
Ministry of Higher Education and Scientific Research
Mohamed khider university of biskra
Faculty of Sciences and Technology

Department of Electrical Engineering

LMD Master Thesis
To obtain the LMD master’s degree in telecommunication engineering

Plant Leaf Diseases using Convolutional Neural
Network

By: Yamouna MIMOUNE

Publicly defended on: 02/05/2025

In front of the committee consisting of:

Abdelkrim OUAFI Professor University of Biskra President
Abdelmalik OUAMANE Professor University of Biskra Supervisor
Saadia MEDOUAKH MCB University of Biskra Examiner

Academic Year 2024/2025

I

DedicationDedication

In the name of love, obedience, and respect, I dedicate this work :

To my dear first teachers: my parents ,

To my mother, a friend who gave me life, a symbol of kindness always
ready to assure me that everything will be alright. To this mother, who

wholeheartedly shares joys and sorrows with us,

To my father, this great man, always ready to lend a hand when I need it,
this constant beacon guiding my steps, this wonderful father who never

hesitated to sacrifice everything for his children,

Today, from the bottom of my heart, I say ’ THANK YOU, my parents’,
the wellspring of courage,

To my dear brothers,

To my Dr, lovely sister ’DIDA’.,
To my bright beautiful aunt,

And to all my friends, both in my social and academic life.

AcknowledgmentAcknowledgment

I begin by expressing my gratitude to God Almighty for bestowing upon me this sig-
nificant blessing and success on the path I have chosen. Without His grace, reaching

this stage and completing it would not have been possible. I extend my sincere thanks
to God for all His blessings. It is essential to acknowledge that the worldly means we
employed were not the contributors to our progress; rather, it was the grace of God that
served as the foundation for our success and accomplishment in this endeavor.

I would like to express my deepest gratitude and sincere appreciation to my thesis
supervisor, Professor Abdelmalik OUAMANE, from the University of Biskra. His
expert guidance, constant support, and patience throughout this research were instru-
mental to the success of this work. His valuable feedback and encouragement helped me
stay focused and motivated during every stage of the project.

My sincere thanks go as well to Professor Abdelkrim OUAFI, from the University
of Biskra, who honored me by presiding over my defense jury. I am truly grateful for his
time, his interest in my work, and the insightful remarks he provided.

I also wish to express my warmest thanks to Dr.Saadia MEDOUAKH, from the
University of Biskra, for her role as examiner. Her critical perspective and constructive
comments have greatly enriched the quality of this research.

To my professors, jury members, and everyone who contributed directly or indirectly
to this academic journey, I extend my heartfelt appreciation.

Undoubtedly, I cannot conclude without expressing my deepest gratitude to my par-
ents. Their unwavering love, support, and sacrifices were vital to the achievement of this
milestone. Their encouragement and belief in me were a constant source of strength.

Finally, I thank all those who, in one way or another, contributed to the realization
of this work-through a smile, a word of encouragement, or a helping hand. Your kindness
and support will never be forgotten.

AbstractAbstract

A gricultural productivity is facing growing threats from plant diseases, which cause
an estimated $220 billion in losses each year and pose a serious risk to global food

security. Traditionally, identifying these diseases has relied on manual inspections by
experienced experts a process that’s time consuming, labor-intensive, and prone to human
error. To address these challenges, this study explores the use of deep learning-specifically,
Convolutional Neural Networks (CNNs)-to automate the detection and classification of
plant diseases.

While CNNs have shown great potential, their effectiveness is often limited by issues
such as insufficiently diverse datasets, poorly optimized model configurations, and a lack
of robustness in real-world conditions. In this research, we systematically evaluate several
CNN architectures, including DenseNet121, AlexNet, and VGG19, using publicly available
datasets. Our goal is to identify the best-performing models and configurations to improve
detection accuracy.

By benchmarking these models and analyzing their key components, we offer prac-
tical insights and recommendations for applying deep learning in real agricultural envi-
ronments. The results highlight the potential of intelligent monitoring systems to rev-
olutionize crop health management, supporting more sustainable farming practices and
strengthening global food security through advanced AI technologies.

Key words: Plant Diseases, Deep Learning, Convolutional Neural Networks (CNNs),
Image Classification, DenseNet121, AlexNet, VGG19.

Table of Contents

General Introduction 2

1 Fundamentals of Plant Disease 5
1.1 Introduction . 6
1.2 Types of Plant Diseases . 6

1.2.1 Spider Mites . 6
1.2.2 Rust . 7
1.2.3 Powdery Mildew . 8
1.2.4 Bacterial Fire Blight . 9
1.2.5 Marsonia (Black Spot Disease) . 10
1.2.6 Botrytis (Gray Mold) . 11
1.2.7 Scab . 12
1.2.8 Iron Deficiency . 13

1.3 Symptoms and Indicators of Plant Diseases 14
1.3.1 Spider Mites Treatment . 14
1.3.2 Rust Treatment . 14
1.3.3 Powdery Mildew Treatment . 14
1.3.4 Bacterial Fire Blight Treatment . 15
1.3.5 Marsonia (Black Spot Disease) Treatment 15
1.3.6 Botrytis (Gray Mold) Treatment 15
1.3.7 Scab Treatment . 16
1.3.8 Iron Deficiency Treatment . 16

1.4 Role of Technology in Plant Disease . 16
1.4.1 Biosensors in Plant Disease Detection 17
1.4.2 Sensing Plant Diseases with Technology 17
1.4.3 Visualizing Plant Diseases . 18

1.5 Challenges in Identifying Plant Diseases 18
1.5.1 Extrinsic Factors . 18
1.5.2 Intrinsic Factors . 20

1.6 Conclusion . 22

i

2 Machine Learning in Plant Disease Detection 23
2.1 Introduction . 24
2.2 Overview of Machine Learning in Agriculture 24
2.3 Importance of Automation in Plant Disease Detection 25
2.4 Fundamentals of Machine Learning and Deep Learning 26

2.4.1 Definition and Key Concepts . 26
2.4.2 Supervised vs. Unsupervised Learning 27
2.4.3 Introduction to Deep Learning . 29

2.5 Convolutional Neural Networks (CNNs) for Image Classification 30
2.5.1 Basics of CNNs . 31
2.5.2 Architectural Framework of CNNs 32
2.5.3 The Advantage of Convolutional Neural Networks 37
2.5.4 The Effectiveness of CNNs in Image Classification 37
2.5.5 Overfitting and Underfitting in CNN Models 38

2.6 State of the Art for Plant Disease Detection Using CNNs 39
2.7 Conclusion . 40

3 Implementation and Experimental Analysis 41
3.1 Introduction . 43
3.2 Development Environment . 43

3.2.1 PyTorch . 44
3.3 System Architecture . 45
3.4 Dataset Selection and Preprocessing . 46

3.4.1 Description of Selected Dataset (PlantVillage) 47
3.4.2 Image Preprocessing Techniques . 49
3.4.3 Implementation of Data Pipelines Using PyTorch 50

3.5 CNN Model Development . 52
3.5.1 Deep CNN . 52
3.5.2 Simple CNN . 54

3.6 Using Pre-trained Models (DenseNet121, AlexNet, and VGG19) for Trans-
fer Learning . 57
3.6.1 DenseNet121 . 57
3.6.2 AlexNet . 57
3.6.3 VGG19 . 58

3.7 Choice of Hyperparameters . 59
3.8 Evaluation indices . 59

3.8.1 Accuracy . 60
3.8.2 Precision . 60
3.8.3 Recall (Sensitivity) . 60
3.8.4 Score . 60

3.9 Performance Evaluation and Results . 61
3.9.1 Performance of Deep CNN and Simple CNN 61
3.9.2 Comparison with existing models (DenseNet121, AlexNet and VGG19) 63

3.10 Comparison with traditional methods . 68
3.11 Conclusion . 69

Conclusion Générale 70

List of Figures

1.1 Spider Infestation and Its Impact on Plant Health [Love The Garden, 2025]. 7
1.2 Rust Disease, Symptoms and Impact on Plant Health [Love The Garden, 2025]. 8
1.3 Effects of Powdery Mildew on Plant Health [Love The Garden, 2025]. . . . 9
1.4 Impact of Bacterial Fire Blight on Plants. 10
1.5 Impact of Marsonia on Plant Health [Love The Garden, 2025]. 11
1.6 Impact of Botrytis on Plant Health [Love The Garden, 2025]. 12
1.7 Impact of Scab on Plant Health [Love The Garden, 2025]. 13
1.8 Impact of Iron Deficiency on Plant Health [Love The Garden, 2025]. 13
1.9 Image background analysis for plant disease detection. 19
1.10 Exemple of a leaf image with spcular reflections and sevral light/shadow

transitions. 19
1.11 Exemple of symptoms with no clear edges. 20
1.12 Variation in symptoms of Southern corn leal blight. 21
1.13 Coffee leaf containing symptoms of rust and Cercospora leaf spot. 21

2.1 Overview of Key Machine Learning Types and Approaches [Peng et al., 2021]. 28
2.2 Artificial Intelligence (AI) vs Machine Learning (ML) vs Neural Network

vs Deep Learning [Shang et al., 2024]. 30
2.3 Distinguishing Machine Learning from Deep Learning [Khan et al., 2021]. . 30
2.4 Visualization of features in trained classification model: (a) original image;

(b) the first layer filters, Conv1; (c) the first layer output, Conv1 rectified
responses of the filters, first 36 only; (d) the second layer filters, Conv2; (e)
the second layer output, Conv2 (rectified, only the first 36 of 256 channels);
(f) the third layer output, Conv3 (rectified, all 384 channels); (g) the fourth
layer output, Conv4 (rectified, all 384 channels); (h) the fifth layer output,
Conv5 (rectified, all 256 channels) [Sladojevic et al., 2016]. 32

2.5 Structure of a convolutional neural network [Typ, 2020]. 32
2.6 RGB image represented in matrix form [Dumoulin, 2020]. 33
2.7 Convolution Operation [Zhang et al., 2020]. 34
2.8 Convolution Operation [Con, 2020]. 34
2.9 MaxPooling [Max, 2020]. 35

iv

2.10 The Flattening Operation [SuperDataScience Team, 2020]. 36
2.11 Padding example. 36
2.12 With Padding, Stride = 2. 37
2.13 No Padding, Stride = 1. 37

3.1 Our system of plant leaf diseases using convolutional neural network. . . . 46
3.2 DenseNet121 architecture . 57
3.3 Architecture AlexNet [Krizhevsky et al., 2012]. 58
3.4 VGG19 architecture [GeeksforGeeks, 2025]. 58
3.5 Loss and Accuracy Evolution of the Deep CNN Model. 62
3.6 Loss and Accuracy Evolution of the SimpleCNN Model. 63
3.7 Accuracy and loss graphs on the PlantVillage database for: (a) DenseNet121,

(b) AlexNet, (c) VGG19. 66
3.8 Accuracy and loss graph in PlantVillage database of : (a) TL DenseNet121,

(b) TL AlexNet, (c) TL VGG 19. 67

General Introduction

A griculture remains one of humanity’s most vital endeavors, serving as the founda-
tion that sustains our evergrowing global population. However, this essential sector

faces mounting challenges, particularly from plant diseases that threaten agricultural pro-
ductivity worldwide. According to the Food and Agriculture Organization of the United
Nations (FAO), plant diseases cause staggering annual losses estimated at approximately
$220 billion globally, resulting not only in significant economic damage but also in com-
promised food security for millions [Nair, 2023].

Traditionally, managing these threats has relied heavily on the experienced eyes of
farmers and agricultural experts who manually inspect crops for signs of disease. While
this human expertise is invaluable, such approaches are inherently limited by their labor-
intensive nature, time constraints, and susceptibility to human error. The subjective
nature of visual inspection means earlystage diseases might go unnoticed, and subtle
symptoms may be misinterpreted, potentially leading to inappropriate treatments that
exacerbate crop damage. In response to these limitations, the agricultural community
has increasingly embraced technological solutions. The emergence of machine learning
and deep learning technologies offers unprecedented opportunities to revolutionize plant
disease detection and classification. These advanced systems promise to automatically
identify and classify plant diseases with remarkable accuracy, enabling more reliable,
efficient, and scalable crop monitoring [Mohyuddin et al., 2024].

Among these technologies, Convolutional Neural Networks (CNNs) have dominated
the landscape of plant disease detection, achieving impressive results in image recognition
tasks. However, as our understanding of these models deepens, limitations of traditional
CNN architectures become apparentparticularly their difficulty in capturing complex,
interconnected patterns within images, which are critical when dealing with the subtle
symptoms presented by diseased plant leaves [Chen et al., 2021a].

Several significant challenges persist in applying deep learning to plant disease detec-
tion: the scarcity of large, diverse, and well-annotated datasets spanning various plant
species and disease types; limited exploration of optimal model configurations tailored for
agricultural contexts; and the ongoing struggle to develop systems capable of generalizing
effectively under diverse real-world conditions.

2

This work addresses these critical gaps by systematically exploring the development of
optimized deep learning models for plant disease detection. Our investigation focuses on
identifying the most effective model architectures and hyperparameters through rigorous
evaluation on diverse, publicly available datasets. The primary research objectives include:

• Systematically evaluating various CNN architectures and parameter configurations
to determine optimal settings for plant disease classification

• Assessing the impact of different model components on detection accuracy.

• Comparing the performance of advanced deep learning models with established
CNN-based approaches.

• Developing practical recommendations for deploying effective plant disease detec-
tion systems in real agricultural environments.

Our key contributions advance the state of the art in deep learning for agriculture,
demonstrating how carefully designed models can significantly improve the accuracy and
reliability of automated disease detection. By achieving consistently high accuracy across
multiple datasets, we establish new performance benchmarks.

The potential applications of this research extend well beyond academic exploration.
The optimized models developed herein provide practical solutions for precision agri-
culture, en-abling farmers to make timely, informed decisions. These systems can be
integrated with mobile applications, drone-based monitoring platforms, and IoT devices
to form comprehen-sive, real-time crop health management frameworks.

This research contributes to a broader vision in which artificial intelligence becomes an
indispensable tool in global food security efforts. By demonstrating the practical viability
of advanced AI techniques in agriculture, we help pave the way for widespread adoption
of intelligent crop monitoring technologies that support sustainable farming and help feed
a growing world population.

Organization

This work is organized as follows:

❖ Chapter 1: presents an introduction to the research topic, outlining the importance
of plant dis-ease detection, challenges in agriculture, and the motivation behind
applying ma-chine learning and deep learning techniques.

❖ Chapter 2: introduces the fundamental concepts of plant diseases and reviews
the current state of machine learning and deep learning applications in agricultural
disease detection, including detailed discussions of CNN architectures and recent
advances.

❖ Chapter 3: describes the implementation and experimental methodology, includ-
ing dataset preprocessing, development of custom and pretrained CNN models
(DenseNet121, AlexNet, VGG19), performance evaluation, and comparative analy-
ses with tradition-al methods.

❖ The work concludes with a summary of findings, practical insights, and recommenda-
tions for future research directions in smart agriculture.

Through this work, we aim not only to enhance automated plant disease detection capabili-
ties but also to contribute meaningfully to the global challenge of ensuring food security
in the face of climate change and population growth. The development of intelligent,
efficient, and reliable crop monitoring systems is imperative, and this thesis represents a
step forward in realizing these goals.

1

Ch
ap

te
r

Fundamentals of Plant Disease

1.1 Introduction . 6
1.2 Types of Plant Diseases . 6

1.2.1 Spider Mites . 6
1.2.2 Rust . 7
1.2.3 Powdery Mildew . 8
1.2.4 Bacterial Fire Blight . 9
1.2.5 Marsonia (Black Spot Disease) . 10
1.2.6 Botrytis (Gray Mold) . 11
1.2.7 Scab . 12
1.2.8 Iron Deficiency . 13

1.3 Symptoms and Indicators of Plant Diseases 14
1.3.1 Spider Mites Treatment . 14
1.3.2 Rust Treatment . 14
1.3.3 Powdery Mildew Treatment . 14
1.3.4 Bacterial Fire Blight Treatment . 15
1.3.5 Marsonia (Black Spot Disease) Treatment 15
1.3.6 Botrytis (Gray Mold) Treatment 15
1.3.7 Scab Treatment . 16
1.3.8 Iron Deficiency Treatment . 16

1.4 Role of Technology in Plant Disease . 16
1.4.1 Biosensors in Plant Disease Detection 17
1.4.2 Sensing Plant Diseases with Technology 17
1.4.3 Visualizing Plant Diseases . 18

1.5 Challenges in Identifying Plant Diseases 18
1.5.1 Extrinsic Factors . 18
1.5.2 Intrinsic Factors . 20

1.6 Conclusion . 22

5

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

1.1 Introduction

Plant diseases are a major threat to global food security and agricultural sustainabil-
ity, causing significant losses in crop yield and quality each year. Early and accurate
identification of these diseases is essential for effective management and minimizing their
impact. Traditional methods of disease detection, relying on expert visual inspection and
laboratory analysis, are often time-consuming, subjective, and require specialized knowl-
edge. Recent advances in computer vision and deep learning, particularly Convolutional
Neural Networks (CNNs), have revolutionized image-based plant disease identification by
enabling automated, fast, and precise diagnosis directly from leaf images. This chapter
introduces the fundamentals of plant diseases, their symptoms, and current detection
techniques, laying the groundwork for understanding how CNN-based image analysis can
improve plant disease identification. The objective is to highlight the challenges and op-
portunities of integrating advanced image processing with plant pathology to enhance
agricultural practices.

1.2 Types of Plant Diseases

Plant diseases are commonly caused by fungi, bacteria, viruses, as well as insects
and other animals. Even healthy plants can suffer from such issues. Timely interven-
tion can effectively alleviate the damage and restore plant health. This section presents
some of the most common plant diseases and offers guidance on how to manage them
[Love The Garden, 2025].

1.2.1 Spider Mites

Spider mites (see Figure 1.1), also known as red spider mites, are tiny arachnids
measuring between 0.3 and 0.5 mm that infest plants. Their color varies depending on the
species and can be yellow-green, brown, or red. Spider mite infestations are characterized
by the presence of very fine webs on the plant surface. The longer the mites remain, the
thicker and more extensive these webs become. In addition, small brown or yellow spots
appear on the upper surfaces of leaves due to the mites piercing the plant tissue and
extracting sap. This feeding damage causes leaves to become unsightly and eventually
die.

Spider mites thrive in dry, warm environments, which makes houseplants particularly
susceptible, although outdoor plants can also be affected during periods of high temper-

6

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

ature. These pests often favor old potting soil and can proliferate if plants experience
repeated drying out.

Examples of plants susceptible to spider mite infestations include banana plants, hy-
drangeas, monstera, philodendrons, ficus, orchids, schefflera, palms, dracaena, and ivy.
Plants that are frequently dry or under water stress are especially vulnerable [Love The Garden, 2025].

Fig 1.1: Spider Infestation and Its Impact on Plant Health [Love The Garden, 2025].

1.2.2 Rust

Rust is a parasitic fungal disease that develops in warm and humid environments (see
Figure 1.2), typically during summer and fall. It is characterized by the appearance of
spots or raised areas on the leaves, which vary in color from orange to dark brown. This
distinctive coloration gives the disease its name. Over time, from fall to spring, the spots
tend to darken. Yellow brown pustules may also form on the underside of the leaves. The
fungus can infect not only Chapitre 01 : Fundamentals of Plant Disease the leaves but
also the stems. In severe infections, leaf drop occurs, and the plant may ultimately die.
Both garden and indoor plants are susceptible to rust infections.

Plants highly vulnerable to rust include roses, snapdragons, hollyhocks, geraniums,
carnations, mint, chrysanthemums, irises, hyacinths, dianthus, periwinkles, and plum
trees [Love The Garden, 2025].

7

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Fig 1.2: Rust Disease, Symptoms and Impact on Plant Health [Love The Garden, 2025].

1.2.3 Powdery Mildew

Powdery mildew is a fungal disease characterized by a white, powdery growth that
typically appears on the upper surfaces of young leaves (see Figure 1.3). As the infection
progresses, the fungal growth darkens, and the affected leaves begin to curl. Plants
that experience morning dampness followed by warm conditions (above 15 ◦C) during the
afternoon, or those that remain wet for extended periods during the day, are particularly
susceptible to infestation.

A similar disease, known as downy mildew, differs in that the fungal growth appears
on the underside of the leaves, while the upper leaf surfaces develop yellow spots that
may later turn brown.

Powdery mildew is a common parasitic fungal disease affecting both vegetable and
ornamental plants. In ornamental gardens, plants prone to powdery mildew include roses,
lilacs, garden geraniums, asters (especially in the fall), phlox, barberry, bergamot, maple,
and honeysuckle.

In vegetable gardens, fruit and vegetable crops frequently affected by powdery mildew
include apples, strawberries, grapes, zucchinis, cucumbers, and tomatoes. Indoor plants
such as kalanchoe and begonias are also susceptible to this disease [Love The Garden, 2025].

8

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Fig 1.3: Effects of Powdery Mildew on Plant Health [Love The Garden, 2025].

1.2.4 Bacterial Fire Blight

Bacterial Bacterial fire blight is a persistent and serious plant disease caused by the
bacterium Erwinia amylovora (see Figure 1.4). Unlike most common plant diseases,
which are fungal in origin, this disease is bacterial. This pathogen can cause sudden
and widespread outbreaks, affecting fruit and tree crops as well as gardens, public green
spaces, and landscapes, thereby posing a threat to all susceptible plants in an area.

The bacterium is transmitted by insects and birds, as well as by environmental factors
such as wind and rain. The disease is named for its characteristic symptoms, which
resemble plants being scorched by fire. Typical signs include brown-black discoloration,
wilting, and shriveling of flowers, leaves, branches, and fruits. In the spring, affected
branches may initially exhibit watery, sticky tissues. Additionally, white to yellowish
bacterial ooze droplets may appear on infected plant parts.

Plants susceptible to infection, referred to as host plants, also contribute to the spread
of the disease. All known host plants of bacterial fire blight belong to the Rosaceae family
(rose family).

Pears (Pyrus spp.) are the most susceptible to this disease. Other vulnerable shrubs
and trees within the Rosaceae family include Cotoneaster (dwarf cotoneaster), Pyracan-
tha (firethorn), Chaenomeles (Japanese quince), Photinia (Indian hawthorn), Crataegus
(hawthorn), Sorbus (mountain ash), Amelanchier, Malus (apple and ornamental apple),
and Cydonia (quince) [Love The Garden, 2025].

9

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Fig 1.4: Impact of Bacterial Fire Blight on Plants.

1.2.5 Marsonia (Black Spot Disease)

Marsonia, also known as black spot disease, and sooty mold (see Figure 1.5) are fungal
diseases that cause brown to black, star-shaped spots on the leaves, branches, or stems
of affected plants. This disease is particularly common in roses. The characteristic black
spots give the disease its name, ”blackspot”. Infected leaves typically turn yellow and
eventually fall off. The fungi thrive on honeydew secreted by sap-sucking insects such as
aphids, whiteflies, scale insects, psyllids, and leafhoppers. Effective control of sooty mold
requires managing these insect populations, which are the primary source of honeydew.

Besides roses, sooty mold can affect many plants with firm leaves, including house-
plants, heather, ornamental container plants (such as citrus), and Mediterranean plants
like olive trees and oleanders. In vegetable gardens, tomatoes are particularly susceptible
to sooty mold infections [Love The Garden, 2024].

10

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Fig 1.5: Impact of Marsonia on Plant Health [Love The Garden, 2025].

1.2.6 Botrytis (Gray Mold)

Botrytis cinerea is a typical opportunistic fungal parasite, recognizable by its char-
acteristic gray, fuzzy growth. This fungus causes affected plant parts to rot (see Figure
1.6). In addition to the gray, fuzzy mycelium, botrytis infection results in severe leaf
discoloration, browning of fruits, and white spots on petals. The disease is also known by
synonyms such as gray rot, gray mold, and noble rot.

This fungal disease often develops during warm, humid weather and commonly spreads
on senescing or dying flowers. The fungus requires stagnant moisture to thrive. To prevent
infection, it is advisable to water potted plants from the bottom and maintain adequate
spacing between plants to ensure good air circulation. Increasing ventilation is particularly
important for plants grown under glass or in greenhouses. When removing infected plant
material, exercise caution by placing the debris directly into a sealed plastic bag to prevent
further spread.

For control, spraying healthy plant parts with neem oil-a natural pesticide effective
against fungi, aphids, mites, thrips, and other pests can be beneficial. Additionally,
products like Substral Naturen Cuprex Garden may be used to combat botrytis.

Potted plants and bedding plants are especially susceptible to this fungal disease
[Love The Garden, 2024].

11

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Fig 1.6: Impact of Botrytis on Plant Health [Love The Garden, 2025].

1.2.7 Scab

Scab is a fungal plant disease that primarily occurs during periods of leaf wetness (see
Figure 1.7). The fungi responsible for scab thrive in humid conditions. Infection typically
begins at the edges of leaves and then spreads toward the center. Initially, olive-green
spots appear, which later turn brown or black. Infected leaves wilt and curl, even under
humid conditions. Subsequently, branches and fruits become affected, developing spots
as well. The plant stems may also discolor and, in severe cases, may die back or drop off.

White mold is often observed on the leaf edges in association with the disease. On
apples and pears, scab causes characteristic cracks and corky spots on the fruit surface.
These infections lead to premature leaf drop and weaken the overall health of the tree.

Scab can also affect potatoes and tomatoes. Tomatoes develop brown spots, shrink,
and eventually rot, while potatoes form brown lesions that progress into slimy, foul-
smelling rot.

This disease is commonly found in fruit crops, vegetables, and ornamental plants. To
control scab, products such as Substral Naturen Cuprex Garden can be applied in veg-
etable gardens or on fruit trees to combat the fungal infection [Love The Garden, 2024].

12

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Fig 1.7: Impact of Scab on Plant Health [Love The Garden, 2025].

1.2.8 Iron Deficiency

Young leaves of acid-loving plants (see Figure 1.8), such as azaleas, rhododendrons,
and camellias, often exhibit chlorosis-yellowing of the leaf tissue-while the veins remain
green, which is a classic symptom of iron deficiency. Iron is essential for the synthesis of
chlorophyll, the pigment critical for photosynthesis. If the deficiency persists, it can lead
to progressive yellowing of mature leaves, stunted plant growth, and eventual leaf death.

Iron deficiency is most commonly observed in soils that are rich in lime, have a high
PH, or are excessively waterlogged, conditions that reduce oxygen availability and limit
iron uptake. Acid-loving plants, including rhododendrons, azaleas, hydrangeas, skimmias,
and kalmias, as well as certain fruit trees like apple and pear, are particularly vulnerable
when grown in alkaline soils (pH above 7). In rhododendrons, chlorosis may occur even
when soil pH exceeds 5.5.

These observations underscore the importance of proper soil management to prevent
nutritional imbalances that can adversely affect the growth and health of acid-loving
plants.

Fig 1.8: Impact of Iron Deficiency on Plant Health [Love The Garden, 2025].

13

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

1.3 Symptoms and Indicators of Plant Diseases

Symptoms refer to the visible changes in a plant’s appearance or behavior resulting
from the presence of a pathogen or environmental stressor. Common symptoms include
abnormal leaf growth, discoloration, wilting, and other signs indicating potential plant
health issues [Reis-Pereira et al., 2024].

Indicators, on the other hand, are specific signs or patterns that suggest the presence
of a particular disease or pathogen. These include visible structures of the pathogen, such
as fungal spores, bacterial ooze, or viral streaks on plant tissues.

Effective diagnosis and management of plant diseases require careful examination of
the affected plants. Observing the undersides of leaves and documenting visible symptoms
or signs can provide valuable clues for identifying the underlying problem.

1.3.1 Spider Mites Treatment

Immediately remove affected leaves and replace old soil. Maintain a humid envi-
ronment by misting plants at least once a week, preferably using rainwater. Relocate
plants to a cooler area (around12 − 14ÂřC), as spider mites dislike humidity and cooler
temperatures. Isolate affected plants promptly, since mites spread rapidly. Use a biologi-
cal insecticide designed for mites, such as Substral Naturen Polysect Organic Insecticide
Spray. For prevention, pre-treat plants with Substral Naturen nettle manure.

1.3.2 Rust Treatment

Control rust through a combination of cultural practices, natural remedies, and chem-
ical treatments. Remove infected leaves and improve air circulation to reduce humidity.
Water plants at the base to keep foliage dry. Natural treatments include spraying a baking
soda and water mixture or neem oil. Garlic extract and sulfur-based fungicides are also
effective. Employ biological controls like beneficial microbes and choose rust-resistant
plant varieties. Crop rotation and mulching can further reduce fungal spread.

1.3.3 Powdery Mildew Treatment

Remove and dispose of infected leaves to minimize fungal spread. Improve air circula-
tion by spacing and pruning plants. Avoid overhead watering; water at the base instead.
Natural remedies such as neem oil, baking soda solution (1 tbsp baking soda + 1 tsp
soap in 1 gallon water), or milk solution (1 part milk to 9 parts water) can be applied.

14

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Sulfur-based fungicides and commercial treatments like potassium bicarbonate also help
control the disease. Use resistant varieties and practice crop rotation to reduce future
outbreaks.

1.3.4 Bacterial Fire Blight Treatment

Remove affected plant parts promptly to prevent spread; severe infections may require
removal of the entire plant. Sanitize pruning tools between cuts to avoid bacterial trans-
mission. Dispose of infected material properly. Copper based bactericides can reduce
infection risk. Avoid overhead irrigation to limit bacterial dispersal.

1.3.5 Marsonia (Black Spot Disease) Treatment

• Remove infected leaves and branches, ensuring debris is discarded and not
composted.

• Improve air circulation by spacing plants and pruning excess growth.

• Apply fungicides effective against leaf spot diseases, such as copper, chlorothalonil,
or mancozeb, following label instructions.

• Avoid overhead watering; water at the plant base to keep foliage dry.

• Implement crop rotation and regularly remove fallen leaves to reduce fungal
buildup.

Combining these methods helps control Marsonia and protect plants from further
damage.

1.3.6 Botrytis (Gray Mold) Treatment

• Remove infected tissues, discarding affected flowers, leaves, and stems; sanitize
tools after pruning.

• Enhance air circulation by spacing plants and pruning dense foliage.

• Water at the base, avoiding overhead irrigation; water early in the day for quick
drying.

• Apply fungicides targeting Botrytis, such as boscalid, cyprodinil, or chlorothalonil,
following manufacturer guidance.

15

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

• Maintain sanitation by removing fallen debris.

• Use protective fungicides preventively during humid, wet conditions.

Proper care, pruning, and fungicide use reduce Botrytis risk effectively.

1.3.7 Scab Treatment

• Remove and dispose of infected material, especially fallen leaves and fruit;
avoid composting infected debris.

• Apply fungicides formulated for apple scab, including captan, myclobutanil, or
tebuconazole, early in the season and after rainfall.

• Prune and thin trees to improve airflow and light penetration.

• Avoid overhead watering; water at the base early in the day.

• Plant resistant varieties when possible.

• Sanitize tools and equipment regularly to prevent disease spread.

These steps help control apple scab and protect fruit trees.

1.3.8 Iron Deficiency Treatment

Treat iron deficiency by applying iron supplements such as chelated iron or iron sulfate
to soil or as foliar sprays, following product directions. If soil pH is high, reduce it using
sulfur or acidifying fertilizers to improve iron availability. Ensure proper soil drainage
and aeration to facilitate iron uptake. Adding organic matter like compost improves soil
structure and nutrient availability. Avoid excessive nitrogen or phosphorus fertilization,
which can inhibit iron absorption. Maintain balanced watering to support nutrient uptake
without causing waterlogging.

1.4 Role of Technology in Plant Disease

Increasing agricultural productivity while preserving natural resources and improv-
ing the quality of life for farmers remains a major challenge for sustainable agriculture.
Plant diseases significantly impact crop yields and continue to be a persistent concern for
farmers. Optimizing crop management, particularly minimizing the use of fertilizers and
pesticides, is a critical focus in modern agriculture.

16

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Improved early detection of plant diseases represents a significant research area aimed
at enhancing treatment effectiveness. For example, tomatoes and potatoes are suscep-
tible to blight, and potatoes can be affected by various diseases that lead to tuber rot.
Tools and techniques for detecting the phytopathogenic microorganisms responsible for
these diseases are already deployed in fields, while others are still under development
[Conversation, 2020].

1.4.1 Biosensors in Plant Disease Detection

Among currently used tools, biosensors convert biological or physical elements such
as antibodies, proteins, or DNA into measurable signals. Biosensors that detect proteins
(antibodies) or nucleic acids (DNA or RNA) primarily rely on ELISA (Enzyme-Linked Im-
munosorbent Assay) and PCR (Polymerase Chain Reaction) techniques. ELISA detects
phytopathogens in plant extracts using antibodies specific to the pathogen, while PCR
amplifies targeted regions of the pathogen’s genome from DNA extracted from diseased
plants, facilitating detection and quantification.

However, these diagnostic tools require prior knowledge of the pathogen to develop
the necessary antibodies or PCR primers. They are also destructive, involving grinding of
plant tissues to release the pathogen or its nucleic acids, and demand expensive laboratory
equipment and skilled labor.

Although these analyses are generally performed in laboratories, portable field detec-
tion kits using biological markers have been developed. These kits can detect pathogens
such as Phytophthora species, fire blight caused by Erwinia amylovora, and Potato Y virus
on-site. These methods are faster, more cost-effective, and less labor-intensive than labo-
ratory procedures. Future advances may enable fine-level pathogen identification through
smartphone images uploaded to centralized databases, although such systems are not yet
widely implemented in plant disease diagnostics [6].

1.4.2 Sensing Plant Diseases with Technology

A promising technology under development is gas chromatography (GC), which ana-
lyzes gases or gas mixtures to differentiate among them. Some plant diseases emit volatile
organic compounds (VOCs) that can be detected by GC. For instance, potato tuber rot
caused by bacterial pathogens such as Ralstonia solanacearum and Clavibacter michiga-
nensis releases specific VOCs before visible symptoms develop. These compounds can be
detected by electronic noses, allowing early pathogen detection prior to symptom appear-
ance.

17

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Although still in the testing phase, electronic nose technology is already employed in
potato storage facilities. The next step involves deploying electronic noses directly in soil
to detect diseases in the field.

1.4.3 Visualizing Plant Diseases

Spectro-imaging is another advanced technology for plant disease detection, capable of
identifying infections before visible symptoms appear. Hyperspectral imaging is the most
precise among these methods, capturing images across a broad range of spectral bands,
including those beyond the visible spectrum such as near-infrared

Stressed plants emit distinct biochemical and structural radiation patterns compared
to healthy plants, which can be identified through hyperspectral imaging. This spectral
information enables disease identification based solely on imaging data, marking a major
advancement in plant pathology.

Hyperspectral systems, primarily composed of specialized cameras, can be mounted on
mobile platforms such as drones to analyze entire fields nondestructively. This approach
offers significant advantages over traditional random sampling methods.

Recent studies have shown that hyperspectral imaging can detect potato blight and Al-
ternaria infections before symptom onset. Chinese researchers developed a hyperspectral
method to differentiate between two visually similar tomato diseases blight and Alternaria-
based on their distinct spectral signatures. In the Netherlands, hyperspectral cameras
mounted on tractors are used to detect plants infected with Potato Y virus.

These technological advances facilitate faster disease detection in the field, enabling
early interventions that help limit disease spread [Conversation, 2020].

1.5 Challenges in Identifying Plant Diseases

Accurate identification of plant diseases is a fundamental component of effective agri-
cultural management. Traditionally, disease identification has been performed manually
through visual inspection or microscopy.

1.5.1 Extrinsic Factors

1.5.1.1 Image Background

In most image-based leaf analysis methods, the initial step is leaf segmentation. When
images are captured against a plain background such as a white or blue panel segmentation

18

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

can typically be performed automatically with minimal difficulty. However, when the
background includes complex elements such as other plants, soil, or overlapping leaves,
segmentation becomes significantly more challenging [Barbedo, 2016].

Fig 1.9: Image background analysis for plant disease detection.

1.5.1.2 Image Capture Conditions

Various factors influence image characteristics, making accurate analysis more difficult.
Ideally, all images should be captured under uniform conditions, which is feasible in
controlled environments like laboratories. However, real-world conditions vary widely,
especially in outdoor settings. Understanding the primary factors affecting segmentation
and developing methods to address them is essential for improving accuracy in practical
applications [Barbedo, 2016].

Fig 1.10: Exemple of a leaf image with spcular reflections and sevral light/shadow transitions.

19

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

1.5.2 Intrinsic Factors

1.5.2.1 Symptom Segmentation

Many plant disease symptoms do not have clearly defined edges and instead blend
gradually into healthy tissue [Streets, 1972]. This lack of distinct boundaries makes precise
segmentation difficult. Even when manually outlined, there is often ambiguity in defining
symptom borders. Although automated methods may offer consistency, variations in
symptoms introduce additional complexity, affecting the accuracy of thresholding and
other image-processing techniques.

Fig 1.11: Exemple of symptoms with no clear edges.

1.5.2.2 Symptom Variations

While some plant diseases display distinct and recognizable symptoms, considerable
variation often occurs in color, shape, and size. These variations result from factors such
as plant species, environmental conditions, and the interactions between the plant and
pathogen. Changes in any of these factors can alter symptom expression, making accurate
identification more challenging when relying solely on visible-spectrum imaging.

20

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

Fig 1.12: Variation in symptoms of Southern corn leal blight.

1.5.2.3 Multiple Simultaneous Disorders

It is common for multiple disorders to affect the same plant simultaneously. The pres-
ence of more than one disease, combined with other issues such as nutritional deficiencies
and pest infestations, complicates accurate identification. When a plant’s immune sys-
tem is weakened by one infection, it becomes more susceptible to additional problems.
Observations indicate that symptoms caused by different diseases often coexist, making
it difficult to isolate the cause of specific visual patterns [Chester, 1933].

Fig 1.13: Coffee leaf containing symptoms of rust and Cercospora leaf spot.

1.5.2.4 Different Disorders with Similar Symptoms

Many plant disorders including diseases, nutritional deficiencies, pest infestations, and
environmental stresses produce similar symptoms. These overlaps make it challenging to
accurately determine the exact cause of a symptom based solely on visible characteristics.
The wide variety of potential conditions increases the complexity of diagnosis, particularly
when relying only on standard imaging techniques [Barbedo, 2016][Dordas, 2008].

21

CHAPTER 1. FUNDAMENTALS OF PLANT DISEASE

1.6 Conclusion

This chapter has underscored the critical importance of accurate plant disease identi-
fication and the inherent challenges posed by symptom variability, multiple cooccurring
disorders, and visually similar symptoms across different diseases. While conventional
diagnostic methods remain foundational, they are often limited by subjectivity and prac-
ticality. The emergence of image-based technologies, especially those utilizing Convo-
lutional Neural Networks, offers a powerful solution to overcome these limitations by
enabling rapid, objective, and scalable disease detection from plant images. However,
successful implementation requires addressing challenges such as diverse environmental
conditions, complex backgrounds, and symptom variations. The integration of CNNs
into plant disease diagnostics promises significant advancements in precision agriculture,
supporting timely interventions and ultimately contributing to improved crop health and
food security.

This rising importance of automation points toward a shift in how plant health is
monitored and maintained. As we move forward, Chapter 2 will delve into the applica-
tion of machine learning techniques in plant disease detection. It will discuss how these
advanced methods are shaping the future of precision agriculture and plant pathology.

22

2

Ch
ap

te
r

Machine Learning in Plant Disease

Detection

2.1 Introduction . 24
2.2 Overview of Machine Learning in Agriculture 24
2.3 Importance of Automation in Plant Disease Detection 25
2.4 Fundamentals of Machine Learning and Deep Learning 26

2.4.1 Definition and Key Concepts . 26
2.4.2 Supervised vs. Unsupervised Learning 27
2.4.3 Introduction to Deep Learning . 29

2.5 Convolutional Neural Networks (CNNs) for Image Classification 30
2.5.1 Basics of CNNs . 31
2.5.2 Architectural Framework of CNNs 32
2.5.3 The Advantage of Convolutional Neural Networks 37
2.5.4 The Effectiveness of CNNs in Image Classification 37
2.5.5 Overfitting and Underfitting in CNN Models 38

2.6 State of the Art for Plant Disease Detection Using CNNs 39
2.7 Conclusion . 40

23

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

2.1 Introduction

In recent years, the integration of deep learning techniques, particularly Convolutional
Neural Networks (CNNs), has revolutionized the field of plant disease detection. Accurate
and timely identification of plant diseases is critical to ensuring agricultural productivity,
food security, and the economic well-being of farmers worldwide. Traditional manual
inspection methods are labor-intensive, time-consuming, and prone to error, especially
over large agricultural areas. CNNs, with their powerful ability to automatically extract
hierarchical features from image data, offer a promising solution by enabling precise,
scalable, and real-time disease diagnosis. This chapter explores the fundamental principles
of deep learning, delves into the architecture and advantages of CNNs, and reviews the
latest advancements in applying these techniques to plant disease detection.

2.2 Overview of Machine Learning in Agriculture

Agriculture plays a critical role in human survival by providing food, clothing, and
shelter. However, crop yields are influenced by numerous abiotic and biotic factors, in-
cluding soil conditions, climate variability, pests, and diseases. To safeguard agricultural
productivity, modern technologies such as the Internet of Things (IoT) and machine learn-
ing (ML) are increasingly employed for site monitoring, pest identification, and damage
prediction [Yao et al., 2023].

Machine learning, a subfield of artificial intelligence (AI), has found broad applications
in agriculture, including harvesting automation, yield estimation, pest and weed control,
irrigation optimization, and plant disease detection. Among various plant organs, leaves
are the most commonly analyzed for disease diagnosis due to their essential role in pho-
tosynthesis and overall plant growth. Leaf diseases can severely impact plant health and
productivity, making early detection crucial.

Traditionally, plant disease identification has relied on manual inspection by experts.
However, this approach is often labor-intensive, time-consuming, costly, and prone to
inaccuracies-especially in areas where human presence is limited due to environmental or
health constraints [Salman et al., 2023]. Machine learning offers a promising alternative
by enabling efficient, scalable, and accurate disease recognition.

24

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

2.3 Importance of Automation in Plant Disease De-

tection

Monitoring and managing crop health is essential to ensuring global food security,
especially given the rapidly increasing world population. In developed countries, techno-
logical advancements have been widely adopted in agriculture to support crop detection,
monitoring, and management. However, developing nations such as India still face signif-
icant challenges in cultivating crops without excessive reliance on chemical fertilizers and
pesticides.

Large-scale farming is inherently labor-intensive, and many farmers rely on minimal
labor due to financial or logistical constraints. Visual inspection of crops across vast fields
is often impractical, leading to undetected infections and substantial yield losses. This
underlines the pressing need for automation in agriculture particularly in the context of
crop monitoring and the detection of plant diseases and nutrient deficiencies.

Plant diseases can disrupt normal physiological processes in crops and may manifest on
various plant parts, including leaves, stems, roots, flowers, and fruits. Disease outbreaks
can quickly spread and destroy large crop areas. According to estimates, plant diseases
contribute to a 20% − 40% reduction in global agricultural yields, causing considerable
economic losses. For example, brown spot disease in rice can reduce yields by up to 50%,
while grapevine diseases often lead to extensive damage in vineyards. In addition to low-
ering yield quantity, diseases may also affect the quality and marketability of agricultural
products [Yağ and Altan, 2022].

Traditionally, farmers have relied on visual inspections to detect signs of disease. How-
ever, this method is inefficient and error prone especially for large farms due to human lim-
itations, variable expertise, and the demand for continuous monitoring. Automated sys-
tems, supported by image processing and sensing technologies, offer an effective alternative
by enabling real-time disease detection and accurate data logging [Alzoubi et al., 2023].

Barbedo (2013) highlights that image processing not only facilitates the identifi-
cation of plant diseases but also helps quantify their severity, thus improving disease
management strategies [Arnal Barbedo, 2013]. In addition, Kamilaris and Prenafeta
Boldu(2018) emphasize the transformative potential of deep learning, IoT, and smart
sensor networks in scaling plant health monitoring systems and enhancing their precision
[Kamilaris and Prenafeta-Boldú, 2018].

25

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

2.4 Fundamentals of Machine Learning and Deep Learn-

ing

Agriculture is a vital sector contributing significantly to global economies and feeding
billions of people worldwide. However, it faces numerous challenges such as popula-
tion growth, excessive pesticide use, climate change, and plant diseases. With the rising
demand for agricultural products, monitoring plant health has become a fundamental
necessity, with leaf disease detection playing a major role. Due to climatic changes and
various diseases, different types of infections affect crop leaves, adversely impacting food
production. Therefore, there is an urgent need for innovative ideas and approaches to
address these challenges.

Plant diseases are caused by biotic agents including bacteria, fungi, nematodes, and
viruses, as well as abiotic factors or plant stresses such as allelochemicals, climatic condi-
tions, and agricultural practices [Salman et al., 2023]. Early disease detection is critical,
not only to preserve crop yield but also to facilitate mitigation strategies.

Deep learning, a subset of machine learning based on artificial neural networks, at-
tempts to mimic the human brain’s ability to learn from data. Among deep learning
techniques, convolutional neural networks (CNNs) have demonstrated promising results
in plant pathology tasks such as object detection and image classification. Before CNNs,
various image processing based automatic methods were developed for detecting and clas-
sifying plant diseases [Shoaib et al., 2023].

2.4.1 Definition and Key Concepts

Given the detrimental effects of plant diseases on crop yield, food security, and farmers’
livelihoods, developing automatic plant disease recognition systems is essential, especially
where resources for manual disease detection are limited. Recently, deep learning based
approaches that perform multi-class classification, single-dimensional localization, seg-
mentation, and pixel-wise classification for early disease detection have been explored,
often leveraging transfer learning techniques [Salman et al., 2023]. These methods aim to
control plant disease damage and contribute to food safety and farmer economics.

Furthermore, smart mobile applications for multi-class disease detection in crops such
as tomatoes and grapes have been developed. These systems improve reliability, sup-
port both user and camera levels, consider practical challenges overlooked by existing
approaches, and are often open source. However, current prediction services suffer from
low accuracy, limited class detection, and slow inference times. Analyzing previous image

26

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

classification trends has motivated the design of multi-class classification models powered
by mobile edge computing platforms to overcome these limitations.

In the machine learning research domain, continuous technological advances have en-
hanced image processing and automated detection technologies. Consequently, researchers
have increasingly applied machine learning techniques to detect diseases in plant branches
and foliage effectively. Such plant disease detection systems process images of leaves by
capturing, filtering, and classifying infected versus healthy leaves. The trained models
then predict or classify new leaf images accurately. Developing these systems requires
comprehensive datasets containing images of both infected and healthy leaves for effec-
tive training [Li et al., 2021].

2.4.2 Supervised vs. Unsupervised Learning

Machine learning (ML) gained public recognition nearly three decades ago and has
since become integral to various aspects of daily life. Over time, different branches of
ML have emerged to address diverse problems. The two most prominent types today are
supervised and unsupervised learning, which differ primarily in how they learn from data.

In supervised learning, algorithms are trained on labeled datasets where the correct
output is known for each input. This enables models to learn patterns, such as distinguish-
ing diseased leaves from healthy ones in images. Two key supervised learning techniques
used in plant disease detection are:

1. Support Vector Machines (SVM): These algorithms find the optimal bound-
ary separating different classes in the data but are limited when handling complex
features.

2. Deep Learning: This approach uses layered neural networks capable of processing
large volumes of image data with high accuracy, although it demands significant
computational resources.

Conversely, unsupervised learning deals with unlabeled data and aims to discover
hidden patterns or groupings without predefined categories. In agriculture, unsupervised
methods are useful for tasks such as soil analysis, crop identification, and processing
satellite imagery, where data clustering or classification occurs without prior labeling
[Li et al., 2021].

27

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

Fig 2.1: Overview of Key Machine Learning Types and Approaches [Peng et al., 2021].

There are three fundamental types of machine learning: Supervised Learning, Un-
supervised Learning, and Reinforcement Learning.

• Supervised Learning: This type of learning maps a set of inputs (features) to an
output (target). It includes two main subtypes: classification and regression.

– Classification: Involves identifying the category to which an observation be-
longs. A common example is binary classification, which estimates the prob-
ability that an observation belongs to one of two classes such as predicting
whether a customer is a buyer or non-buyer (class 0 or 1).

– Regression: Focuses on predicting a continuous numeric value. A practical
application is forecasting future sales demand, which is a specialized form of
regression.

• Unsupervised Learning: Involves extracting patterns from unlabeled data. Two
widely used techniques are clustering and dimensionality reduction.

– Clustering: Algorithms like K-means are often applied to group similar cus-
tomers based on shared attributes.

– Dimensionality Reduction: Techniques such as Principal Component Anal-
ysis (PCA) are used to reduce the number of input features, which helps im-

28

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

prove the efficiency of other machine learning algorithms and facilitates the
visualization of clusters.

• Reinforcement Learning: This approach enables software agents to learn optimal
actions by interacting with an environment and receiving feedback in the form of
rewards. It forms the basis of many artificial intelligence systems, where the software
continuously learns and improves decision-making through experience.

In the figure, training data is represented by colored dots and triangles, whereas yellow
stars symbolize new data points that the trained model can predict [Peng et al., 2021].

2.4.3 Introduction to Deep Learning

Deep learning is a subfield of machine learning that uses algorithms inspired by the
structure and function of the human brain, known as artificial neural networks. These
models automatically learn to extract features and patterns from large amounts of data
through multiple layers of processing. Unlike traditional machine learning, which often
relies on manual feature engineering, deep learning networks learn features directly from
raw inputs such as images, audio, or text.

Deep learning has gained significant attention in recent years due to its success in
tasks such as image and speech recognition, natural language processing, and autonomous
driving. This progress has been facilitated by the availability of big data, increased
computational power (notably GPUs), and advancements in neural network architectures
such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

At its core, a deep learning model consists of layers of interconnected neurons: an input
layer, one or more hidden layers, and an output layer. During training, these models adjust
their internal parameters through a process called backpropagation, optimizing them to
minimize the difference between predicted and actual outputs [Goodfellow et al., 2016].

29

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

Fig 2.2: Artificial Intelligence (AI) vs Machine Learning (ML) vs Neural Network vs Deep Learning [Shang et al., 2024].

Fig 2.3: Distinguishing Machine Learning from Deep Learning [Khan et al., 2021].

2.5 Convolutional Neural Networks (CNNs) for Im-

age Classification

Convolutional Neural Networks (CNNs) are a specialized subset of artificial intelli-
gence primarily designed for image analysis. They detect patterns by breaking down an
image into smaller components, enabling the identification of elements such as edges, tex-
tures, and shapes. CNNs have been successfully applied across diverse domains including

30

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

medical image analysis, autonomous vehicles, and facial recognition [Rizvi, 2020].

2.5.1 Basics of CNNs

CNNs were originally developed for image classification and quickly demonstrated
their effectiveness, subsequently expanding to other computer vision tasks such as ob-
ject detection, image segmentation, and caption generation. A typical CNN architecture
consists of convolutional layers, pooling layers, and fully connected layers, with nonlinear
activation functions applied after certain operations.

• Convolutional layers extract feature maps by applying weighted kernels (filters)
combined with activation functions to detect local patterns.

• Pooling layers reduce the spatial dimensions of feature maps, commonly using max
pooling or average pooling, which helps decrease computational load and improves
model robustness.

To further enhance robustness and mitigate overfitting, dropout layers are used, which
randomly deactivate a subset of neurons during training.

Despite their strengths, CNNs encounter challenges when dealing with structured noise
such as occlusions and partially visible features. These issues often require hand-crafted
solutions that may not generalize well to complex or dynamic scenes. Recent advances in
light field cameras, which capture four-dimensional data by recording multiple perspective
views, improve handling of occlusions and enhance object detection accuracy. However,
such cameras can be expensive or impractical for many applications.

As a more accessible alternative, RGB images captured from slightly different lateral
positions can approximate some benefits of light field data, preserving structural and
complementary visual information that enhances model performance [LeCun et al., 2015].

31

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

Fig 2.4: Visualization of features in trained classification model: (a) original image; (b) the first layer filters, Conv1; (c)
the first layer output, Conv1 rectified responses of the filters, first 36 only; (d) the second layer filters, Conv2; (e) the
second layer output, Conv2 (rectified, only the first 36 of 256 channels); (f) the third layer output, Conv3 (rectified, all 384
channels); (g) the fourth layer output, Conv4 (rectified, all 384 channels); (h) the fifth layer output, Conv5 (rectified, all
256 channels) [Sladojevic et al., 2016].

2.5.2 Architectural Framework of CNNs

Convolutional Neural Networks (CNNs) are widely used in image classification tasks
and have demonstrated high effectiveness across numerous research studies due to their
powerful feature extraction capabilities [LeCun et al., 1988].

The architecture of a CNN (illustrated in Figures 2.5 and 2.6) typically consists of
convolutional layers, pooling layers, and fully connected artificial neural network layers
[Masko and Hensman, 2015]. The most crucial component is the convolutional layer,
which gives the network its name. This layer is responsible for extracting hierarchical
features from input images, forming the foundation of the CNN’s ability to learn visual
patterns.

Fig 2.5: Structure of a convolutional neural network [Typ, 2020].

32

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

Fig 2.6: RGB image represented in matrix form [Dumoulin, 2020].

2.5.2.1 The Convolution Layer

The convolution layer is the first and one of the most fundamental layers in a convolu-
tional neural network (CNN). A CNN may consist of one or more convolution layers, each
functioning as a feature extractor by taking RGB images as input [LeCun et al., 2010].

The convolution operation involves computing the sum of element-wise multiplications
between a filter (also called a convolution kernel) and small regions (or slices) of the input
image matrix, as illustrated in Figure 2.9. These small regions have the same spatial
dimensions as the filter. The filter slides over the input image, overlapping different
regions until it covers the entire image, as shown in Figure 2.8.

Each filter has a width, height, and depth, where the depth corresponds to the number
of filters applied and determines the number of output feature maps. The filter size is a
user-defined parameter. The values or weights of these filters are initially set randomly
and are learned and updated during the training phase [22, 23].

For example, a convolutional layer with a filter size of 3 × 3 × 64 indicates that there
are 64 filters, each of size 3 × 3, producing 64 corresponding output feature maps. The
filter moves across the input image in discrete steps defined by a parameter called stride.
The stride controls the step size of the filter’s movement; larger stride values produce
smaller output feature maps by reducing spatial dimensions [LeCun et al., 2010].

The result of the convolution operation is a set of new images called feature maps,
which are spatially reduced representations of the original image emphasizing distinctive
features [22, 23, 37]. As the number of convolutional layers increases, the spatial size of
the feature maps tends to decrease. To counteract excessive reduction, a technique called

33

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

zero padding is often applied, where additional pixels (typically zeros) are added around
the input image borders to maintain the output size [Wikipedia contributors, 2020].

Early convolutional layers tend to detect simple, primary features such as edges
and textures, whereas deeper layers extract more complex, abstract, or hidden features
[LeCun et al., 2010].

Finally, an activation function is applied to the output of each convolutional layer to
introduce non-linearity into the network. The most commonly used activation function is
the Rectified Linear Unit (ReLU), which accelerates training without compromising the
network’s performance [4, 24].

Fig 2.7: Convolution Operation [Zhang et al., 2020].

Fig 2.8: Convolution Operation [Con, 2020].

2.5.2.2 The Pooling Layer

Pooling layers typically follow convolutional layers in a CNN architecture. These layers
operate on the feature maps produced by the convolutional layers by dividing each feature
map into smaller regions or slices matrices of a user defined size and then traversing all
such slices. The size of these slices and the step size (stride) used to move across the
feature map are set by the user. Generally, small slice sizes are preferred (2 × 2or1 × 1)
because larger slices would excessively reduce the spatial dimensions of the feature maps,
leading to a substantial loss of information.

34

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

Pooling then aggregates values within each slice by either taking the average or the
maximum value. When the average is computed, this operation is called Average Pooling;
when the maximum value (representing the strongest activation) is selected, it is called
Max Pooling [LeCun et al., 2010]. Max pooling is the most commonly used pooling tech-
nique.

Figure 2.9 illustrates the Max Pooling operation on a 4 × 4 image matrix using a 2 × 2
slice with a stride of 2. The maximum value in the first slice (highlighted in orange) is
6. For the subsequent slices, the maximum values obtained are 8, 3, and 4, respectively.
After this operation, the resulting feature map is reduced to a size of 2 × 2.

Fig 2.9: MaxPooling [Max, 2020].

The objective of the pooling operation is to reduce the spatial dimensions (width and
height) of each feature map, thereby decreasing the number of parameters in the con-
volutional neural network and reducing its computational cost. Pooling helps eliminate
redundant or noisy information from the feature maps and enhances the network’s ro-
bustness to variations in the orientation and position of features within images, creating
a form of translation invariance [22, 23].

2.5.2.3 The Flattening Operation and Fully Connected Layer

The outputs (matrices) obtained after a series of convolutional and pooling operations
are transformed into a one-dimensional vector through a process called flattening. This
operation aggregates all the extracted features from the image into a single continuous
vector (see Figure 2.10). This vector is then passed to a multilayer perceptron composed
of fully connected layers, which ultimately determines the class membership of the input
image [22, 23].

35

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

Fig 2.10: The Flattening Operation [SuperDataScience Team, 2020].

2.5.2.4 Padding

In CNNs, padding is an important parameter that adds extra pixels around the edges
of the input image to help preserve its spatial dimensions. By maintaining border in-
formation, padding enables the model to better estimate the spatial size of the output
feature maps. There are several padding techniques, including same padding (also known
as identical padding), valid padding, and zero padding. Among these, zero padding is
the most widely used due to its simplicity and computational efficiency. Zero padding
involves adding zeros evenly around the border of the input matrix. This technique has
been successfully employed in high-performance models such as AlexNet [Malik, 2020].

Fig 2.11: Padding example.

36

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

Fig 2.12: With Padding, Stride = 2.

Fig 2.13: No Padding, Stride = 1.

2.5.3 The Advantage of Convolutional Neural Networks

One of the primary advantages of convolutional neural networks (CNNs) is weight
sharing, meaning that each neuron (filter) within a convolutional layer uses the same set
of weights. This significantly reduces the number of parameters, memory requirements,
and speeds up the learning process [Wikipedia contributors, 2020]. In contrast, multilayer
perceptrons assign distinct weights to every input connection, which increases the number
of parameters and computational cost; as image size grows, this problem becomes more
severe [Wikipedia contributors, 2020].

Another key benefit of CNNs over multilayer perceptrons is their spatial invariance.
CNNs can detect features regardless of their orientation or position in the image, making
them robust to spatial translations of the input [LeCun et al., 2010].

2.5.4 The Effectiveness of CNNs in Image Classification

Convolutional Neural Networks are especially well-suited for image classification tasks
due to their ability to automatically and efficiently learn spatial hierarchies of features
from raw input images. Unlike traditional machine learning algorithms that rely on

37

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

manual feature engineering, CNNs learn low-level features such as edges and textures in
early layers, and more abstract, high-level features such as shapes and objects in deeper
layers [LeCun et al., 2015], [Krizhevsky et al., 2012]. The effectiveness of CNNs in image
classification stems from several key characteristics:

• Local Receptive Fields: CNNs process small regions of the image at a time,
enabling the capture of local spatial patterns essential for visual understanding
[Goodfellow et al., 2016].

• Weight Sharing: Shared weights across spatial regions reduce the number of train-
able parameters, improving computational efficiency and reducing the risk of over-
fitting [LeCun et al., 2015].

• Translation Invariance: Pooling layers and convolutional filters confer robustness
to the position of features within the image [Krizhevsky et al., 2012].

• Automatic Feature Learning: CNNs eliminate the need for handcrafted fea-
tures by learning the most discriminative features directly from raw image data
[Simonyan and Zisserman, 2014].

• Depth and Hierarchical Representation: The layered architecture of CNNs fa-
cilitates learning complex, hierarchical features that enhance classification accuracy
across diverse image datasets [LeCun et al., 2015], [He et al., 2016].

These properties make CNNs highly effective for large-scale image classification with
applications in medical diagnostics, object detection, satellite imagery analysis, and more.

2.5.5 Overfitting and Underfitting in CNN Models

New plant disease detection models using image processing aim to minimize false
positives and false negatives. Locally developed models have shown promising predictive
performance, which can be further improved by leveraging cloud-based services and access
to larger datasets, enabling easier fine-tuning. Enhanced preprocessing techniques have
increased accuracy without overfitting, making these models practical beyond academic
research by providing farmers with tools to improve crop yields.

However, challenges remain: issues in data acquisition or the use of overly cleaned
datasets can cause premature specificity, while real-world images often vary due to dif-
ferent angles, distances, and environmental conditions. The performance of off-the-shelf
solutions in these variable conditions remains unclear, although baseline models offer a
useful starting point.

38

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

In a representative dataset, at least 20 images each of Common Rust and healthy
plants were used. Noise was removed, and low-resolution images discarded. Leaf surfaces
were captured with handheld cameras at angles between 15Â° and 45Â°. Common Rust
images displayed characteristic round, dark red spots, while healthy leaves appeared dark
green.

Three types of CNN architectures were implemented using the Keras API, with hyper-
parameter searches for activation functions, optimizers, learning rates, and early stopping
criteria. The impact of image format (PNG) and the use of 4-channel RGB data was min-
imal [Yasin and Fatima, 2023]. Incorporating dropout layers and max-pooling improved
model performance; however, all models failed overfitting tests, with accuracy scores below
0.84 and similar misclassification patterns observed in confusion matrices.

2.6 State of the Art for Plant Disease Detection Us-

ing CNNs

As of 2025, the field of plant disease detection using Convolutional Neural Networks
(CNNs) has made significant advancements, with research focusing on improving accuracy,
computational efficiency, and real-time applicability. The following overview highlights
the current state-of-the-art approaches:

Table 2.1: Performance comparison of plant disease detection models

Model Accuracy Key Features Deployment Reference
FourCropNet Up to 99.7% Residual blocks, atten-

tion mechanisms, multi-
crop detection

Scalable across various
crops

[Khandagale and Others, 2025]

14-DCNN 99.97% 14-layer CNN, data aug-
mentation, optimization

High-accuracy applica-
tions

[Palanisamy and Kandasamy, 2022]

Lite-MDC 94.14–99.78% Depthwise convolutions,
lightweight design

Real-time, edge devices [lit, 2024]

PlantXViT 93.55–98.33% CNN-ViT hybrid, ex-
plainability tools

IoT, smart agriculture [Thakur et al., 2022a]

ICVT Up to 99.94% Inception + Transformer
architecture

Accurate, interpretable
models

[icv, 2022]

These models represent the state-of-the-art in plant disease detection using CNNs, each
offering unique advantages in terms of accuracy, efficiency, and applicability to various
deployment scenarios.

39

CHAPTER 2. MACHINE LEARNING IN PLANT DISEASE DETECTION

2.7 Conclusion

This chapter provides a comprehensive overview of data collection, model deployment,
and training considerations for machine learning-based plant disease detection. It dis-
cusses convolutional neural networks, unsupervised learning, and reinforcement learning
techniques, alongside rigorous data collection protocols. The chapter also reviews state-
of-the-art imaging modalities and effective training methods. Furthermore, it examines
practical implementations of in-field disease detection using mobile and edge comput-
ing platforms, presenting a deployment roadmap that balances platform capabilities with
operational constraints. Detailed discussions on the experimental pipeline, data augmen-
tation strategies, and ensemble model architectures will be presented in the following
chapter.

40

3

Ch
ap

te
r

Implementation and Experimental

Analysis

3.1 Introduction . 43
3.2 Development Environment . 43

3.2.1 PyTorch . 44
3.3 System Architecture . 45
3.4 Dataset Selection and Preprocessing . 46

3.4.1 Description of Selected Dataset (PlantVillage) 47
3.4.2 Image Preprocessing Techniques . 49
3.4.3 Implementation of Data Pipelines Using PyTorch 50

3.5 CNN Model Development . 52
3.5.1 Deep CNN . 52
3.5.2 Simple CNN . 54

3.6 Using Pre-trained Models (DenseNet121, AlexNet, and VGG19) for Trans-
fer Learning . 57
3.6.1 DenseNet121 . 57
3.6.2 AlexNet . 57
3.6.3 VGG19 . 58

3.7 Choice of Hyperparameters . 59
3.8 Evaluation indices . 59

3.8.1 Accuracy . 60
3.8.2 Precision . 60
3.8.3 Recall (Sensitivity) . 60
3.8.4 Score . 60

3.9 Performance Evaluation and Results . 61
3.9.1 Performance of Deep CNN and Simple CNN 61
3.9.2 Comparison with existing models (DenseNet121, AlexNet and VGG19) 63

3.10 Comparison with traditional methods . 68
3.11 Conclusion . 69

41

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

42

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.1 Introduction

In this chapter, we present the design of our system and evaluate its performance in
detecting agricultural diseases from leaf images. We utilized a dataset containing images
of both healthy and diseased leaves. Deep learning models were developed to identify
disease-specific patterns, enabling the classification of various types of plant illnesses.
Additionally, we describe the implementation tools and the computing platform used for
our experiments.

Finally, we present the results of our study, demonstrating that the trained models
achieve high accuracy in plant disease detection. The performance was validated using the
PlantVil-lage dataset, one of the largest and most widely used datasets for plant disease
classification.

3.2 Development Environment

This section provides a brief overview of the software and hardware specifications used
in this study. Python was chosen for its versatility and comprehensive machine learning
librar-ies, while PyTorch was selected for its dynamic computational graph capabilities
and user-friendly tensor operations, facilitating efficient neural network implementation.
The hard-ware setup includes high-performance GPUs to accelerate both model training
and inference processes.

Materiels / Software Parameters

Processor i9 Intel 13e generation-13900KF 3.00 GHz
Memory capacity 128 Go
Graphic processing unit (GPU) GeForce RTX 4080
Windows 10 Professionnel
Cuda 12.1
Python 3.11
PyTorch 2.1

Table 3.1: System Specifications

43

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.2.1 PyTorch

PyTorch is an open-source deep learning framework developed by Meta (formerly
Facebook). It is widely used in both research and industry to build and train neural
networks for various AI applications like image classification, natural language processing,
and more.

3.2.1.1 Key Components of PyTorch

PyTorch provides a rich set of components designed to facilitate the development
and training of deep learning models efficiently. The following are some of the essential
components commonly used in PyTorch workflows:

Component Description

torch.Tensor: A multi-dimensional array like NumPy, but with GPU
support

torch.nn: Module for building neural networks with layers like
Linear, Conv2d, etc.

torch.optim: Optimization algorithms (e.g., SGD, Adam) for updat-
ing model weights

Autograd: Automatic differentiation engine (used in backpropaga-
tion)

DataLoader: Helps load and batch data efficiently for training

Table 3.2: Key PyTorch Components and Their Descriptions

3.2.1.2 Utility of PyTorch

PyTorch is a Python-based framework that facilitates deep learning development
through its clear syntax, simplified API, and efficient debugging capabilities. Its core
data structure, the tensor which is similar to NumPy arrays offers enhanced functionality
such as GPU ac-celeration, distributed computing across multiple devices, and dynamic
computation graph tracking. These features are essential for modern deep learning appli-
cations. PyTorch has proven effective in professional environments, enabling large-scale,
real-world tasks [PyTorch Team, 2024].

Two key features make PyTorch especially relevant for deep learning:

1. Accelerated computation using GPUs, which can achieve speedups up to 50

44

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

times faster compared to equivalent computations on a Central Processing Unit
(CPU).

2. Support for numerical optimization over general mathematical expres-
sions, which is critical for training deep learning models.

It is important to note that these features are valuable not only for deep learning
but also for scientific computing in general. Indeed, PyTorch can be considered a high-
performance li-brary with built-in optimization capabilities for scientific computation in
Python [Paszke, 2019].

3.2.1.3 Applications

PyTorch is widely used in various domains, including but not limited to:

• Computer Vision: Image classification, object detection, and segmentation

• Natural Language Processing: Machine translation, sentiment analysis, and text
generation

• Reinforcement Learning: Training agents for decision-making tasks

• Scientific Computing and Research: High-performance numerical simulations and
modeling

3.3 System Architecture

The diagram illustrates a comprehensive CNN-based workflow for plant leaf disease
classification. The top section represents the training process, where plant leaf images
exhibiting various diseases undergo preprocessing. This preprocessing likely includes re-
sizing images to 224×224 pixels, normalizing pixel values to a 0-1 scale, and applying
data augmentation techniques such as rotations and flips. The preprocessed images are
then fed into the CNN architecture either SimpleCNN or DeepCNN which processes them
through multiple convolutional and pooling layers. The model trains over N epochs, with
each epoch representing a complete pass through the training dataset. During training,
the model continuously computes loss values and updates its weights via backpropagation
to improve prediction accuracy.

The middle section depicts the validation workflow, where a separate set of leaf disease
images undergoes identical preprocessing and is evaluated by the same CNN model. This

45

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

validation phase calculates loss and accuracy metrics without updating model weights,
providing an unbiased assessment of the model’s generalization capability to unseen data.
To mitigate overfitting, the system employs early stopping by saving the model version
that achieves the best validation accuracy.

The bottom section corresponds to the final testing phase, where the saved best per-
forming model is evaluated on an entirely separate test dataset. This evaluation encom-
passes multiple performance metrics beyond accuracy, including loss, precision, recall, and
F1 score, offering a comprehensive understanding of the model’s effectiveness in real-world
scenarios. The blue arrows connecting validation results to model saving and subsequently
to testing illustrate the critical feedback loop that ensures only the optimal model ad-
vances to final evaluation.

This well-structured pipeline-with clear separation between training, validation, and
testing phases-follows standard best practices in deep learning for image classification
tasks and is specifically optimized for plant disease diagnosis, as depicted in Figure 3.1.

Fig 3.1: Our system of plant leaf diseases using convolutional neural network.

3.4 Dataset Selection and Preprocessing

Effective development of machine learning models for plant disease detection heavily
relies on the availability of high-quality, annotated datasets and appropriate preprocessing
tech-niques. This section outlines the rationale behind the choice of datasets, with a focus
on the widely-used PlantVillage dataset, and details the preprocessing steps necessary to

46

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

prepare the data for training convolutional neural networks.
Selecting an appropriate dataset is crucial to ensure model robustness, generalizability,

and real-world applicability. The PlantVillage dataset is a comprehensive collection of
annotated images encompassing a diverse range of plant species and disease classes. It
provides stand-ardized RGB images, facilitating consistent input dimensions and enabling
efficient training.

Preprocessing transforms raw images into a format suitable for model ingestion, includ-
ing resizing, normalization, and data augmentation techniques such as rotations, flips, and
color jittering. These steps not only standardize the input data but also enhance model
perfor-mance by increasing dataset variability and reducing overfitting.

Together, dataset selection and preprocessing form the foundational steps that directly
im-pact the accuracy and reliability of the plant disease detection models developed in
this study.

3.4.1 Description of Selected Dataset (PlantVillage)

The PlantVillage database is a pivotal resource for research and the development
of diagnos-tic tools for plant diseases, combining artificial intelligence techniques with
expertly anno-tated images to improve the management of agricultural crops globally.
This dataset supports the detection and control of a broad spectrum of biotic plant
diseases, including bacterial, fungal, viral, and nematode infections.

The database contains over 54,323 annotated images across 14 plant species, catego-
rized into 38 classes representing various diseases and healthy conditions. Additionally,
there is a separate class for background images without foliage. The images are RGB
and standardized to a resolution of 224 × 224 pixels, making the dataset an essential
foundation for developing and validating machine learning models for automated plant
disease diagnosis [30].

Dealing with an unbalanced dataset where certain classes have significantly more in-
stances than others poses a major challenge. To prevent model bias, it is crucial to
accurately iden-tify minority classes and assign equal importance to all classes during
training. Balancing the training set often requires data augmentation techniques, which
involve generating synthetic data or variations of existing samples.

In this study, the images in the dataset were divided into three subsets for training
the CNNs model:

• Training set (80%): Used to enable the model to learn underlying patterns and
fea-ture representations within the data.

47

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

Plant Disease Train Validation Test

Apple Apple scab 630 621 629
Black rot 620 615 621
Cedar apple rust 275 258 268
Healthy 1645 1603 1642

Blueberry Healthy 1201 1487 1501
Cherry Healthy 683 116 846

Powdery mildew 1052 1048 1051
Cercospora leaf spot Gray leaf spot 513 506 512

Corn Common rust 1192 1188 1191
Healthy 1162 1142 1156
Northern Leaf Blight 985 974 978

Grape Black rot 1180 1142 1177
Esca (Black Measles) 1383 1359 1382
Healthy 423 417 420
Leaf blight 1076 1061 1070

Orange Haunglongbing (Citrus greening) 5507 4238 5506
Peach Bacterial spot 2296 2286 2297

Healthy 360 345 355
Pepper Bacterial spot 997 985 989

Healthy 1477 1448 1471
Potato Early blight 1000 987 990

Healthy 152 135 146
Late blight 1000 987 990

Raspberry Healthy 371 365 369
Soybean Healthy 5090 5087 5088
Squash Powdery mildew 1835 1817 1832
Strawberry Healthy 456 446 455

Leaf scorch 1109 1102 1106
Bacterial spot 2127 2105 2109
Early blight 1000 987 990
Healthy 1590 1581 1591
Late blight 1908 1897 1904

Tomato Leaf Mold 952 948 951
Septoria leaf spot 1769 1742 1771
Spider mites (Two-spotted spider mite) 1676 1664 1673
Target Spot 1404 1390 1392
Tomato mosaic virus 373 365 372
Tomato Yellow Leaf Curl virus 5357 5355 5356

48

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

• Validation set (10%): Employed during training to monitor model performance,
tune hyperparameters, and mitigate overfitting by assessing the model’s generaliza-
tion ability on unseen data.

• Test set (10%): Reserved for evaluation after training and validation are com-
plete, providing an independent and unbiased measure of the model’s predictive
performance on entirely new inputs, thus indicating its generalization capacity.

3.4.2 Image Preprocessing Techniques

Image preprocessing refers to a series of systematic operations applied to raw images
before feeding them into machine learning or computer vision models. The main goals are
to en-hance image quality, normalize data, and make the images consistent for improved
model performance and accuracy. The common preprocessing techniques used in this
work include:

3.4.2.1 Data Augmentation

Data augmentation enriches the training dataset by artificially generating new sam-
ples, increasing the diversity of features the model can learn. The applied techniques fall
into two categories:

• Photometric modifications: Adjustments in hue, saturation, contrast, and lumi-
nance.

• Geometric transformations: Operations such as rotation, translation, resizing,
shear-ing, zooming, and flipping.

In this study, three augmentation techniques-horizontal flipping, vertical flipping, and
rotation were applied to enhance data diversity and improve model robustness against
spatial variations.

3.4.2.2 Resizing

Resizing ensures all input images have uniform dimensions before being fed into the
neural network. Most convolutional neural networks (CNNs), including AlexNet and
ResNet, require fixed input sizes such as 224×224 pixels.

49

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.4.2.3 Normalization

Normalization standardizes pixel values, typically scaling them to a fixed range such
as [0, 1] or [-1, 1]. This process, often implemented as zero-mean and unitvariance scaling,
accelerates convergence, prevents numerical instability, and stabilizes training.

3.4.3 Implementation of Data Pipelines Using PyTorch

The following describes the setup of training, validation, and testing data pipelines us-
ing TensorFlow’s Keras ImageDataGenerator, a utility that loads images from directories
and applies real-time data augmentation.

• Batch size: Set to 16, balancing memory efficiency and training speed. Smaller
batches can improve generalization but may slow training, while larger batches may
converge faster but risk poorer generalization.

• Image Data Generator: Provides real-time data augmentation, which enhances
model robustness and reduces overfitting by creating modified versions of training
images dynamically.

For the training data generator (train_datagen), the following parameters were ap-
plied:

• rescale=1./255: Normalizes pixel values from [0, 255] to [0, 1].

• rotation_range=10: Randomly rotates images up to Â ± 10 degrees, improving
orientation invariance.

• shear_range=0.2: Applies random shearing transformations simulating different
viewing angles.

• zoom_range=0.2: Randomly zooms into images, aiding scale invariance.

• horizontal_flip=True: Randomly flips images horizontally, appropriate here since
leaf orientation typically does not alter disease characteristics.

The training data generator loads images from the directory ./output/train, resizing
them to 224×224 pixels, using the batch size of 16, and producing one-hot encoded labels
for multi-class classification.

For validation data, a similar generator (val_datagen) was configured, although typ-
ically data augmentation is not applied to validation sets to ensure consistent evaluation

50

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

conditions. Here, identical augmentation parameters were used, which may affect the
accuracy of validation performance estimates.

For test data, the generator uses only rescaling (normalization) without augmenta-
tion, ensur-ing evaluation on unmodified images for an accurate assessment of real world
performance.

1 batch_size =16
2 from tensorflow .keras. preprocessing .image import

ImageDataGenerator
3 train_datagen = ImageDataGenerator (rescale =1./255 ,

rotation_range =10, shear_range =0.2 , zoom_range
=0.2 , horizontal_flip =True)

4 train_generator = train_datagen . flow_from_directory (
5 './ output/train ',
6 #R'C:\ Malik\LI3C\Projet de recherche \PNR 2022\

databases \taiwan\taiwan\data augmentation \Train ',
7 target_size =(224 ,224),
8 batch_size =batch_size ,
9 classes = classes_train ,

10 class_mode ='categorical '
11)
12 val_datagen = ImageDataGenerator (rescale =1./255 ,

rotation_range =10, shear_range =0.2 , zoom_range
=0.2 , horizontal_flip =True)

13 val_generator = val_datagen . flow_from_directory (
14 './ output/val ',
15 target_size =(224 , 224) ,
16 batch_size =batch_size ,
17 classes = classes_train ,
18 class_mode ='categorical '
19)
20 val_datagen = ImageDataGenerator (rescale =1/255)
21 test_generator = val_datagen . flow_from_directory (
22 './ output/test ',
23 target_size =(224 , 224) ,
24 batch_size =batch_size ,
25 classes = classes_train ,

51

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

26 class_mode ='categorical '
27)

3.5 CNN Model Development

This section presents the development of convolutional neural network (CNN) models
tailored for plant disease detection. CNNs are well-suited for image classification tasks
due to their ability to automatically extract hierarchical spatial features from raw image
data. We explore two architectures: a custom Deep CNN and a simpler CNN model, both
implement-ed using PyTorch.

The following subsections detail the architectures, layer configurations, and training
methodologies employed in these CNN models.

3.5.1 Deep CNN

The following code defines a custom deep Convolutional Neural Network (CNN) ar-
chitecture implemented in PyTorch. Below is a detailed analysis of its structure and
functionality:

The DeepCNN class inherits from nn. Module, which is the base class for all neural
network modules in PyTorch. This inheritance provides essential functionality such as
parameter tracking and utilities to move the model between CPU and GPU.

Within the _init_method, the model is initialized with num_classes as a parameter,
which determines the number of output nodes in the final classification layer. (Note: This
parameter is not explicitly used in the visible portion of the code.)

The network is organized into two main components: features and classifier. This
design pattern is common in CNN architectures where the features section is responsible
for extracting hierarchical representations from images, and the classifier interprets these
features to produce class predictions.

The features section is implemented as an nn.Sequential container, facilitating a clean
and modular definition of the network layers. It consists of four convolutional blocks, each
following a similar structure:

1. First block:

• nn.Conv2d(3, 64, 3, padding=1): A 2D convolutional layer accepting 3 input
channels (RGB image), producing 64 output feature maps using a 3×3 kernel
with padding of 1 pixel on all sides to maintain spatial dimensions.

52

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

• nn.ReLU(): Applies the Rectified Linear Unit activation, introducing non-
linearity.

• Another convolutional layer with 64 input and 64 output channels.

• Another nn.ReLU() activation.

• nn.MaxPool2d(2): Max pooling with a 2×2 window, reducing spatial dimen-
sions by half to 112×112 (assuming input images of size 224×224).

2. Second block: Similar to the first block but increases the number of feature chan-
nels from 64 to 128, with spatial dimensions further reduced to 56×56.

3. Third block: Increases feature channels from 128 to 256, with spatial dimensions
reduced to 28v28.

4. Fourth block: Increases feature channels from 256 to 512, producing feature maps
of size 14×14.

The classifier section begins with:

• nn.Dropout(0.5): Randomly zeroes 50% of the inputs during training, serving as a
regularization technique to reduce overfitting.

• nn.Linear(512 * 14 * 14, 512): A fully connected layer that flattens the feature maps
(512 channels × 14 × 14 spatial size) and reduces them to a 512-dimensional feature
vector.

• nn.ReLU(): Applies another non-linear activation.

1 def __init__ (self , num_classes):
2 super(DeepCNN , self). __init__ ()
3 self. features = nn. Sequential (
4 nn.Conv2d (3, 64, 3, padding =1) , nn.ReLU (),
5 nn.Conv2d (64, 64, 3, padding =1) , nn.ReLU (),
6 nn. MaxPool2d (2) , # (64, 112, 112)
7
8 nn.Conv2d (64, 128, 3, padding =1) , nn.ReLU (),
9 nn.Conv2d (128 , 128, 3, padding =1) , nn.ReLU (),

10 nn. MaxPool2d (2) , # (128 , 56, 56)
11
12 nn.Conv2d (128 , 256, 3, padding =1) , nn.ReLU (),

53

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

13 nn.Conv2d (256 , 256, 3, padding =1) , nn.ReLU (),
14 nn. MaxPool2d (2) , # (256 , 28, 28)
15
16 nn.Conv2d (256 , 512, 3, padding =1) , nn.ReLU (),
17 nn.Conv2d (512 , 512, 3, padding =1) , nn.ReLU (),
18 nn. MaxPool2d (2) , # (512 , 14, 14)
19)
20 self. classifier = nn. Sequential (
21 nn. Dropout (0.5) ,
22 nn.Linear (512 * 14 * 14, 512) ,
23 nn.ReLU (),
24 nn.Linear (512 , num_classes)
25)
26
27 def forward (self , x):
28 x = self. features (x)
29 x = x.view(x.size (0) , -1)
30 return self. classifier (x)

3.5.2 Simple CNN

The SimpleCNN class defines a straightforward convolutional neural network architec-
ture implemented using PyTorch. It is designed for image classification tasks and accepts
an input of RGB images, producing predictions over a specified number of output classes
(num_classes).

Architecture Overview

• Inheritance:

The class inherits from nn.Module, the base class for all neural network models in
PyTorch. This provides the infrastructure needed for parameter management and
forward propagation.

• Features Extraction (self.features):

This sequential container consists of three convolutional blocks. Each block includes:

– A 2D convolutional layer (nn.Conv2d) that applies learnable filters to
extract spatial features from input images.

54

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

– A ReLU activation (nn.ReLU) introducing non-linearity, allowing the model
to learn complex patterns.

– A max pooling layer (nn.MaxPool2d) that downsamples the spatial di-
mensions by a factor of 2, reducing computational load and providing transla-
tion invariance.

Specifically, the blocks are:

– First block: Takes the 3-channel RGB input and outputs 32 feature maps of
size 224×224 (same padding). After max pooling, the spatial size is reduced
to 112×112.

– Second block: Converts 32 feature maps to 64, maintaining spatial size
112×112 before max pooling, then reducing to 56×56.

– Third block: Expands 64 feature maps to 128, with spatial dimensions re-
duced from 56×56 to 28×28 after pooling

• Classification Head (self.classifier):

This section transforms the extracted features into final class predictions:

– nn.Dropout(0.5): Randomly zeroes 50% of inputs during training to prevent
overfitting.

– nn.Linear(128 * 28 * 28, 256): Fully connected layer that flattens the feature
maps (128 channels × 28 height × 28 width = 100,352 features) into a vector
of size 256.

– nn.ReLU(): Activation function adding non-linearity.

– nn.Linear(256, num_classes): Final fully connected layer mapping to the out-
put classes.

Forward Pass (forward method)

– The input tensor × (a batch of images) is passed through the feature extrac-
tion layers. × The resulting tensor is flattened into a 2D shape (batch_size,
features) using x.view(x.size(0), -1) to prepare for the fully connected layers.
× The flattened features are passed through the classifier to produce the final
output logits corresponding to each class.

55

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

1 import torch
2 import torch.nn as nn
3
4 class SimpleCNN (nn.Module):
5 def __init__ (self , num_classes):
6 super(SimpleCNN , self). __init__ ()
7 self. features = nn. Sequential (
8 nn.Conv2d (3, 32, 3, padding =1) , # (32, 224, 224)
9 nn.ReLU (),

10 nn. MaxPool2d (2) , # (32, 112, 112)
11
12 nn.Conv2d (32, 64, 3, padding =1) ,# (64, 112, 112)
13 nn.ReLU (),
14 nn. MaxPool2d (2) , # (64, 56, 56)
15
16 nn.Conv2d (64, 128, 3, padding =1) ,# (128 , 56, 56)
17 nn.ReLU (),
18 nn. MaxPool2d (2) , # (128 , 28, 28)
19)
20 self. classifier = nn. Sequential (
21 nn. Dropout (0.5) ,
22 nn.Linear (128 * 28 * 28, 256) ,
23 nn.ReLU (),
24 nn.Linear (256 , num_classes)
25)
26
27 def forward (self , x):
28 x = self. features (x)
29 x = x.view(x.size (0) , -1)
30 return self. classifier (x)

56

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.6 Using Pre-trained Models (DenseNet121, AlexNet,

and VGG19) for Transfer Learning

3.6.1 DenseNet121

DenseNet-121 is a deep convolutional neural network consisting of 121 layers charac-
terized by dense connectivity, where each layer receives inputs from all preceding layers.
This de-sign improves feature propagation and alleviates the vanishing gradient problem.
DenseNet-121 employs 1×1 and 3×3 convolutions combined with ReLU activation and
transition layers that reduce feature map dimensions, resulting in high performance and
computational effi-ciency [GeeksforGeeks, 2025].

Fig 3.2: DenseNet121 architecture

3.6.2 AlexNet

Proposed by Krizhevsky et al. in 2012 [PyTorch Team, 2024], AlexNet is a pioneering
convolutional neural net-work model that popularized deep learning for image recogni-
tion and transfer learning. It comprises five convolutional layers followed by three fully
connected layers, utilizing ReLU activations for non-linearity and max-pooling layers to
reduce spatial dimensions and pre-vent overfitting. AlexNet laid the foundation for sub-
sequent advanced architectures such as VGG, GoogLeNet, and ResNet.

57

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

Fig 3.3: Architecture AlexNet [Krizhevsky et al., 2012].

3.6.3 VGG19

VGG-19 is a deep convolutional neural network composed of 19 layers, including 16
convo-lutional layers that consistently use 3×3 convolutional filters, ReLU activation func-
tions, and max-pooling operations to extract and compress image features. The network
ends with fully connected layers and a Softmax layer for classification. Its simple and
uniform architecture has made it a benchmark model, valued for ease of understanding
and implementation [GeeksforGeeks, 2025].

Fig 3.4: VGG19 architecture [GeeksforGeeks, 2025].

58

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.7 Choice of Hyperparameters

The configuration of the model depends on carefully selected hyperparameters that
significantly influence the training process, model performance, and generalization capa-
bility. Table 3.3 summarizes the key hyperparameters used in this work, along with their
descriptions and specific roles.

Parameter Value Description Usage
IMG_SIZE (224, 224) Input image size, resized

before being fed into the
model.

Ensures uniform input dimen-
sions, balancing computational
cost and visual detail.

BATCH_SIZE 64 Number of training sam-
ples processed in each
batch.

Affects memory usage and
training stability; larger size
may improve convergence
speed.

epochs 1000 Number of complete
passes through the train-
ing dataset.

Defines training duration; a
high value may improve learn-
ing but risks overfitting.

loss categorical_crossentropy Measures the error be-
tween predicted and ac-
tual labels.

Appropriate for multi-class
classification problems.

optimizer Adam (lr = 0.0003, weight_decay = 0.01) Adaptive optimization
algorithm with regular-
ization.

Dynamically adjusts learning
rates; L2 regularization re-
duces overfitting.

Table 3.3: Hyperparameters used in this work.

These hyperparameters were selected based on prior research and empirical testing to
balance training efficiency, accuracy, and generalization. For instance, the use of a high
epoch count is controlled by applying L2 regularization via the optimizer’s weight decay,
reducing the risk of overfitting. The batch size of 64 was found to be optimal for the
available hardware, providing a good trade-off between speed and memory usage.

3.8 Evaluation indices

To comprehensively assess the performance of the plant disease classification models,
several evaluation metrics are employed. These metrics provide insights into different as-
pects of model accuracy, reliability, and robustness, especially in multi-class classification
contexts [Gupta et al., 2012].

59

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.8.1 Accuracy

Accuracy is the most intuitive performance measure, defined as the ratio of correctly
predicted instances to the total number of instances evaluated. It reflects the overall
effectiveness of the model in classifying samples correctly.

Accuracy = TP + TN

TP + TN + FP + FN
(3.1)

where TP is true positives, TN is true negatives, FP is false positives, and FN is
false negatives.

3.8.2 Precision

Precision measures the proportion of correctly predicted positive observations among
all predicted positives. It indicates how many of the positive predictions were actually
correct, reflecting the model’s ability to avoid false positives.

Precision = TP

TP + FP
(3.2)

3.8.3 Recall (Sensitivity)

Recall, or sensitivity, quantifies the proportion of actual positives that were correctly
identified by the model. It captures the model’s ability to detect all relevant cases and is
particularly important when missing positive instances is costly.

Recall = TP

TP + FN
(3.3)

3.8.4 Score

The F1 Score is the harmonic mean of precision and recall, providing a balanced
measure that accounts for both false positives and false negatives. It is especially useful
when the class distribution is imbalanced.

F1 = 2 × Precision × Recall
Precision + Recall (3.4)

These evaluation metrics collectively offer a robust framework to evaluate classification
models, ensuring a nuanced understanding of their predictive performance beyond simple
accuracy.

60

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.9 Performance Evaluation and Results

This section presents a detailed analysis of the performance of the developed convolu-
tional neural network models, as well as a comparison with existing state-of-the-art
architec-tures and their transfer learning variants. The evaluation encompasses multi-
ple datasets (training, validation, and test sets) and employs several key performance
metrics, including loss, accuracy, precision, recall, F1 score, processing time, number of
trainable parameters, and storage requirements.

The analysis begins with a comprehensive comparison between the proposed Deep
CNN and Simple CNN models, highlighting their respective strengths in terms of pre-
dictive accuracy and computational efficiency. Subsequently, the performance of these
models is bench-marked against prominent pre-trained networks such as DenseNet121,
AlexNet, and VGG19, along with their transfer learning adaptations.

This evaluation framework provides critical insights into the trade-offs between model
complexity, resource consumption, and classification performance, thereby guiding the
selection of an optimal model tailored to specific application requirements and deployment
environments.

3.9.1 Performance of Deep CNN and Simple CNN

Table 3.4 compares the performance of two convolutional neural network models, Deep
CNN (CNN1) and Simple CNN (CNN2), across the training, validation, and test
datasets. Multiple evaluation metrics are used, including loss, accuracy, precision, recall,
F1 score, processing time, number of trainable parameters, and storage space require-
ments. This com-parison aims to identify which model is better suited for deployment
depending on whether performance or efficiency is prioritized.

Model Performance Indicators Training Validation Test Trainable Parameters (millions) Storage (MB)

Deep CNN

Loss 0.0561 0.0498 0.0177

56086119 219.09

Accuracy 98.23 99.51 99.53
Precision 97.83 99.55 99.37
Recall 97.66 99.48 99.30
F1 Score 97.73 99.51 99.33
Time 39.68 s 10.09 s 10.08 s

Simple CNN

Loss 0.0564 0.0440 0.0274

25793639 100.76

Accuracy 98.14 99.33 99.26
Precision 97.74 99.18 99.22
Recall 97.60 99.04 98.94
F1 Score 97.66 99.10 99.07
Time 9.66 h 6.5 s 6.5 s

Table 3.4: Comparison of model performance, size, and training time

61

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

In terms of performance, Deep CNN consistently outperforms Simple CNN across
all phases. During the test phase, Deep CNN achieves an accuracy of 99.53%, slightly
higher than Simple CNN’s 99.26%. Its F1 score (99.33%) is also superior, indicating a
better balance between precision and recall. Moreover, Deep CNN exhibits a lower test
loss (0.0177 vs. 0.0274), suggesting more confident and accurate predictions. These results
position Deep CNN as the more reliable model when maximum predictive performance is
required.

However, Simple CNN demonstrates significant advantages in terms of efficiency. It
contains only 25.79 million trainable parameters compared to Deep CNN’s 56.08 mil-
lion, making it substantially lighter. The storage space required for Simple CNN is less
than half that of Deep CNN (100.76 MB vs. 219.09 MB), which is beneficial for deploy-
ment in environments with limited memory or storage, such as mobile or edge devices.
Additionally, Simple CNN’s inference time is shorter (6.5 seconds vs. 10.08 seconds),
making it more suitable for real-time applications. Although Simple CNN’s training time
is considerably longer, this process is typically executed once and is less critical in many
deployment scenarios.

Overall, Deep CNN is ideal when accuracy and performance are the highest priorities,
espe-cially in critical applications like medical diagnostics or security systems. Conversely,
Simple CNN is preferable for practical deployment where computational resources are
constrained and efficiency outweighs the marginal gains in accuracy. The choice between
these models should be informed by the specific requirements of the application, weighing
factors such as performance, model size, and inference speed.

Fig 3.5: Loss and Accuracy Evolution of the Deep CNN Model.

62

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

Fig 3.6: Loss and Accuracy Evolution of the SimpleCNN Model.

3.9.2 Comparison with existing models (DenseNet121, AlexNet
and VGG19)

Table 3.5 presents a comprehensive comparison of multiple neural network architec-
tures including DenseNet121, AlexNet, and VGG19 along with their transfer learning
(TL) variants, as well as the previously developed Deep CNN (CNN1) and Simple CNN
(CNN2) models. The comparison evaluates their performance across training, valida-
tion, and test datasets using metrics such as loss, accuracy, precision, recall, F1 score,
processing time, number of trainable parameters, and storage space requirements.

63

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

Table 3.5: Comparison of CNN Architectures and Transfer Learning Variants

Model Metric Train Valid. Test Params (M) Storage (MB)

DenseNet121

Loss 0.0149 0.0149 0.0073

6.99 27.91

Accuracy 99.51 99.51 99.86
Precision 99.41 99.41 99.86
Recall 99.44 99.44 99.82
F1 Score 99.43 99.43 99.84
Time 33.91 h 10.01 s 10.03 s

TL DenseNet121

Loss 0.1270 0.0490 0.0462

0.54 29.88

Accuracy 95.91 98.39 98.55
Precision 95.22 98.08 98.27
Recall 94.52 97.73 98.14
F1 Score 94.83 97.85 98.18
Time 13.68 h 9.2 s 9.4 s

AlexNet

Loss 0.1919 0.0856 0.1214

61.10 238.68

Accuracy 94.85 97.87 97.61
Precision 3.67 3.81 3.78
Recall 3.65 3.80 3.79
F1 Score 3.65 3.80 3.78
Time 7.28 h 11.4 s 11.4 s

TL AlexNet

Loss 0.2505 0.1988 0.0970

4.74 28.16

Accuracy 92.73 97.20 96.97
Precision 92.18 96.11 96.28
Recall 89.91 96.60 96.06
F1 Score 90.94 96.26 96.07
Time 7.23 h 6.5 s 6.5 s

VGG19

Loss 0.1744 0.0579 0.0515

139.73 545.83

Accuracy 95.94 98.37 98.49
Precision 95.18 98.09 98.10
Recall 94.56 97.93 98.05
F1 Score 94.82 97.99 98.05
Time 61.2 h 13.6 s 13.9 s

TL VGG19

Loss 2.2685 2.0369 3.1090

104.88 488.04

Accuracy 49.21 57.37 19.34
Precision 39.74 48.32 2.39
Recall 31.90 38.18 5.23
F1 Score 31.62 37.75 2.55
Time 49.4 h 15.1 s 15.2 s

Deep CNN

Loss 0.0561 0.0498 0.0177

56.09 219.09

Accuracy 98.23 99.51 99.53
Precision 97.83 99.55 99.37
Recall 97.66 99.48 99.30
F1 Score 97.73 99.51 99.33
Time 39.68 s 10.09 s 10.08 s

Simple CNN

Loss 0.0564 0.0440 0.0274

25.79 100.76

Accuracy 98.14 99.33 99.26
Precision 97.74 99.18 99.22
Recall 97.60 99.04 98.94
F1 Score 97.66 99.10 99.07
Time 9.66 h 6.5 s 6.5 s

The results reveal several insights:

• DenseNet121 is the top-performing architecture, achieving approximately 99% across

64

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

all major metrics (accuracy, precision, recall, and F1 score) during training, valida-
tion, and testing.

• Its transfer learning variant (TL DenseNet121) offers a substantial reduction in
train-able parameters from nearly 7 million to approximately 544,000 while maintain-
ing high test accuracy (98.5%). This efficiency makes it attractive for resource-
constrained deployments.

• AlexNet and its transfer learning variant demonstrate moderate performance with
ac curacies between 92% and 98%, though the original AlexNet shows unusually low
precision and recall values, possibly due to a data labeling or evaluation issue.

• VGG19 exhibits more variable results, with high training and validation accuracy
but suffers from extremely poor performance in its transfer learning form (TL
VGG19), which achieves only about 19% accuracy on the test set.

• Storage requirements vary widely, with VGG19 demanding the most space (545.83
MB) and TL DenseNet121 requiring the least (29.88 MB).

• The previously developed Deep CNN and Simple CNN models perform compet-
itively, with Deep CNN nearing DenseNet121’s performance, while Simple CNN
offers a good trade off between accuracy and efficiency.

This comparison underscores DenseNet121’s effectiveness in balancing performance
and model size, and illustrates how transfer learning can drastically reduce computational
de-mands while preserving much of the original model’s accuracy.

65

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

(a)

(b)

(c)

Fig 3.7: Accuracy and loss graphs on the PlantVillage database for: (a) DenseNet121, (b) AlexNet, (c) VGG19.

66

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

(a)

(b)

(c)

Fig 3.8: Accuracy and loss graph in PlantVillage database of : (a) TL DenseNet121, (b) TL AlexNet, (c) TL VGG 19.

67

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

3.10 Comparison with traditional methods

This section presents a comparative analysis of the proposed CNN models against
traditional and recent deep learning approaches reported in the literature for plant disease
detection. The comparison focuses on key performance metrics such as loss, accuracy,
precision, recall, and F1 score to highlight improvements over previous methods.

The reviewed studies encompass a range of architectures, including MobileNet-V2
with attention mechanisms, Inception-based models enhanced by residual connections and
channel-wise attention, Vision Transformers (ViT), and various CNN-based approaches
such as VGG19 and ShuffleNet variants. Transfer learning adaptations of these models are
also considered, reflecting current trends in leveraging pre-trained networks to improve
performance and reduce training costs.

Our models, DeepCNN and SimpleCNN, developed in 2025, demonstrate superior
or comparable performance relative to these prior methods, achieving accuracy and F1
scores exceeding 99% while maintaining a balanced trade-off between model complex-
ity and computational efficiency. Notably, the SimpleCNN model attains high accuracy
with a simpler architecture, suggesting practical advantages for deployment in resource-
constrained environments.

This comparative evaluation underscores the ongoing progress in plant disease detec-
tion technologies and validates the effectiveness of our CNN-based approaches within this
evolving landscape.

Author Year Technique Loss Accuracy Precision Recall F1 Score

Chen et al. [Chen et al., 2021b] 2021 MobileNet-V2, at-
tention mechanism

0.017 96.68 97.49 95.83 96.64

Zhao et al. [Zhao et al., 2022] 2022 Inception, residual,
modified chan-
nelwise attention
module

0.12 97.28 97.49 97.06 97.27

Thakur et al. [Thakur et al., 2022b] 2022 PlantXViT 0.04 98.86 98.90 98.81 98.85
TABBAKH et al. [Tabbakh and Barpanda, 2023] 2023 VGG19 followed by

ViT
– 98.81 98.72 98.76 98.73

Iftikhar et al. [Iftikhar et al., 2024] 2024 E-CNN Model – 98.17 – – –
Bouacida et al. [PyTorch Team, 2024] 2024 DL-based system – 94.04 95.05 93.95 95.50
Rizwan et al. [Rizwan et al., 2024] 2024 Proposed model us-

ing ShuffleNet
– 96.86 96.81 96.86 96.78

Shafik et al. [Shafik et al., 2024] 2024 PDDNet-LVE model – 97.79 – – 97.07
Ouamane et al. [Ouamane et al., 2025] 2024 optimized ViT

model
0.009 99.77 99.61 99.67 99.64

Our 2025 DeepCNN 0.0177 99.53 99.37 99.30 99.33
Our 2025 SimpleCNN 0.0274 99.26 99.22 98.94 99.07

Table 3.6: Performance comparison across various plant disease detection research works.

68

CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL ANALYSIS

When compared to models from prior years, the 2025 models (DeepCNN and Sim-
pleCNN) exhibit notable improvement :

• Performance: Accuracy increased significantly from 96.68% in 2021 to 99.53% in
2025.

• Timeline progression:

– 2021: 96.68% (Chen et al.)

– 2022: 97.28-98.86% (Thakur et al., Zhao et al.)

– 98.81% in 2023 (TABBAKH et al.)

– 2024: 94.04-99.77% (different models)

– 2025: according to our models, 99.26-99.53%

• Metric balance: The 2025 models exhibit superior reliability by maintaining an
excellent balance between precision and recall (>99% for DeepCNN).

• Architectural efficiency: Compared to the intricate models from prior years, Sim-
pleCNN (2025) achieves 99.26% accuracy with a simpler architecture.

Our 2025 models exhibit a remarkable optimisation of the complexity/performance
trade-off, reflecting ongoing advancements in the field of plant disease detection.

3.11 Conclusion

The evaluation of both DeepCNN and SimpleCNN models demonstrated their
high effectiveness in plant disease detection, achieving accuracy values of 99.53% and
99.26%, respectively. While SimpleCNN offers a computationally efficient architecture
with only 25.8 million parameters, DeepCNN consistently outperformed it across all key
performance metrics, including precision (99.37%) and loss (0.0177), while maintaining
a reasonable inference time of 10.08 seconds. These results establish DeepCNN as the
superior model in terms of robustness and predictive reliability.

Future research should focus on expanding dataset diversity to better capture real-
world agricultural variability, optimizing model architectures for deployment on resource
constrained devices, integrating Explainable AI techniques to improve model interpretabil-
ity, and conducting extensive validations under diverse environmental and operational
conditions to ensure practical applicability.

69

General Conclusion
This research makes a significant scientific contribution to the field of smart agriculture

by addressing critical challenges in automated plant disease detection through advanced
deep learning methodologies. Our findings demonstrate that integrating optimized convo-
lutional neural network architectures with enhanced data preprocessing and augmentation
strategies can achieve exceptionally high classification accuracy while maintaining com-
putational efficiency suitable for real-world deployment.

Through rigorous evaluation across diverse datasets, our models established new perfor-
mance benchmarks in plant disease classification, providing a reliable foundation for future
research in this domain. The proposed standardized evaluation frameworks and com-
parative architectural analyses offer practical guidance for selecting context-appropriate
models, thereby improving the reproducibility and scalability of AI-driven agricultural
solutions.

The practical implications of this work are substantial. The optimized models are
well-suited for integration into intelligent agricultural systems, including mobile diagnostic
applications, drone-based field surveillance platforms, and IoT-enabled sensor networks.
These applica-tions facilitate real-time monitoring and early disease detection, shifting
the paradigm from reactive to proactive crop management, and thereby contributing to
sustainable farming practices and enhanced global food security.

Despite these advancements, several limitations warrant further investigation. Ex-
isting da-tasets remain limited in their representation of the full spectrum of real-world
agricultural variability. We emphasize the importance of developing comprehensive, geo-
graphically di-verse datasets through collaboration with farming communities. Addition-
ally, ensuring mod-el generalization across diverse environmental conditions and reducing
computational de-mands for deployment in resource-constrained settings are critical chal-
lenges for future re-search. Prioritizing lightweight architectures and real-time inference
capabilities will be es-sential to enable large-scale deployment.

In conclusion, this study highlights the transformative potential of artificial intelli-
gence in plant health management not only for accurate disease detection but also as a
cornerstone for comprehensive crop optimization systems. The frameworks and findings
presented here lay the groundwork for future innovations in intelligent agriculture, advanc-
ing the global mission of sustainable and efficient food production through scientifically

70

grounded, AI-powered technologies.

Bibliography

[Con, 2020] (2020). Convolutional layer. https://commons.wikimedia.org/wiki/File:
Conv_layer.png. Accessed: August 2020. (pages iv, 34).

[Max, 2020] (2020). Max pooling. https://commons.wikimedia.org/wiki/File:Max_
pooling.png. Accessed: August 2020. (pages iv, 35).

[Typ, 2020] (2020). Typical CNN. https://commons.wikimedia.org/wiki/File:
Typical_cnn.png. Accessed: August 2020. (pages iv, 32).

[icv, 2022] (2022). Icvt: Inception-based cnn with vision transformer for plant disease
identification. Computers and Electronics in Agriculture, 197:106976. Accessed via
ScienceDirect. (page 39).

[lit, 2024] (2024). Lite-mdc: A lightweight multi-kernel depthwise convolution network
for plant disease recognition. Smart Agricultural Technology, 8:100590. Accessed via
ScienceDirect. (page 39).

[Alzoubi et al., 2023] Alzoubi, S., Jawarneh, M., Bsoul, Q., Keshta, I., Soni, M., and
Khan, M. A. (2023). An advanced approach for fig leaf disease detection and classifica-
tion: Leveraging image processing and enhanced support vector machine methodology.
Open Life Sciences, 18(1):20220764. (page 25).

[Arnal Barbedo, 2013] Arnal Barbedo, J. G. (2013). Digital image processing techniques
for detecting, quantifying and classifying plant diseases. SpringerPlus, 2(1):660. (page
25).

[Barbedo, 2016] Barbedo, J. G. A. (2016). A review on the main challenges in automatic
plant disease identification based on visible range images. Biosystems engineering,
144:52–60. (pages 19, 21).

[Chen et al., 2021a] Chen, J., Zhang, D., Suzauddola, M., and Zeb, A. (2021a). Identi-
fying crop diseases using attention embedded mobilenet-v2 model. Applied Soft Com-
puting, 113:107901. (page 2).

72

https://commons.wikimedia.org/wiki/File:Conv_layer.png
https://commons.wikimedia.org/wiki/File:Conv_layer.png
https://commons.wikimedia.org/wiki/File:Max_pooling.png
https://commons.wikimedia.org/wiki/File:Max_pooling.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png

[Chen et al., 2021b] Chen, J., Zhang, D., Zeb, A., and Nanehkaran, Y. A. (2021b). Iden-
tification of rice plant diseases using lightweight attention networks. Expert Systems
with Applications, 169:114514. (page 68).

[Chester, 1933] Chester, K. S. (1933). The problem of acquired physiological immunity
in plants. The Quarterly Review of Biology, 8(3):275–324. (page 21).

[Conversation, 2020] Conversation, T. (2020). De nouvelles technologies pour mieux
dÃ©tecter les maladies des plantes. Accessed on May 25, 2025. (pages 17, 18).

[Dordas, 2008] Dordas, C. (2008). Role of nutrients in controlling plant diseases in sus-
tainable agriculture. a review. Agronomy for sustainable development, 28:33–46. (page
21).

[Dumoulin, 2020] Dumoulin, V. (2020). A comprehensive guide to convolutional neural
networks: The eli5 way. Accessed: August 2020. (pages iv, 33).

[GeeksforGeeks, 2025] GeeksforGeeks (2025). Geeksforgeeks | your all-in-one learning
portal. ConsultÃ© le 25 mai 2025. (pages 1, 57, 58).

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016).
Deep learning, volume 1. MIT press Cambridge. (pages 29, 38).

[Gupta et al., 2012] Gupta, D., Malviya, A., and Singh, S. (2012). Performance analysis
of classification tree learning algorithms. International Journal of Computer Applica-
tions, 55(6). (page 59).

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778. (page 38).

[Iftikhar et al., 2024] Iftikhar, M., Kandhro, I. A., Kausar, N., Kehar, A., Uddin, M., and
Dandoush, A. (2024). Plant disease management: A fine-tuned enhanced cnn approach
with mobile app integration for early detection and classification. Artificial Intelligence
Review, 57(7):167. (page 68).

[Kamilaris and Prenafeta-Boldú, 2018] Kamilaris, A. and Prenafeta-Boldú, F. X. (2018).
Deep learning in agriculture: A survey. Computers and electronics in agriculture,
147:70–90. (page 25).

[Khan et al., 2021] Khan, P., Kader, M. F., Islam, S. R., Rahman, A. B., Kamal, M. S.,
Toha, M. U., and Kwak, K.-S. (2021). Machine learning and deep learning approaches

for brain disease diagnosis: principles and recent advances. Ieee Access, 9:37622–37655.
(pages iv, 30).

[Khandagale and Others, 2025] Khandagale, Y. and Others (2025). Fourcropnet: A resid-
ual attention-based model for multi-crop plant disease detection. Journal of Agricultural
AI Research. In press. (page 39).

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Ima-
genet classification with deep convolutional neural networks. Advances in neural infor-
mation processing systems, 25. (pages 1, 38, 58).

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436–444. (pages 31, 38).

[LeCun et al., 1988] LeCun, Y., Haffner, P., Bottou, L., Bengio, Y., Bottou, L., Haffner,
P., Howard, P., Simard, P., Bengio, Y., LeCun, Y., et al. (1988). Object recognition
with gradient-based learning. Feature Grouping, 66:233–240. (page 32).

[LeCun et al., 2010] LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional
networks and applications in vision. In Proceedings of 2010 IEEE international sym-
posium on circuits and systems, pages 253–256. IEEE. (pages 33, 34, 35, 37).

[Li et al., 2021] Li, L., Zhang, S., and Wang, B. (2021). Plant disease detection and
classification by deep learning-a review. IEEE Access, 9:56683–56698. (page 27).

[Love The Garden, 2024] Love The Garden (2024). ReconnaÃ®tre les maladies
vÃ©gÃ©tales les plus courantes. ConsultÃ© le 25 mai 2025. (pages 10, 11, 12).

[Love The Garden, 2025] Love The Garden (2025). Reconnaitre les maladies vegetales les
plus courantes. Consulte le 23 mai 2025. (pages iv, 6, 7, 8, 9, 11, 12, 13).

[Malik, 2020] Malik, S. (2020). Understanding convolutional neural networks (cnn). Ac-
cessed: August 2020. (page 36).

[Masko and Hensman, 2015] Masko, D. and Hensman, P. (2015). The impact of imbal-
anced training data for convolutional neural networks. (page 32).

[Mohyuddin et al., 2024] Mohyuddin, G., Khan, M. A., Haseeb, A., Mahpara, S.,
Waseem, M., and Saleh, A. M. (2024). Evaluation of machine learning approaches
for precision farming in smart agriculture system-a comprehensive review. IEEE Ac-
cess. (page 2).

[Nair, 2023] Nair, K. P. (2023). Biodiversity in Agriculture. Springer. (page 2).

[Ouamane et al., 2025] Ouamane, A., Chouchane, A., Himeur, Y., Miniaoui, S., Atalla,
S., Mansoor, W., and Al-Ahmad, H. (2025). Optimized vision transformers for superior
plant disease detection. IEEE Access. (page 68).

[Palanisamy and Kandasamy, 2022] Palanisamy, P. and Kandasamy, R. (2022). 14-dcnn:
A deep convolutional neural network for plant disease detection with optimized param-
eters. Computers and Electronics in Agriculture, 198:107075. (page 39).

[Paszke, 2019] Paszke, A. (2019). Pytorch: An imperative style, high-performance deep
learning library. arXiv preprint arXiv:1912.01703. (page 45).

[Peng et al., 2021] Peng, J., Jury, E. C., Dönnes, P., and Ciurtin, C. (2021). Ma-
chine learning techniques for personalised medicine approaches in immune-mediated
chronic inflammatory diseases: applications and challenges. Frontiers in pharmacology,
12:720694. (pages iv, 28, 29).

[PyTorch Team, 2024] PyTorch Team (2024). Pytorch: The open language of ai. Con-
sultÃ© le 25 mai 2025. (pages 44, 57, 68).

[Reis-Pereira et al., 2024] Reis-Pereira, M., Mazivila, S. J., Tavares, F., dos Santos, F. N.,
and Cunha, M. (2024). Early plant disease diagnosis through handheld uv-vis trans-
mittance spectrometer with dd-simca one-class classification and mcr-als bilinear de-
composition. Smart Agricultural Technology, 9:100631. (page 14).

[Rizvi, 2020] Rizvi, M. S. Z. (2020). Learn image classification using cnn: Convolutional
neural networks with 3 datasets. Accessed: August 2020. (page 31).

[Rizwan et al., 2024] Rizwan, M., Bibi, S., Haq, S. U., Asif, M., Jan, T., and Zafar, M. H.
(2024). Automatic plant disease detection using computationally efficient convolutional
neural network. Engineering Reports, 6(12):e12944. (page 68).

[Salman et al., 2023] Salman, Z., Muhammad, A., Piran, M. J., and Han, D. (2023).
Crop-saving with ai: latest trends in deep learning techniques for plant pathology.
Frontiers in Plant Science, 14:1224709. (pages 24, 26).

[Shafik et al., 2024] Shafik, W., Tufail, A., De Silva Liyanage, C., and Apong, R. A. A.
H. M. (2024). Using transfer learning-based plant disease classification and detection
for sustainable agriculture. BMC Plant Biology, 24(1):136. (page 68).

[Shang et al., 2024] Shang, Z., Chauhan, V., Devi, K., and Patil, S. (2024). Artificial
intelligence, the digital surgeon: Unravelling its emerging footprint in healthcare–the
narrative review. Journal of Multidisciplinary Healthcare, pages 4011–4022. (pages iv,
30).

[Shoaib et al., 2023] Shoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., Ullah, A., Alenezi,
F., Gechev, T., Hussain, T., and Ali, F. (2023). An advanced deep learning models-
based plant disease detection: A review of recent research. Frontiers in Plant Science,
14:1158933. (page 26).

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
(page 38).

[Sladojevic et al., 2016] Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., and Ste-
fanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf
image classification. Computational intelligence and neuroscience, 2016(1):3289801.
(pages iv, 32).

[Streets, 1972] Streets, R. B. (1972). The Diagnosis of Plant Diseases: A Field and
Laboratory Manual Emphasizing the Most Practical Methods for Rapid Identification.
University of Arizona Press, Tucson, AZ. (page 20).

[SuperDataScience Team, 2020] SuperDataScience Team (2020). Convolutional neural
networks: Step 3: Flattening. Accessed: August 2020. (pages 1, 36).

[Tabbakh and Barpanda, 2023] Tabbakh, A. and Barpanda, S. S. (2023). A deep features
extraction model based on the transfer learning model and vision transformer "tlmvit"
for plant disease classification. IEEE Access, 11:45377–45392. (page 68).

[Thakur et al., 2022a] Thakur, A., Sharma, D., and Singh, M. (2022a). Plantxvit: Ex-
plainable vision transformer for plant disease classification with lime and grad-cam.
Expert Systems with Applications, 200:116903. (page 39).

[Thakur et al., 2022b] Thakur, P. S., Khanna, P., Sheorey, T., and Ojha, A. (2022b).
Explainable vision transformer enabled convolutional neural network for plant disease
identification: Plantxvit. arXiv preprint arXiv:2207.07919. (page 68).

[Wikipedia contributors, 2020] Wikipedia contributors (2020). RÃ©seau neuronal convo-
lutif. Accessed: August 2020. (pages 34, 37).

[Yağ and Altan, 2022] Yağ, İ. and Altan, A. (2022). Artificial intelligence-based robust
hybrid algorithm design and implementation for real-time detection of plant diseases
in agricultural environments. Biology, 11(12):1732. (page 25).

[Yao et al., 2023] Yao, J., Tran, S. N., Sawyer, S., and Garg, S. (2023). Machine learning
for leaf disease classification: data, techniques and applications. Artificial Intelligence
Review, 56(Suppl 3):3571–3616. (page 24).

[Yasin and Fatima, 2023] Yasin, A. and Fatima, R. (2023). On the image-based detec-
tion of tomato and corn leaves diseases: An in-depth comparative experiments. arXiv
preprint arXiv:2312.08659. (page 39).

[Zhang et al., 2020] Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2020). Dive into
deep learning: The convolutional layer. Accessed: August 2020. (pages iv, 34).

[Zhao et al., 2022] Zhao, Y., Sun, C., Xu, X., and Chen, J. (2022). Ric-net: A plant
disease classification model based on the fusion of inception and residual structure and
embedded attention mechanism. computers and Electronics in Agriculture, 193:106644.
(page 68).

	General Introduction
	Fundamentals of Plant Disease
	Introduction
	Types of Plant Diseases
	Spider Mites
	Rust
	Powdery Mildew
	Bacterial Fire Blight
	Marsonia (Black Spot Disease)
	Botrytis (Gray Mold)
	Scab
	Iron Deficiency

	Symptoms and Indicators of Plant Diseases
	Spider Mites Treatment
	Rust Treatment
	Powdery Mildew Treatment
	 Bacterial Fire Blight Treatment
	 Marsonia (Black Spot Disease) Treatment
	Botrytis (Gray Mold) Treatment
	Scab Treatment
	 Iron Deficiency Treatment

	Role of Technology in Plant Disease
	Biosensors in Plant Disease Detection
	Sensing Plant Diseases with Technology
	Visualizing Plant Diseases

	Challenges in Identifying Plant Diseases
	Extrinsic Factors
	Intrinsic Factors

	Conclusion

	Machine Learning in Plant Disease Detection
	Introduction
	Overview of Machine Learning in Agriculture
	Importance of Automation in Plant Disease Detection
	Fundamentals of Machine Learning and Deep Learning
	Definition and Key Concepts
	 Supervised vs. Unsupervised Learning
	Introduction to Deep Learning

	Convolutional Neural Networks (CNNs) for Image Classification
	Basics of CNNs
	Architectural Framework of CNNs
	The Advantage of Convolutional Neural Networks
	The Effectiveness of CNNs in Image Classification
	Overfitting and Underfitting in CNN Models

	State of the Art for Plant Disease Detection Using CNNs
	Conclusion

	Implementation and Experimental Analysis
	Introduction
	Development Environment
	PyTorch

	System Architecture
	Dataset Selection and Preprocessing
	Description of Selected Dataset (PlantVillage)
	Image Preprocessing Techniques
	Implementation of Data Pipelines Using PyTorch

	CNN Model Development
	Deep CNN
	Simple CNN

	Using Pre-trained Models (DenseNet121, AlexNet, and VGG19) for Transfer Learning
	DenseNet121
	AlexNet
	VGG19

	Choice of Hyperparameters
	Evaluation indices
	Accuracy
	Precision
	Recall (Sensitivity)
	Score

	Performance Evaluation and Results
	Performance of Deep CNN and Simple CNN
	Comparison with existing models (DenseNet121, AlexNet and VGG19)

	Comparison with traditional methods
	Conclusion

	Conclusion Générale

