derivative of fn(x) so:

( xn

1 + n2 )′ = nxn−1

1 + n2 > 0, ∀x ∈ ]0, 1] so the sup of the function be at value x = 1 ⇒
+∞∑
n=0

sup|fn(x)| =
+∞∑
n=0

1
1 + n2

we study the nature of this series by using the equivalent method:
1

1 + n2 ∼+∞
1
n2 , is convergent because it’s Riemann series α = 2 > 1 ⇒

+∞∑
n=1

1
1 + n2 is

convergent ⇒
+∞∑
n=0

1
1 + n2 is convergent so,

+∞∑
n=0

supx∈]0,1]|fn(x)|is convergent ⇔
+∞∑
n=0

fn(x) normally convergent in ]0, 1]

For x = 0:
+∞∑
n=0

fn(x) =
+∞∑
n=0

fn(0) = 0 is normally convergent in x = 0 so ∀x ∈ [0, 1]
+∞∑
n=0

fn(x) is

normally convergent.
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Absolutely Convergent

Definition 4.14

Let it be
+∞∑
n=0

fn(x) series of functions define in I ∈ ℜ we say that
+∞∑
n=0

fn(x) absolutely

convergent if
+∞∑
n=0

|fn(x)| simple convergent in I ∈ ℜ.

Example 4.18
We study the convergence of the series:

∞∑
n=0

sin(nx)
n2 , x ∈ R.

To determine its convergence, we consider the absolute convergence by examining:

∞∑
n=0

∣∣∣∣∣sin(nx)
n2

∣∣∣∣∣ =
∞∑

n=0

| sin(nx)|
n2 .

For all x ∈ R, we have | sin(nx)| ≥ 0. To apply the comparison test, note that:

| sin(nx)| ≤ 1 ⇒ | sin(nx)|
n2 ≤ 1

n2 .

The series
∞∑

n=0

1
n2 is a convergent p-series (Riemann zeta function at p = 2), since

p = 2 > 1. By the comparison test, since | sin(nx)|
n2 ≤ 1

n2 , the series
∞∑

n=0

| sin(nx)|
n2

converges. Therefore, the original series
∞∑

n=0

sin(nx)
n2 is absolutely convergent for all

x ∈ R.

Properties of Function Series

Continuity theory

Proposition 4.27 (Continuity Theory)

Suppose we have
+∞∑
n=0

fn(x) continuous series of functions and uniformly convergent in

I ∈ ℜ so: s(x) =
+∞∑
n=0

fn(x) is a continuous function in I ∈ ℜ.
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Proposition 4.28 (Derivation Theory)

Suppose we have
+∞∑
n=0

fn(x) a series of functions uniformly convergent. Then the series

of functions
+∞∑
n=0

f ′
n uniformly convergent in I ∈ ℜ.

Proposition 4.29 (Integral theory)

Suppose we have
+∞∑
n=0

fn(x) a series of Riemann-integral functions uniformly convergent

on [a, b] ∈ ℜ, so

+∞∑
n=0

(
∫ b

a
fn(x)dx) =

∫ b

a
(

+∞∑
n=0

fn(x))dx =
∫ b

a
s(x).

4.3 Power Series and Fourier Series

Power Series and Radius of Convergence

A power series centered at x0 is an infinite series of the form:
∞∑

n=0
an(x − x0)n. (4.11)

A key feature of any power series is its domain of convergence, which is always

an interval centered at x0. The size of this interval is determined by the radius of

convergence, denoted by R.

The series is guaranteed to converge absolutely for all x within this radius (i.e., for

|x − x0| < R) and diverge for all x outside of it (i.e., for |x − x0| > R). The convergence

at the endpoints (x = x0 ± R) must be checked separately. The value of R can be found

using the Ratio Test:

R = lim
n→∞

∣∣∣∣∣ an

an+1

∣∣∣∣∣ (4.12)
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Figure 4.6: Define the power series

Determination of the Radius of Convergence

Theorem 4.30 (he Ratio Test (Alembert’s Criterion))

R = lim
n→+∞

| an

an+1
|. (4.13)

Example 4.19

R = lim
n→+∞

|a3n+1

a3n+2
| or, R = lim

n→+∞
|an+17

an+18
|.

Theorem 4.31 (Cauchy Criteria)

R = lim
n→+∞

1
n

√
|an|

.

Example 4.20

R = lim
n→+∞

1
n3
√

|an3 |
or, R = lim

n→+∞

1
2n+3
√

|a2n+3|
.

4.3.1 Some properties of Power Series
Proposition 4.32 (Continuity)

The sum of an integer series constitutes a continuous function across any sub-domain

within its convergence domain.

Theorem 4.33 (Derivation)

Let it be
+∞∑
n=0

anxn power series whose domain of convergence is ]−R, R[ and the sum
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s(x), either
+∞∑
n=0

nanxn−1 deduced from the first by term-to-term derivation, the latter

has the same domain of convergence as the first, moreover its sum l = s′(x).

Remark 4.34
The above theorem can be generalized to any order of differentiation; specifically,

every series obtained from a given series through n differentiations possesses the same

domain of convergence, and its sum corresponds to the nth derivative of the original

series.

Theorem 4.35 (Integral)

Let it be
+∞∑
n=0

anxn power series whose domain of convergence is ]−R, R[ and the sum

s(x), either c+
+∞∑
n=0

an

n + 1xn+1 deduced from the first by term-to-term integral, the latter

has the same domain of convergence as the first, moreover its sum m(x) =
∫

s(x)dx.

4.3.2 Power Series (Séries de puissances)
Definition 4.15

A power series is defined as any series expressed in the following form:

+∞∑
n=0

an(x − x0)n, (4.14)

where an is a numerical series.

Remark 4.36
One can consider the change as X = x−x0, allowing this expression to transform into

a complete series.

Remark 4.37
The convergence interval of the power series is centered at x0.

Remark 4.38
The Mac Laurent series development represents an entire series, on the other hand

that of Taylor represents a power series in the vicinity of the point x0.
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Applications of Power Series

Limits Calculating

Corollary 4.2
f we are unable to determine the limit, we can compute the limit of the function’s

development in within close proximity of the desired point.

Example 4.21

we calculated this limit: lim
x→0

ex − 1
sin x

.

We have; lim
x→0

ex − 1
sin x

= 0
0 . We replace ex and sin x by their Mac Laurent developments,

we obtain:

lim
x→0

ex − 1
sin x

= lim
x→0

1 + x − 1
x

= 1.

Extension by Continuity

Corollary 4.3
To determine whether a function can be extended by continuity at a point where it

is not defined, it suffices to express it as an entire series. If this series is continuously

differentiable, the function can be extended at that point.

Example 4.22

Can we extend the function f(x) = sin x

x
in a continuous function on ℜ. We have:

sin x =
+∞∑
n=0

x2n+1

(2n + 1)! ⇒ sin x

x
=

+∞∑
n=0

x2n

(2n + 1)! .

The resulting series is defined and belongs to the class C∞ in ℜ, so the function f(x)

permits a continuous extension.

Integral Calculation

Corollary 4.4
Every continuous function possesses an anti-derivative; however, many functions have

anti-derivatives that cannot be directly defined, albeit they can be computed via series.

Example 4.23

We calculate this integral:
∫ 1

0
ex2

dx, we have:
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ex =
+∞∑
n=0

xn

n! ⇒ e−x2 =
+∞∑
n=0

(−1)nx2n

n! ⇒
∫ 1

0
ex2

dx =
+∞∑
n=0

(−1)n

n!(2n + 1) .

Integration of Ordinary Differential Equations

Corollary 4.5
When tasked with integrating a specific ordinary differential equation (O.D.E) whose

resolution cannot be reduced to a quadrature, we can consistently derive and ap-

proximation solution by assuming that the answer can be expressed as a power series

expansion.

Example 4.24
We solve the differential equation using a power series expansion of y(x) (x + 1)y′ − xy = −1

y(0) = 2 x ∈ [−1, +∞[
Let

y(x) =
∞∑

n=0
anxn.

Then,

y′(x) =
∞∑

n=1
nanxn−1 =

∞∑
n=0

(n + 1)an+1x
n,

where we relabeled the index of the second sum by setting n = n − 1.

Inserting y(x) and y′(x) into the differential equation:

(x + 1)
∞∑

n=0
(n + 1)an+1x

n − x
∞∑

n=0
anxn = −1.

Expanding (x + 1)y′ and collecting terms:

∞∑
n=0

(n + 1)an+1x
n+1 +

∞∑
n=0

(n + 1)an+1x
n −

∞∑
n=0

anxn+1 = −1.

Shift the indices of the sums to align powers of xn:

∞∑
n=1

nanxn +
∞∑

n=0
(n + 1)an+1x

n −
∞∑

n=1
an−1x

n = −1.

Combine terms for xn and write the equation as:

(n + 1)an+1 + nan − an−1 = 0 for n ≥ 1,
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and the constant term a0 satisfies:

a1 + a0 = −1.

Using the initial condition y(0) = 2, we have:

a0 = 2.

From the recurrence relation, compute coefficients an:

a1 = −1 − a0 = −1 − 2 = −3,

a2 = a1

2 = −3
2 ,

a3 = −a2

3 = 3
2 · 3 = 1

2 ,

and so on.

Thus, the solution is:

y(x) = 2 − 3x − 3
2x2 + 1

2x3 + · · · .

4.3.3 Fourier Series
Definition 4.16

We define a function f as periodic with period p if it meets the following condition:

∀x ∈ D, x + p ∈ D : f(x + p) = f(x), (4.15)

where D denotes the domain of definition of f and p represents the smallest positive

integer satisfying (4.16).

Definition 4.17
We define a function f as monotonic by slice on the interval [a, b] if it can be partitioned

into subintervals where f is monotonic on each subinterval.

Remark 4.39
Let f be a slice-monotonic function that is limited on [a, b]; if it exhibits discontinuities,
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they can only be of the first kind.

Definition 4.18
A trigonometric series is characterized as any series represented in the following format:

f(x) = a0

2 +
+∞∑
n=0

(an cos(nx) + bn sin(nx)), (4.16)

where a0, ai, bi are real numbers called coefficients of the series.

Determination of Fourier Coefficients

Consider a 2Π−periodic function that can be represented by a trigonometric series of the

form (4.18), suppose that the series a0

2 +
+∞∑
n=0

(an + bn) is absolutely convergent, therefore

(4.18) is uniformly convergent, we can therefore integrate it term by term. Knowing that:

∫ +Π

−Π
cos(nx) cos(kx)dx =

∫ +Π

−Π
sin(nx) sin(kx)dx =

 Π if n = k

0 if n ̸= k
(4.17)

and
∫ +Π

−Π
cos(nx)dx =

∫ +Π

−Π
sin(nx) =

∫ +Π

−Π
cos(nx) sin(kx)dx = 0, ∀n, k. (4.18)

The integration of the two members of (4.18) gives:

a0 = 1
Π

∫ +Π

−Π
f(x)dx. (4.19)

We will now multiply both sides of (4.18) by cos(kx) and thereafter integrate the result

from −Π to Π, yielding:

an = 1
Π

∫ +Π

−Π
cos(nx)f(x)dx. (4.20)

Let us multiply both sides of (4.18) by sin(kx) and integrate the result between −Π and

Π, we obtain:

bn = 1
Π

∫ +Π

−Π
sin(nx)f(x)dx. (4.21)

Thus we found the coefficients of the series. These are called Fourier coefficients.
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Theorem 4.40
Any periodic, limited, and monotonous function can be expressed as a Fourier series.

Its sum s(x) = f(x) at points of continuity equals the function value, while at points

of discontinuity, it corresponds to the arithmetic mean of the right-hand and left-hand

limits.

Remark 4.41
The Fourier series expansion of even functions does not contain the bn(bn = 0).

Remark 4.42
The Fourier series expansion of odd functions does not contain the an (a0 = an = 0).

4.3.4 Fourier Series of Periodic Period Functions ̸= 2Π

Suppose that the function f(x) is 2l-periodic (l ̸= 0, l ̸= Π), if moreover f is monotonic

by slice and bounded then it is developable in Fourier series, whose Fourier coefficients

are worth

a0 = 1
l

∫ +l

−l
f(x)dx, an = 1

l

∫ +l

−l
f(x) cos(nΠx

l
), bn = 1

l

∫ +l

−l
f(x) sin(nΠx

l
). (4.22)

In addition we have:

f(x) = a0

2 +
+∞∑
n=0

(an cos(nΠx

l
) + bn sin(nΠx

l
)). (4.23)

Parseval Equality

Theorem 4.43
Let f be a function developable in Fourier series of period 2l we have:

1
l

∫ +l

−l
f 2(x)dx = a2

0
2 +

+∞∑
n=0

(a2
n + b2

n). (4.24)

Fourier Series in Complex Form

As previously stated, if f can be represented as a Fourier series, we designate it as follows:
a0

2 +
+∞∑
n=0

(an cos(nΠx

l
) + bn sin(nΠx

l
)), (4.25)
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where:

cos(nΠx

l
) = ei nΠx

l + e−i nΠx
l

2 , (4.26)

and:

sin(nΠx

l
) = ei nΠx

l − e−i nΠx
l

2i
, (4.27)

so we found:

f(x) =
+∞∑

n=−∞
cnei nΠx

l , (4.28)

where:

c0 = a0

2 , cn = an − ibn

2 and c−n = an + ibn

2 , (4.29)

or simply:

cn = 1
2Π

∫ +Π

−Π
f(x)e−i nΠx

l . (4.30)

Example 4.25
We determine the Fourier series of this function f(x) = |sin(x)| we have

1)The function f being periodic, bounded and monotonic per slice therefore can be

developed in Fourier series.

2)a0 = 1
Π

∫ +Π

−Π
f(x)dx = 4

Π .

an = 1
Π

∫ +Π

−Π
f(x) cos nxdx ⇒ an


0 if n is odd

4
Π(1 − n2) n is even

and we have the function f is even, then bn = 0.

We can therefore write:

a2n = 4
Π(1 − n2) and:

f(x) = 2
Π +

+∞∑
1

4
Π(1 − n2) cos(2nx).

3)Deduction of
+∞∑

1

4
Π(1 − n2) , f(x) is is continuous in x0 = 0 ⇒ f(0) = 0 so:

+∞∑
1

4
Π(1 − n2) = 1

2 .
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Figure 4.7: Graph of an coefficient.

Figure 4.8: Graph of bn coefficient.

Figure 4.9: Graph of design Fourier series.



Chapter 5

Fourier Transformation

The Fourier transform (FT) serves as a significant mathematical instrument that transi-

tions a function from its time or spatial domain into the frequency domain, broadening

the application of Fourier series to encompass non-periodic functions.

Definition 5.1
[12] L1 is the set of summable functions.

Definition 5.2
[12] L2 denotes the collection of functions whose squares are summable.

Definition 5.3
The set L1 consists of functions specified on ℜ, which may be discontinuous at a finite

number of points, but are continuous elsewhere and exhibit absolute integrability over

ℜ.

Definition 5.4
Let it be f : ℜ −→ C, f is said to be rapidly decreasing, and we note f ∈ S if f ∈ C∞

and if,

∀s, m ∈ N, ∃Gs,m : |xmf (s)(x)| ≤ Gs,m, ∀x ∈ ℜ. (5.1)

Definition 5.5
Let it be f : ℜ −→ C, f is a test function if it is indefinitely differentiable with

compact support, and we note f ∈ D, in other words

f ∈ C∞ and ∃p, q ∈ ℜ : p ≤ q, ∀x ∈ ℜ/[p, q], f(x) = 0. (5.2)

Definition 5.6 (Fourier Transformation)
[12] Let it be f : ℜ −→ ℜ, a locally and absolutely integrable function on ℜ. The

94
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function denoted F : ℜ −→ C, as a result,

F (f)(ω) = 1
2π

∫ ∞

−∞
f(t)e−iωt dt. (5.3)

Definition 5.7 (Inverse Fourier Transformation)
[8] Let C −→ ℜ retrieves the original function from its frequency representation:

f(t) = 1
2π

∫ ∞

−∞
F (f)(ω)eiωt dω. (5.4)

Remark 5.1
The variable t is referred to as a temporal variable as it often represents time. The

variable x is referred to as a frequency variable since it often represents frequency or

pulsation. The expression f(t) is referred to as a signal.

Figure 5.1: Design a Fourier transformation

Example 5.1
Analyze the Heaviside function:

H(t) =

 0 if t < 0

1 if t ≥ 0.

The (FT) of the Heaviside function is computed as follows:

F (H(t)) = 1
2π

∫ ∞

−∞
H(t)e−iωt dt = 1

2π

∫ ∞

0
e−iωt dt

−i

−iw
√

2π
e−iωt|t=+∞

t=0 = −i

ω
√

2π
.
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5.1 Properties of Fourier Transformation

5.1.1 Linearity

For constants a and b, and functions f1(t) and f2(t), the (FT) is characterized as follows:

F [af1(t) + bf2(t)] = aF [f1(t)] + bF [f2(t)] (5.5)

Linearity of the Inverse Fourier Transform

Let α and β denote two arbitrary complex numbers, and let f̂(ω) and ĝ(ω) represent two

functions that are locally integrable and absolutely integrable over C. Then:

F −1
[
αf̂ + βĝ

]
(t) = αf(t) + βg(t). (5.6)

Differentiation in the Time Domain

The (FT) of the n-th derivative of f(t) is expressed as:

F

(
dnf

dtn

)
(ω) = (iω)nf̂(ω). (5.7)

Differentiation in the Frequency Domain

For the n-th derivative of f̂(ω), the inverse Fourier transform is given by:

dnf̂

dωn
(ω) = F ((it)nf(t)) . (5.8)

Translation in t

For a time shift t0, the Fourier transform satisfies:

F (f(t − t0)) = e−iωt0 f̂(ω). (5.9)

Remark 5.2
A translation in the time domain results in a linear phase shift in the frequency domain,

represented by e−iωt0 . This operation does not influence the magnitude of the (FT).
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Scaling in t (Time Domain Contraction)

For scaling t by a factor a, the (FT) is given by:

F (f(at)) = 1
|a|

f̂
(

ω

a

)
. (5.10)

5.1.2 Shift Theorem

A temporal shift in the original function is equivalent to a phase shift in the frequency

domain.

F [f(t − τ)] = e−iωτ F [f(t)]0. (5.11)

The (FT) of f(t) = e−at2 is expressed as:

F (ω) =
√

π

a
e− ω2

4a . (5.12)

5.1.3 Modulation

F (eiω0tf(t) = F (ω − ω0. (5.13)

5.1.4 Conjugation

F (f) = F (ω). (5.14)

5.1.5 Convolution

The convolution product of the real or complex functions f and g is the function f ∗ g

defined as follows:

(f ∗ g)(x) =
∫ +∞

−∞
f(x − t)g(t)dt. (5.15)

The convolution product of the real or complex functions f and g is defined as the function

f ∗ g.

F (f ∗ g)(t) = F (f)(ω).F (g)(ω). (5.16)

5.1.6 Continuity

f ∈ L1 ⇒ F (f) ∈ C(ℜ). (5.17)
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5.1.7 Behavior at infinity

lim
|ω|→+∞

F (f)(ω) = 0. (5.18)

Remark 5.3
The Fourier transform F (f) has the following properties depending on the symmetry

and nature of f(t):

• If f(t) is a real and even function, then its Fourier transform F (f) is also real

and even.

• If f(t) is a real and odd function, then its Fourier transform F (f) is wholly

imaginary and odd.

• If f(t) is imaginary and even, then F (f) is imaginary and even.

• If f(t) is an imaginary and even function, then its Fourier transform F (f) is

also imaginary and even.

5.1.8 Theorem of Plancherel

Let it be the functions f, g ∈ S we have:
∫ +∞

−∞
f(t)g(t)dt =

∫ +∞

−∞
F (f)(ω)F (g)(ω)dω. (5.19)

5.1.9 Theorem Parseval

Let f(t) be a finite energy function (f ∈ L2) and F (f)(ω) denote its (FT). These are the

assignments f(t) and F (f)(ω) possess equivalent energy. That is to say:
∫ +∞

−∞
|f(t)|2dt =

∫ +∞

−∞
|F (f)(ω)|2dω. (5.20)
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Remark 5.4
The selection of parameters in the Fourier Transform can profoundly influence the out-

come. Comprehending the characteristics and dynamics of functions in both temporal

and spectral domains is essential for precise analysis.

5.2 Utilization in the Resolution of Differential Equa-

tions

The Fourier transform enables the explicit resolution of a linear differential equation by

converting it into a more manageable form.

Results for Constant-Coefficient Linear Differential Equations
Proposition 5.5

Let f be an integrable function on R taking values in C, such that F (f) = F . Then

we have:

F

(
dnf

dtn
(t)
)

= (2iπω)nF (ω), n ∈ N. (5.21)

In general:

F

(
df

dt
(t)
)

= (2iπω)F (ω), F

(
d2f

dt2 (t)
)

= (2iπω)2F (ω). (5.22)

Consider the differential equation:
n∑

j=0
an−jy

(n−j)(t) = g(t), y(0)(t) = y(t). (5.23)

The (FT) is used F to both sides:
n∑

j=0
an−jF

(
y(n−j)(t)

)
= F (g(t)). (5.24)

With y(0)(t) = y(t). Making use of the (FT) to both sides of (5.2) and using its properties,

we obtain:
n∑

j=0
an−jF

(
y(n−j)(t)

)
= F(g(t)). (5.25)



100

Using Proposition 5.5, (5.2) this becomes: n∑
j=0

an−j(2iπω)n−j

F (ω) = F (g(t)). (5.26)

Permitting F (y(t)) = F (ω), currently, we possess:

F (ω) =
 n∑

j=0
an−j(2iπω)n−j

−1

F (g(t)). (5.27)

This can be written as:

F (ω) = F (h(t))F (g(t)) = F (h(t) ∗ g(t)), (5.28)

where ∗ denotes convolution. Using the inverse (FT) instead:

y(t) = h(t) ∗ g(t).

the function f should be defined on and be integrable. R that takes values in C, and

let its Fourier transform be denoted as F (f) = F . Subsequently, we present:

F (tf(t)) = i

2π

dF

dω
(ω), F (t2f(t)) =

(
i

2π

)2 d2F

dω2 (ω),

and in general:

F (tnf(t)) =
(

i

2π

)n dnF

dωn
(ω).

Solving a Differential Equation Using the Fourier Transform

Example 5.2
Examine the subsequent ordinary differential equation:

du

dt
+ au = 0, u(0) = u0.

Applying the Fourier Transform, we get:

(iω + a)U(ω) = u0.

Solving for U(ω), we find:

U(ω) = u0

iω + a
.
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Example 5.3
Solve the following starting point problem using the (FT):

u′′(t) − +4u(t) = cos(3t),

1.On both sides of the ODE, apply the (FT).

F{u′′(t) + 4u(t)} = F{cos(3t)}

2.Solve for the transformed variable U(ω) using the properties of the Fourier Trans-

form.

(iω)2U(ω) + 4U(ω) = s

s2 + 9
3.Determine using the Inverse (FT) method: u(t).

u(t) = F −1{U(ω)}

Solving Partial Differential Equations (PDEs)

Example 5.4
Examine the one-dimensional heat equation:

∂u

∂t
= k

∂2u

∂x2 , u(x, 0) = f(x), u(0, t) = u(L, t) = 0.

What we get when we use the (FT) on the x and t variables is:

iωU(ω, t) = −kω2U(ω, t) (after inverse transform).

Solving for U(ω, t) and then applying the inverse Fourier Transform gives the so-

lution.

1. Apply Fourier Transform in x and t:

iωU(ω, t) = −kω2U(ω, t)

2. Solve for U(ω, t):

U(ω, t) = c(ω)e−kω2t

3. Use Initial Condition to Find c(ω):

U(ω, 0) = F{f(x)}
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c(ω) = 1
L

∫ L

0
f(x) sin

(
nπx

L

)
dx

4. Substitute Back to Find u(x, t):

u(x, t) = F −1{U(ω, t)}

u(x, t) =
∞∑

n=1
c(ω) sin

(
nπx

L

)
e−kω2t

Example 5.5
Determine the solution to the wave equation:

∂2u

∂t2 = c2 ∂2u

∂x2 , u(x, 0) = sin(x), ∂u

∂t
(x, 0) = 0 (5.29)

where 0 < x < L and t > 0.

1. Apply Fourier transform in x and t:

iωU(ω, t) = −kω2U(ω, t)

U(ω, t) = c(ω)e−kω2t

2. Use initial condition to find c(ω):

U(ω, 0) = F{sin(x)}

c(ω) = 2
π

1
ω2 + k2

3. Substitute back to find u(x, t):

u(x, t) = F −1{U(ω, t)}

u(x, t) = 2
π

∫ ∞

0

1
ω2 + k2 sin(x)e−kω2t dω

Remark 5.6
By transforming temporal or geographical concerns to frequency domain issues, the

Fourier transform solves differential equations. This method is widely used in science

and engineering.



Chapter 6

Laplace Transformation

The Laplace Transform (LT) is an integral transform that plays a crucial role in various

fields of science and engineering. The main function is to transform linear ordinary

differential equations, which may pose challenges when addressed in their original form

(the "time domain"), into straightforward algebraic problems (in the "frequency domain").

Upon resolving the algebraic problem, the application of the inverse Laplace transform

facilitates the determination of the solution to the original equation. This approach offers

a structured framework for examining and addressing issues associated with dynamic

systems.

Definition 6.1 (Laplace transform)
[9] Let f : [0, +∞[ −→ ℜ or C and s ∈ C, where the Laplace transform of a function

f(t) is defined as:

L{f(t)} = F (s) =
∫ ∞

0
e−stf(t) dt. (6.1)

Definition 6.2
Any zero function is defined as a causative function for t < 0.

Definition 6.3 (Existence of the Laplace transform)
[9] Let f(t) be a piecewise continuous function defined on the closed interval [0, p],

(p > 0). We define that a function f exhibits an exponential α order at infinity if:

∃A > 0, ∃α > 0, ∀s > a, wehave |f(t)| = Aeαt. (6.2)

103
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Figure 6.1: Design of the Laplace transformation

Theorem 6.1
Any function continues piecewise, checking f ∈ D and,

∃β, 0 < β < 1 : lim
t→0

tβ|f(t)| = 0, (6.3)

admits a Laplace transform (it exists).

Remark 6.2
The equality (6.1) is equivalent to

lim
t→+∞

∣∣∣e−btf(t)
∣∣∣ = 0. (6.4)

Definition 6.4 (Singularityof the Laplace transformation)
Let it be f(t), g(t) two piecewise continuous functions having an order exponential to

infinity on [0, p], (a > 0) if:

L{f(t)} = L{g(t)} ⇒ f(t) = g(t), ∀t ∈ [0, p]. (6.5)

Definition 6.5 (Inverse Laplace Transformation)

f(t) = 1
2πi

∫ c+i∞

c−i∞
estF (s)ds. (6.6)
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6.1 Properties of the Laplace Transform

6.1.1 Linearity

The Laplace transform is a linear operation, which indicates that it adheres to the fol-

lowing property:

L{pf(t) + qg(t)} = pL{f(t)} + qL{g(t)}. (6.7)

Example 6.1
Calculate the Laplace transform of the function f(t) = cos(kt). We possess:

cos(kt) = eikt + e−ikt

2 , so

L(cos(kt)) = L(eikt + e−ikt

2 )

= 1
2L(eikt) + 1

2L(e−ikt)

= 1
2[
∫ ∞

0
e−steiktdt +

∫ ∞

0
e−ste−iktdt]

1
2[
∫ ∞

0
e(−s+ik)tdt +

∫ ∞

0
e(−s−ik)tdt] = s

s2 + k2 .

6.1.2 Derivative

The (LT) of a function’s derivative is expressed as:

L{f ′(t)} = sL{f(t)} − f(0). (6.8)

6.1.3 Integration

The (LT) of a function’s integral is expressed as:

L{
∫ t

0
f(τ) dτ} = 1

s
L{f(t)}. (6.9)

6.1.4 The Transformation’s Translation

Let f(t) be a function that meets the criteria outlined in Theorem 6.1; consequently, we

obtain

L
(
e−wtf(t)

)
= F (p + w). (6.10)
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6.1.5 Time Delay

Let f(t) be a function that meets the criteria of Theorem 6.1; thus, we obtain

L (f(t − τ)) = e−pτ F (p). (6.11)

6.1.6 Convolution

The (LT) of convolution as follows:

L{f(t) ∗ g(t)} = F (s).G(s). (6.12)

Remark 6.3
if the limits exist so:

1-lim
t→0

f(t) = lim
s→+∞

sF (s).

2- lim
t→+∞

f(t) = lim
s→0

sF (s).

6.2 Utilization in the Resolution of Differential Equa-

tions

This study will analyze the differential equation:

a0x
(n)(t) + a1x

(n−1)(t) + · · · + anx(t) = f(t), (6.13)

under the beginning conditions:

x(i)(0) = xi for all i 0 ≤ i ≤ n − 1, (6.14)

where the zeroth-order derivative is equal to the function itself (x(0)(t) = x(t)).

Let a0 ̸= 0, and consider the functions f(t) and x(t), along with their derivatives up

to order n, to be original. Applying the (LT) to both sides of Equation (6.13), and using

the differentiation rule and linearity of the (LT), (6.13) becomes:

(
a0p

n + a1p
n−1 + · · · + an

)
X(p) = F (p) + B(p), (6.15)
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where:

X(p) = L{x(t)}, F (p) = L{f(t)},

and:

B(p) = x0(a0p
n−1 +a1p

n−2 + · · ·+an−1)+x1(a0p
n−2 +a1p

n−3 + · · ·+an−2)+ · · ·+xn−1(a0).

The solution to (6.15) is given by:

X(p) = F (p) + B(p)
a0pn + a1pn−1 + · · · + an

. (6.16)

Thus, the solution to (6.13) is:

x(t) = L−1{X(p)}. (6.17)

Solving Ordinary Differential Equations (ODEs)

Example 6.2
Consider the first-order ODE:

dy

dt
+ 3y = e−2t, y(0) = 1

Compute the (LT) of both sides:

L
{

dy

dt

}
+ 3L{y(t)} = L{e−2t}

sY (s) − y(0) + 3Y (s) = 1
s + 2

Substitute y(0) = 1:

sY (s) − 1 + 3Y (s) = 1
s + 2

2. Solve for Y (s):

(s + 3)Y (s) = 1 + 1
s + 2

Y (s) = 1
s + 3 + 1

(s + 3)(s + 2)

3. Find y(t) by taking the inverse (LT): Break Y (s) into partial fractions:

1
(s + 3)(s + 2) = A

s + 3 + B

s + 2
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Solve for A and B: A = 1, B = −1:

Y (s) = 1
s + 3 + 1

s + 2 − 1
s + 3

Y (s) = 1
s + 2

Taking the inverse (LT) so the soution is:

y(t) = e−2t

Example 6.3
Examine the second-order ODE:

y′′(t) + 2y′(t) + y(t) = 0, y(0) = 1, y′(0) = −2

1. Take the (LT) of both sides:

L{y′′(t)} + 2L{y′(t)} + L{y(t)} = L{0}

s2Y (s) − sy(0) − y′(0) + 2(sY (s) − y(0)) + Y (s) = 0

2. Substitute initial conditions:

s2Y (s) − s(1) − (−2) + 2(sY (s) − 1) + Y (s) = 0

s2Y (s) − s + 2 + 2sY (s) − 2 + Y (s) = 0

(s2 + 2s + 1)Y (s) = s − 4

3. Solve for Y (s):

Y (s) = s − 4
(s + 1)2

4. Determine y(t) through the utilization of the inverse (LT): Decompose Y (s):

Y (s) = s

(s + 1)2 − 4
(s + 1)2

Taking the inverse (LT) so the soution is:

y(t) = e−t(1 − 4t)



109

Example 6.4
Let the second-order ODE:

y′′(t) + 4y′(t) + 4y(t) = 2u(t), y(0) = 0, y′(0) = 1

1. Submit the (LT) on both sides:

L{y′′(t)} + 4L{y′(t)} + 4L{y(t)} = L{2u(t)}

s2Y (s) − sy(0) − y′(0) + 4(sY (s) − y(0)) + 4Y (s) = 2
s

Substitute y(0) = 0 and y′(0) = 1:

s2Y (s) − 1 + 4sY (s) + 4Y (s) = 2
s

(s2 + 4s + 4)Y (s) = 2
s

+ 1

2. Solve for Y (s):

Y (s) =
2
s

+ 1
(s + 2)2

Y (s) = 2s + 3
s(s + 2)2

3. Determine y(t) through the utilization of the inverse (LT): Decompose Y (s):

Y (s) = 2
s

+ 3
(s + 2)2

The answer can be obtained by using the inverse (LT) function:

y(t) = 2 + 3te−2t

Remark 6.4
The Laplace Transform is an effective instrument for resolving linear differential equa-

tions and streamlining the mathematical analysis of dynamic systems. Its linearity and

many attributes render it a versatile method in engineering and applied mathematics.
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Figure 6.2: Table of some transforms
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