

Formal Specification of Software Product Lines:

A Graph Transformation Based Approach

Khaled Khalfaoui
Department of Computer Science, University of Jijel, Jijel, Algeria

kh_khalfaoui@yahoo.fr

Allaoua Chaoui
MISC Laboratory, Department of Computer Science, University of Constantine, Algeria

a_chaoui2001@yahoo.com

Cherif Foudil
Department of Computer Science, University of Biskra, Biskra, Algeria

foud_cherif@yahoo.fr

Elhillali Kerkouche
Department of Computer Science, University of Jijel, Jijel, Algeria

elhillalik@yahoo.fr

Abstract—A Software Product Line is a set of software
products that share a number of core properties but also
differ in others. Differences and commonalities between
products are typically described in terms of features. A
Feature Diagram is a hierarchically structured model that
defines the features and their dependencies, while a
Featured Transition System is used concisely to model
behaviour of each product. In this context, formal modeling
and verification are critical for managing the inherent
complexity of systems with a high degree of variability. This
work presents a formal specification of Software Product
Line models based on rewriting logic. We propose an
automatic framework for translating featured transition
system and feature diagram into an equivalent Maude
specification. It is based on meta-modelling and graph
transformation. The power of this translation resides in the
fact that the proposed formalization preserves source
models semantics. An illustrative example is presented. The
approach allows various verification and analysis activities.
The obtained results are significant.

Index Terms—Software Product Line, Featured Transition
System, Feature Diagram, Specification, Verification,
Rewriting Logic, Maude, Graph Transformation

I. INTRODUCTION

Software product line engineering is an approach for
developing families of software systems. A software
product line (SPL) can be defined as a set of software
products sharing a common set of features. The main
advantage over traditional approaches is that all products
can be developed and maintained together.

Usually, SPLs are modeled with Featured Transition
Systems (FTS) [1] and Feature Diagrams (FDs) [2]. FTS
allows concisely modeling the behaviour of each product
in the SPL with a single parameterized model to be

instantiated differently for each product. Whereas, FDs
permit to model the variability of the SPL. The FD
expresses the set of valid products. Since products are
combinations of features, formal modeling and
verification are critical for managing the inherent
complexity of SPLs. With a high degree of variability, to
manage the inherent complexity of the SPL models,
formal modeling and verification are necessary. In this
work, we are interested in rewriting logic (RL) [3].

The RL is a flexible and expressive semantic
framework for the specification of systems behavior. It
can be used for specifying a wide range of systems in
various application fields. Several languages based on RL
have been designed and implemented. Maude [4] is
widely used. It is considered as one of languages in which
many different kinds of systems can be naturally
specified. In addition to its power of expression, Maude
offers many possibilities of validation and verification.
For validation, it supports simulation in a flexible way.
For verification purpose, Maude supports model checking.

FTS and FD models can be expressed in RL. This
formalization aims to use the formal analysis techniques
developed for RL to analyze these models. In order to
generate the Maude specification, we have proposed
in [5] a manual approach. The main idea is that FTS
transitions and its conditions firing are translated into
conditional rewriting rules. The right hand side and the
left hand side of each rule are FTS states. The condition
is used to verify the presence and the priority of the
feature.

For the systems verification purpose, graph
transformation techniques are widely used. The aim is to
transform system graphical models into their formal
equivalent specifications supporting assessment and

2518 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2518-2532

analysis of characteristics. This task is performed by
executing a graph grammar. A graph grammar [6] is
composed of rules. Each one has a graph in their left and
right hand sides (LHS and RHS). Rules are compared
with an input graph called host graph. If a matching is
found between the LHS of a rule and a subgraph in the
host graph, then the rule can be applied and the matching
subgraph of the host graph is replaced by the RHS of the
rule. Furthermore, each rule may also have application
conditions that must be satisfied, as well as actions to be
performed when the rule is executed. A graph rewriting
system iteratively applies rules of grammar in the host
graph, until no rules are applicable.

In this paper we propose an approach for analyzing
SPL models where we develop an automatic framework
based on graph transformation to translate FTS and FD
diagrams into an equivalent Maude specification. To this
end, we have defined meta-models for FTS and FD
formalisms. Then the meta-modelling tool AToM3 [7] is
used to automatically generate a visual modeling tool for
each formalism according to its proposed meta-model.
We have also proposed a graph grammar which performs
the transformation of these models into semantically
equivalent Maude specification. Our tool allows drawing
FTS and FD models and transforming them automatically
into their equivalent in RL. Once the equivalent Maude
code is generated, the LTL model checker can be used. In
order to perform the analysis using Maude’s LTL model
checker, we have to generate predicates and properties in
Maude language.

This paper is organized as follows. Section 2 outlines
some related works. In section 3, we recall some basic
notions about FTS and FD diagrams. We give an
overview of RL and Maude language in section 4. In
section 5, we give an overview of graph transformation
and the AToM3 tool. In Section 6, we first introduce the
proposed approach to specify FTS models in Maude
language then define the meta-models and the graph
grammars and finally present the verification process. In
section 7, we illustrate our framework through an
example. Finally, section 8 concludes the paper and gives
some perspectives of this work.

II. RELATED WORKS

An SPL is a set of software intensive systems sharing a
common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that
are developed from a common set of core assets in a
prescribed way [8]. SPLs are used for the development of
embedded and critical systems. Formal modelling and
model checking of SPL behaviour is thus vital for quality
assurance.

Over the past few years, several modelling and
analysis techniques have been published. Larsen et al. [9]
propose modal I/O automata to model variability in
component interfaces and discuss compatibility between
these interfaces. In a similar effort, Fischbein et al. [10]
propose modal transition systems (MTS) to model SPLs
and examine the notions of behavioural conformance in
MTS that are suitable for SPLE. Fantechi and Gnesi [11]

extended their approach by introducing explicit
variability operators into MTS. In [12] Asirelli et al.
apply deontic logic to express both static and behavioral
aspects of product families.

These approaches even though they are formal, do not
provide mechanisms for the verification of temporal
properties. To correct this problem, Li et al. [13] propose
compositional approach for CTL model checking of
features. A feature automaton can be attached to two
precisely defined interface states of the base system.
In [14] Lauenroth et al. propose to use automata labelled
with features and give an algorithm for CTL model
checking over automata. The algorithms they propose do
not attempt to explore the state space in an efficient
manner. Classen et al. in [1] has proposed an algorithm
that can treat this problem more efficiently. They had
addressed the model checking problem for SPLs and
linear temporal logic (LTL) by introducing FTSs, a
mathematical formalism to express the behaviour of all
products of the SPL in one model.

Nowadays, meta-modelling and graph grammars are
widely used for modelling and analysis of complex
systems in the area of software engineering. There are
many researches working on the topic related to model-
driven engineering (MDE). In [15], it has been proposed
a transformation between Statecharts and Petri Nets.
In [16] the authors have proposed a tool that formally
transforms dynamic behaviours of systems expressed
using UML Statechart and collaboration diagrams into
their equivalent colored petri nets (CPN) models. To
make the analysis complete and robust, they have used
the obtained CPN models to generate automatically their
equivalent description in the input language of the Petri
net analyzer INA. In [17], for analysis and verification,
UML activity diagrams have been translated into an
equivalent Communicating Sequential Processes (CSP)
specification using an approach based on graph
transformations.

The current paper presents a first attempt towards a
formal specification of Software Product Line models
based on graph transformation and RL. The SPL products
are modeled by means of FTS and FD diagrams.

III. VARIABILY MODELING

For SPLs modeling, several techniques have been
proposed. In this work, we are interested in FTS and FD
diagrams. FD is used to express the structural view of the
SPL. On the other side, FTS is used to describe the
combined behaviour of the entire system family.

A. Feature Diagram
FD, feature diagram, is a graphical representation

which shows a hierarchically structured set of features of
the product line. Features are represented as nodes and
relationships between features as links. Possible
relationships between features are usually categorized as
“And” (all subfeatures must be included), “Or” (one or
more subfeatures can be included), “Alternative” (only
one subfeature can be included), “Mandatory” (required
feature), and “Optional” (potential feature). A feature

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2519

© 2012 ACADEMY PUBLISHER

diagram is typically represented as a tree where primitive
features are leaves and compound features are interior
nodes.

In Software Product Line Engineering (SPLE), systems
are developed in families and differences between
members of a family are generally represented by
features. A set of features can be seen as the specification
of a product. An FD is a concise representation for the
valid products of an SPL. As an example, consider the
FD of a vending machine SPL (inspired from [1])
presented in Fig.1.

Consider four variants of this machine:

{v, b, s}, {v, b, s, t}, {v, b, s, c}, {v, b, s, f}
 P1 P2 P3 P4

The first variant P1 sells soda. The second P2 sells soda or
tea. The third one P3 lets the buyer cancel her purchase
after entering a coin. The last P4 offers free drinks.

B. Featured Transition System
FTS, featured transition system, is a formalism

designed to describe the combined behaviour of a whole
system family. FTS is transition system (TS) in which
transitions are labelled with features of an FD in addition
to being labelled with actions [1]. A transition is part of a
product if and only if its feature is part of the product. In
FTSs there can be priorities between transitions to model
the case in which a feature removes, rather than adds,
transitions. The FTS for the vending machine example is
given in Fig.2.

Intuitively, the FTS captures impact of all features in a
single diagram.
Priority
A transition s → s1 labelled with f1 has priority over
s → s2 labelled with f2, written: s → s1 > s → s2,
iff f2 is an ancestor of f1 in FD.

A common modeling pattern is that the behavior of a
child feature overrides the behavior of its parents. In
order to obtain the behavior of a particular product, it is
necessary to project the FTS on the set of features
corresponding to a valid product. This transformation is
entirely syntactical and consists in removing (i) all
transitions linked to features that are not in this product,
and (ii) all transitions that are overridden by higher
priority transitions. The result of the projection is an
ordinary TS.

Diagrams (a), (b), (c) and (d) of Figure 3 represent
respectively the behavior of products P1, P2, P3 and P4.

IV. REWRITING LOGIC AND MAUDE

RL is a computational logic proposed by Meseguer as
a unified logic for concurrency [3], which builds upon
equational logic by extending it with rewrite rules. In RL,
each concurrent system can be specified easily by a
rewriting theory. A rewrite theory is defined as a 4-tuple
(Σ, E, L, R). The signature (Σ, E) is an equational theory,
L is a set of labels, and R is a set of possibly conditional
labeled rewrite rules that are applied modulo the
equations E. An important consequence of the RL
definition is that the rewrite theory can be viewed as an
executable specification of the concurrent system that it
formalizes. The state is represented by an algebraic term,

Figure 3. SPL products

open

close

serveSoda
soda

pay change

P1 { v, b, s } (a)

skip

serveSoda soda free

P4 { v, b, s, f } (d)

open
tea serveTea

close

serveSoda
soda

pay change

P2 { v, b, s, t } (b)

return

open
cancel

close

serveSoda
soda

pay change

P3 { v, b, s, c } (c)

Figure 2. Featured Transition System

7 81 2 3

4

5

6

open / v

serveSoda / s

serveTea / t

soda / s

tea / t

pay / v change / v

Free / f

cancel / c return / c

skip / f

close / v

Figure 1. Feature Diagram

 Products:
• Basic: { v , b , s } .
• Tea and Soda : { v , b , s , t } .
• Cancel Function : { v , b , s , c } .
• Soda for Free: { v , b , s , f } .

VendingMachine v

Beverages b FreeDrinks f CancelPurchase c

Soda s Tea t Legend :

optional feature

mondatory feature

alternative features

2520 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

the transition becomes a rewriting rule and the distributed
structure is expressed as an algebraic structure. For more
information on the subject see [3].

Maude is a specification and programming language
based on RL [18]. It integrates an equational style of
functional programming with RL computation. Maude’s
implementation has been designed with the explicit goals
of supporting executable specification and formal
methods applications. Because of its efficient rewriting
engine, it is considered as an excellent tool. It is simple,
expressive and efficient. Three types of modules are
defined in Maude: The functional modules, the system
modules and the object oriented modules. In this work,
we will use only functional and system modules.

• Functional Modules: Functional modules define
data types and operations on them by means of
equational theories. By using equations like
simplification rules, each expression could be
evaluated to its reduced form called the canonical
form. The result is the same regardless of the order
of application of the equations. This ensures that
the initial algebra and the canonical term algebra
of the functional module are isomorphic, and
therefore that the module's mathematical and
operational semantics coincide [18]. From a
programming point of view, a functional module
is an equational-style functional program with user
definable syntax in which a number of sorts, their
elements, and functions on those sorts are defined.

• System Module: The system module defines the
dynamic behavior of a system. It specifies a
rewrite theory. A rewrite theory has sorts, kinds,
and operators, and can have three types of
statements: equations, memberships, and rules, all
of which can be conditional [18]. A rewriting rule
specifies a local concurrent transition which can
proceed in a system. The execution of such
transition, specified by the rule, can take place
when the left part of a rule matches to a portion of
the global state of the system and the condition of
the rule is valid. This type of module augments the
functional modules by the introduction of
rewriting rules. From a programming point of
view, a system module is a declarative-style
concurrent program with user definable syntax.

In addition, Maude also integrates a model checker.
Model-checking is an automatic method for deciding if
specification model, expressed as a concurrent transition
system, satisfies a set of properties. Model checking
supported by the Maude’s platform uses LTL [19] logic
for its simplicity and the well-defined procedures of
decision which it offers. The Maude LTL model checker
is efficient (for more details, see [20]).

V. GRAPH TRANSFORMATION

A. Graph Grammar
Graphs are well-known and frequently used to

represent complex objects and diagrams [6]. Rules have
proved to be extremely useful for describing

computations by local transformation. Graph
transformation (also known as graph rewriting) combines
the advantages of both into an individual computational
paradigm.

A graph transformation rule (Fig.4) is a special pair of
pattern graphs where the instance defined by the left hand
side (LHS) is substituted with the instance defined by the
right hand side (RHS) when applying such rule. Rules are
local in a sense that they handle only a small amount of
model elements, and therefore the designer does not need
to concentrate on the entire transformation problem.

Graph transformation rules are usually called graph

grammars. These are a generalization of Chomsky
grammars for graphs [21]. In the rewriting process, rules
are evaluated against an input graph, called the host graph.
If a matching is found between the LHS of a rule and a
subgraph of the host graph, then the rule can be applied.
When a rule is applied, the matching subgraph of the host
graph is replaced by the RHS of the rule. Rules can have
applicability conditions, as well as actions to be
performed when the rule is applied. Some graph rewriting
systems have control mechanisms to determine the order
in which rules are checked. Generally, rules are ordered
according to a priority assigned by the user and are
checked from the higher priority to the lower priority.
After a rule matching and subsequent application, the
graph rewriting system starts again the search. The graph
grammar execution ends when no more matching rules
are found.

The use of small subgraphs on the LHS of graph
grammar rules, as well as using attributes, can greatly
reduce the search space. This is the case with the vast
majority of the used formalisms in this field of research.
There are three kinds of transformations. The first is
model execution (defining the operational semantics of
the formalism). The second is model transformation into
formalism. A special case of this is when the target
formalism is textual. The third one is model optimization,
for example reducing its complexity.

Graph grammars are a natural, formal, visual,
declarative and high-level representation of the
computation.

B. Meta-modelling
In the field of graph transformation, the meta-

modelling technique is widely used to describe the
different kinds of formalisms needed in the specification
and design of systems. To define a meta-model, we have
to provide two syntaxes. On one hand, the abstract formal

Figure 4. Graph transformation rule

RHS LHS
Host Graph Host Graph

Apply Ri

Transformation Rule Ri

::=

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2521

© 2012 ACADEMY PUBLISHER

syntax to denote the formalism's entities, their attributes,
their relationships and the constraints. To do this, we
usually use a graphical modelling notations such as UML
class diagrams or Entity-Relationship Diagrams. On the
other hand, the concrete graphical syntax to define
graphical appearance of these entities and relationships.
Once the meta-model is defined, meta-modelling
environments are able to automatically produce a visual
interactive tool for the defined formalism. The advantage
of this technique is that the generated tool accepts only
syntactically correct models according to the formalism
definition. For more details see [22].

C. AToM3
AToM3 [7] is a visual tool for multi-formalism

modeling and meta-modelling. Being implemented in
Python [23], it is able to run without any change on all
platforms for which an interpreter for Python is available.
The AToM3 meta-layer allows a high-level description of
models using the Entity-Relationship (ER) formalism
extended with the ability to express constraints. Based on
these descriptions, AToM3 can automatically generate
tools to visually manipulate (create and edit) models in
the formalisms of interest [22].

The AToM3 graph rewriting system uses graph
grammars to visually guide the procedure of model
transformation. Model transformation refers to the
automatic process of converting, translating, or
modifying a model of a given formalism into another
model that might or might not be in the same formalism.

In AToM3, rules are ordered according to a user-
assigned priority, and are checked from higher to lower
priority. In the LHS of rules, the attributes of the nodes
must be provided with attribute values which will be
compared with the nodes attributes of the host graph
during the matching process. These attributes can be set
to <ANY> or have specific values. In order to specify the
mapping between LHS and RHS, nodes in both LHS and
RHS are identified by means of labels (numbers). If a
node label appears in the LHS of a rule, but not in the
RHS, then the node is deleted when the rule is applied.
Conversely, if a node label appears in the RHS but not in
the LHS, then the node is created when the rule is applied.
Finally, if a node label appears both in the LHS and in the
RHS of a rule, the node is not deleted. If a node is created
or maintained by a rule, we must specify in the RHS the
attributes' values after the rule application. In AToM3
there are several possibilities. If the node label is already
present in the LHS, the attribute value can be copied
(<Copied>). We also have the option to assign it a
specific value by giving the Python code to calculate this
value (<Specified>), possibly using the value of other
attributes. In addition, AToM3 allows the use of global
attributes available in all of the graph grammar rules as
well as constraints.

The combined use of meta-modelling and graph
grammars taken in AToM3 allow users not only to benefit
from the advantages of both (meta-modelling and graph
grammars) but also to model with multi-paradigm
Modeling [22]. The AToM3 has been proven to be a
powerful tool.

VI. OUR APPROACH

In this section, we present our technique used for the
specification and verification of the SPL models.

Our approach consists of a process with three steps:
The first step consists of meta-modelling FTS and FD
formalisms and to generate automatically a visual
modeling tool for each of them using AToM3. The second
step is to define the graph transformation grammars. The
last one is the analysis of the generated Maude
specification.
Before describing in detail the previous steps, it is
preferable to begin by introducing the idea behind the
specification of FTS models in Maude language.

A. Formalization
On one hand, to manipulate features, we define a

functional module Feature_FunctMod that contains the
declaration of a new type called Feature and the
definition of operations used for manipulating sets of
features, as well as equations implementing these
operations. On the other hand, for specification and
treatments of FTS states, we define a second functional
module FTS_FunctMod. Classical TS states are
represented as constants of a new sort TsState. We define
the operation "<_;_;_>" to specify the current FTS state.
The first parameter of this operation is a constant of the
sort TsState. The second one is the set of all features
specific to the considered product. The last one is
Boolean indicating whether or not this state is final. This

Figure 5. The general outline of the proposed approach

Textual Maude
Specification

Verification

Properties

FD Model

Tool Generation Tool Generation

FTS Model

Error Error

FTS Meta-Model

FD Meta-Model

Graph Grammars

2522 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

latter is introduced to stop the evolution of FTS once a
final state reached.
FTS transitions firing and its conditions are translated
into conditional rules. In our approach, a rewrite rule has
a structure of the form:

crl < Trans > : FtsState_From → FtsState_To if Pres&Prior .

where:

- FtsState_From and FtsState_To: are respectively
the left and the right hand sides of the rule. These
are two FTS states.

- Trans: is the transition name.
- Pres&Prior: is a Boolean term that specifies the

condition of the transition Trans.

There are two possible configurations:
• Configuration1: when there is only one output

transition from a state (Fig.6).

This transition is enabled, when the feature fi is in the set
of selected features of the SPL considered product. This
transition is specified in Maude language as follows:

crl < Trani > : < Statei , ListSelectFeats ; false > - >

 < Statej ; ListSelectFeats ; flag >
 if IsIn (fi , ListSelectFeats).

where:
- ListSelectFeats: is the set of all features specific

to the considered product.
- flag: is the Boolean indicating whether the Statej

is a final state or not.
- IsIn (fi , ListSelectFeats): Boolean function

indicating whether the feature fi is in a
ListSelectFeats or not.

• Configuration2: when there is more than one

output transition from a state (Fig.7).

Here, the transition Transi in Fig.6 is enabled when two
conditions are simultaneously satisfied:

• The feature fi is in ListSelectFeats.

• fi has a higher priority over all the features fk
(1≤k≤n and k ≠ i) if fk is in ListSelectFeats.

As shown in section II, the behaviour of a child feature in
FD overrides the behaviour of its parents. For this reason,
we propose to use a set containing all descendants of the
feature fi. This transition is specified in Maude language
as follows:

crl < Transi > : < Statei ; ListSelectFeats ; true > - >
 < Statej ; ListSelectFeats ; flag >
 if IsIn (fi , ListSelectFeats) and
 (not IsIn (fk , ListSelectFeats) or
 (IsIn (fk , ListSelectFeats) and not IsIn (fk , SetOfDesc_fi))).

where:

- SetOfDesc_fi: the set of descendants of the
feature fi.

B. Automatic Translation and Verification
In the following, we present the three steps of our
approach.

Step1: Meta-modelling
The meta-formalism used is the Entity-Relationship

diagram. To implement the previous translation, we
propose to add some additional attributes in our meta-
models.

1- FD meta-model:

FD models consist of nodes and links between these
nodes. We propose a meta-model called FD_MetaModel
with an entity FD-Feature representing features and a
relationship FD-HasChild for links as shown in Fig.8.

FD-Feature Entity: It has two attributes: its name and the
set of all its descendents called Set_DescFeats. Like
shown in the previous section, this latter will be used in
the specification of the FTS transitions.

Figure 8. FD meta-model

.

.

Trans1 / f1

State j

Transi / fi

Transn / fn

.

.

State i

.

.

Figure 7. Configuration2

State 1

State n

State i State j

Transi / fi .

.

.

.

Figure 6. Configuration1

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2523

© 2012 ACADEMY PUBLISHER

FD-HasChild Relationship: It represents the family
relationship between two features. The destination feature
is a child of the source feature. No attribute is used.

2- FTS meta-model:
An FTS model (Fig.2) consists of states and transitions.

So, we propose a meta-model called FTS-MetaModel
with only one entity TS-state describing states, and one
relationship FTS-Transition describing transitions (Fig.9).

TS-State Entity: Each state has three attributes: its
identifier (name) and two Booleans indicating respectively
whether this state is an initial state (Initial_State) or is a
final state (Final_State).
FTS-Transition Relationship: It represents the transition
from a source state to a destination state. Each transition
has three attributes. The first is its identifier (name). The
second is the required feature (required_Feat). The third
is a set of features (Set_ReqFeatCTs). This latter is
proposed to contain all the features required in the
transitions leaving the same state as this transition. It will
be used to translate transitions of the second
configuration.

To fully define our meta-models, we have also
specified the graphical appearance of each entity of the
FTS and FD formalisms according to its appropriate
notation. Given our meta-models, we use AToM3 tool to
generate the visual modelling environments for these
formalisms (FTS and FD). More precisely, AToM3
generates, for each formalism, a palette of buttons
allowing the user to manipulate the entities defined in the
meta-model. As AToM3 is a visual tool for multi-
formalism modelling [7], we employ a user interface with
the two generated tools at the same time (see Fig.19).

Step2: Defining the graph grammars
In order to make the transformation easier, we propose

to use three complementary graph grammars (see Fig.10).
Briefly, the first graph grammar generates the functional
module Feature_FunctMod and produces the set
Set_DescFeats for each feature in the FD diagram. The
second graph grammar generates the functional module
FTS_FunctMod and works out for each feature of the
FTS model the attribute Set_ReqFeatCTs. The last

one generates the system module containing the rewriting
rules called FTS-SysMod.

The three graph grammars are composed of

transformation rules. In addition to the LHS and RHS,
each rule is provided with:
- A priority.
- Conditions which must be satisfied to apply this rule.
In the execution of each grammar, the rewriting system
iteratively applies matching rules in this grammar to the
host graph, until no more rules are applicable. Rules are
tried in ascending order.
1st GG: Gen_FeatFunctMod.
The Feature_FunctMod module consists of three parts:

Figure 9. FTS meta-model

Figure 11. The functional module Feature_FunctMod

 fmod Feature_FunctMod is

 sort Feature FeatSet .
 subsort Feature < FeatSet .

 ops f1 f2 …. fi …… fn : -> Feature [ctor] .

 op empty : -> FeatSet [ctor] .
 op __ : FeatSet FeatSet -> FeatSet [ctor assoc id: empty] .
 op isEmpty : FeatSet -> Bool .
 op size : FeatSet -> Nat .
 op Isin : Feature FeatSet -> Bool .

 vars E E' : Feature .
 vars S S' : FeatSet .
 eq isEmpty(empty) = true .
 eq isEmpty(E S) = false .
 eq size(empty) = 0 .
 eq size(E S) = 1 + size(S) .
 eq Isin(E, empty) = false .
 eq Isin(E, E' S) = E == E' or Isin(E,S) .

 endfm

Part1

Part2
Part3

Figure 10. Transformation process

SPL Models
Feature

Di
Feature

Transition

1st 2nd

Feature Funct

Decorated Featured
Transition System

3rd

FTS FunctMFTS_SysM
d

Decorated Feature
Diagram

Maude specification

2524 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Gen_FeatFunctMod graph grammar has an initial action
which creates and opens a textual file to generate the
functional module Feature_FunctMod. At first, it
generates the first part (Part1). Then, it decorates all nodes
(features) in the FD model with an auxiliary attribute
called Visited. This later is used to determine whether the
node has been previously treated or not. Treatment begins
with the leaves. Each time the rewriting system locates a
leaf not yet visited, it adds his feature to the attribute
Set_DescFeats of its parent, and this leaf will be marked
as visited. Then, we move on to intermediate nodes. In
this case, the rewriting system only deals the nodes
whose children were all treated. To do this, we use
another temporary variable Count_PrChild in order to
count the number of treated children. Similarly, for each
node processed, we add the feature and its descendants to
the attribute Set_DescFeats of its parent, and it will be
marked as visited. At last, we mark the root node as
visited. At the same time, for each visited node the
feature is added to the text file to generate the second part
(Part2) of the functional module Feature_FunctMod. The
final action is used to generate the third part of the
functional module and to delete all used temporary
attributes.
The proposed graph grammar (Fig.12) is composed of
three rules.

These rules are described as follows:
Leaves-Processing (Priority 1): is applied to process all
leaves nodes. Each time, it locates a leaf node that has not
been previously visited to add its name attribute in the
Set_DescFeats attribute of its parent. Its Set_DescFeats
attribute is set empty. To process another node, this leaf
node will be marked as visited.
IntermediateNodeProcessing (Priority 2): is applied to
process nodes which are located between the root and the
leaves. At each iteration, it locates a node not yet visited
and whose all children have been visited. Its name
attribute and all its descendants will be added to its parent
Set_DescFeats attribute. To avoid this process once
again, it will be marked as visited.
RootProcessing(Priority 3): marks the root node as
visited. Its Set_DescFeats attribute is already calculated
by the second rule.

2nd GG: Gen_FTSFunctMod.

The functional module FTS_FunctMod consists of
three parts (see Fig.13).

This graph grammar has an initial action that creates

and opens a textual file to produce the functional module
FTS_FunctMod. At the beginning, in its initial action, it
generates the first part (Part1) and decorates the entities in
the FTS model with the used auxiliary attributes.

The idea behind the transformation is to pass through
the FTS states one by one. First, the treated state is added
to the textual file to generate the second part (Part2). Then,
we will treat all outgoing transitions. For each transition,
we produce the attribute Set_ReqFeatCTs passing
through the concurrent transitions one by one. To do this,
we use two attributes for states, Current and Visited. The
Current attribute is used to identify the state in the FTS
model for which we will treat all output transitions,
whereas the Visited attribute is used to indicate whether
this state has already been treated or not. For the
treatment of the outgoing transitions of the current state,
we use three attributes Current, Visited and
FeatureInserted. The Visited attribute is used to indicate
whether the attribute Set_ReqFeatCTs of this transition
has been produced or not. The Current attribute is used
to indicate whether it is the transition for which we
produce the attribute Set_ReqFeatCTs. The
FeatureInserted attribute is used to indicate whether the
feature required in this transition has been previously
added to the set Set_ReqFeatCTs of the current transition

Figure 13. The functional module FTS_FunctMod

 in Feature_FunctMod.txt
 fmod FTS_FunctMod is
 protecting Feature_FunctMod .

 sorts TsState FtsState .

 ops State1 State2 …….Statei …….Staten : -> TsState [ctor].

 op < _ ; _ ; _ > : TsState FeatSet Bool -> FtsState .
 endfm

Part2

Part1
Part3

::=

RHS

1

2

3

<COPIED>

<COPIED>

ACTION
Node(2).Visited =1
Node(1).Count_PrChild +=1
+ Python Code

LHS

CONDITION
Node(2).Visited == 0 and
node(2).out_connections_ ==[]

1

2

3

<ANY>

<ANY>

1- Leaves-Processing:

::=

3- RootProcessing:

CONDITION
Node (1).Visited == 0

LHS

1
<ANY>

RHS

1
<COPIED>

ACTION
Node (1). Visited = 1
+ Python Code

Figure 12. Gen_FeatFunctMod graph grammar

::=

1

2

3

<COPIED>

<COPIED>

RHS

ACTION
Node(2).Visited =1
Node(1).Count_PrChild +=1
+ Python Code

CONDITION
Node (2)..Visited == 0 and
Node(2).Count_PrChild ==
len(Node(2).out_connections_)

1

2

3

<ANY>

<ANY>

LHS
2- IntermediateNodeProcessing:

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2525

© 2012 ACADEMY PUBLISHER

or not. At last, the final action generates the third part of
the file and destroys all the used temporary attributes.

To carry out this process, we propose a graph grammar
composed of seven rules.

Add-CF2SetReqFeatCTs (priority 1): is applied to locate
an output transition from current state that has not been
previously visited in order to add its required feature to
the Set_ReqFeatCTs attribute of the transition in process.
Set-CurrentTransitionAsVisited (priority 2): Once all
features required in concurrent transitions are inserted in
Set_ReqFeatCTs attribute of the current transition, this
rule marks this latter as visited.
Initialisation-FeatureInsertedAttributes(priority 3): This
rule is applied to initialise the FeatureInserted attribute of
all output transitions of the current state to process
another transition which is not yet treated.
 SelectTransition: (priority 4): is applied to select a
transition that has not been previously processed and
which has the current state as source state to produce its
Set_ReqFeatCTs attribute. This rule treats the case where
there is more than one output transition from the current
state (Configuration2). Subsequently, rules N°1, N°2 and
N°3 will be triggered.
ProcessSingleOutputTRansition(priority 5): This rule treats
the case where the current transition is the single output
transition from the current state (Configuration1). It
marks this transition as visited and its attribute
Set_ReqFeatCTs is set empty. In this case, the fourth first
rules are not applied.
Set-ProcessedStateAsVisited (priority 6): This rule, once
all the output transition(s) of the current state have been

::=

 CONDITION
 Node(1).Current == 1 and Node(1).Visited == 0
 and Node(4).Current == 1 and
 Node(4).Visited ==0 and Node(5).Current == 0
 And Node(5). FeatureInserted ==0

1- Add-CF2SetReqFeatCTs:
LHS

1

5
2

<ANY>

3
4

<ANY>

<ANY>

<ANY>

<ANY> / <ANY>

<ANY> / <ANY>

RHS

 ACTION
 Node(5).FeatureInserted = 1
 + Python Code

1

5

2

<ANY>

3

4

<COPIED>

<COPIED>

<COPIED>

<COPIED> / <COPIED>

<COPIED> / <COPIED>

 2- Set-CurrentTransitionAsVisited:

RHS

ACTION
Node(3).Current = 0
Node(3).Visited = 1

1
3

2

<COPIED> / <COPIED>

<COPIED> <COPIED>

 CONDITION
 Node(1).Current == 1 and Node(1).Visited == 0
 and Node(3).Current == 1 and
 Node(3).Visited ==0

::=

LHS

1
3

2

<ANY> / <ANY>

<ANY> <ANY>

 3- Initialisation-FeatureInsertedAttributes:

RHS

ACTION
Node(3).FeatureInserted = 0

1
3

2

<COPIED> / <COPIED>

<COPIED> <COPIED>

 CONDITION
Node(1).Current == 1 and Node(1).Visited == 0
and Node(3).FeatureInserted ==1

::=

LHS

1
3

2

<ANY> / <ANY>

<ANY> <ANY>

::=

 CONDITION
 Node(1).Current == 1 and Node(1).Visited == 0
 and Node(4).Current ==0 and
 Node(4).Visited == 0

4- SelectTransition:

LHS

1

5
2

<ANY>

3
4

<ANY>

<ANY>

<ANY>

<ANY> / <ANY>

<ANY> / <ANY>

RHS

 ACTION
 Node(4).Current =1
 Node(4).Visited = 0

1

5

2

<ANY>

3

4

<COPIED>

<COPIED>

<COPIED>

<COPIED> / <COPIED>

<COPIED> / <COPIED>

::=

ACTION
Node(1).Current =0
Node(1).Visited =1

RHS

1

<COPIED>

6- Set-ProcessedStateAsVisited:

CONDITION
Node(1).Current == 1 and
Node(1).Visited == 0

1

 <ANY>

LHS

5- ProcessSingleOutputTRansition:
RHS

 ACTION
 Node(3).Visited = 1

1
3

2

<COPIED> / <COPIED>

<COPIED> <COPIED>

 CONDITION
 Node(1).Current == 1 and Node(1).Visited == 0
 and Node(3).Current ==0 and
 Node(3).Visited == 0

::=

LHS

1
3

2

<ANY> / <ANY>

<ANY> <ANY>

::=

ACTION
Node(1).Current =1
Node(1).Visited = 0
+ Python Code

RHS

1

<COPIED>

7- SelectState:

CONDITION
Node(1).Current == 0 and
Node(1).Visited == 0

1

 <ANY>

LHS

Figure 14. Gen_FTSFunctMod graph grammar

2526 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

processed, is applied in order to update temporary
attributes of the processed state and set it as visited.
SelectState(priority 7): is applied to select a state from
FTS model that has not been previously visited to
produce the Set_ReqFeatCTs attribute of all its output
transitions. The name of the selected state is added to the
text file to generate the second part (Part2) of the
functional module FTS_FunctMod.
3rd GG : Gen_SystemMod.

FTS_SysMod module (Fig.15) consists of two parts.
The first is standard for all SPL families, while the second
contains the rewriting rules specific to the studied SPL.
Each transition of the FTS model and its firing conditions
is translated into a conditional rule. The FTS transitions
will be treated one after another. The rewriting system
looks for a transition that is not already translated and
treats it, then passes it to another.

As proposed in our specification, each rewriting rule has a
structure of the form:

crl < Trans > : FtsState_From → FtsState_To if Pres&Prior .

To facilitate the publication of a rule, we propose to
divide it into two segments as shown in Fig.16.

The proposed Gen_SystemMod graph grammar has an
initial action that creates and opens a textual file. Then, it
generates the first part of the FTS_SysMod module and
decorates all the states and transitions elements in the
FTS model with temporary attributes to be used in the
conditions specified in the rules. To generate the second
part (Part2), we propose to visit and to generate the
specification of all FTS transitions one by one. For each
transition, the first segment is generated in the same way.
It contains the FTS_StateFrom and the FTS_StateTo. To
generate the second segment, there are two configurations.
If there are no other output transitions from its source
state, we have to generate just the code verifying the
presence of the required feature. Whereas, if there are
more that one output transitions from its source state, we
have to add the code specifying the priority conditions.
The feature required in the considered transition must
have higher priority over all features required in the
concurrent transitions which are already in the
Set_ReqFeatCTs attribute. This attribute has been
calculated by the second graph grammar. To do this, we
propose to use the following temporary attributes in
transitions elements: Visited to indicate whether the code

for this transition has been yet generated or not. Current
to identify the transition in the FTS model whose code
has to be generated. We add a third attribute called Step
to generate the firing conditions in two stages. We first
edit the presence condition (Step=1). Then, if it is the
second configuration, we edit the priority conditions
(Step=2). This process will be repeated for all other
transitions in the FTS model which are not yet visited.
The final action deletes all used auxiliary attributes.

To generate the module system, we propose a graph
grammar with four rules. These rules are shown in
Fig.17 and described as follows:
GenLHSandRHS-Rule (priority 1): is applied to generate
in the text file the left hand side and the right hand side of
the rewriting rule (segment1). This part contains the name
of the current transition (Trani), the source state (Statei),
the destination state (Statej) and the Boolean flag. If the
destination state’s attribute final is true, this Boolean is set
true. Otherwise, it is set false.
GenPresAndPriority-Conds (priority 2): is applied to
generate firing conditions. First, it generates in the text file
the appropriate Maude code for checking the presence of
the required feature (fi) in the set of selected features for
the considered product (ListSelectFeats). Then, in the case
of the second configuration (Set_ReqFeatCTs is not
empty), it generates the appropriate Maude code checking
the priority conditions. To do this, the rule runs through all
elements of Set_ReqFeatCTs attribute, and for each one it
checks whether it is one of the descendants of the required
feature or not. For this, we use the attribute Set_DescFeats
of the node feature in FD diagram that has the same name
as the required feature in the current transition (fi).
SetCurrentTransitionAsVisited (priority 3): it locates the
current transition whose processing has been terminated
and marks it as Visited.
Select-Transition (priority 4): is applied to locate an FTS
transition that has not been previously processed to
translate it into a rewriting rule and marks it as current.

Figure 15. The system module FTS_SysMod

 in FTS_FunctMod.txt
 mod FTS-SysMod is
 including FTS_FunctMod .
 var ListSelectFeats : FeatSet .

 Rule1.
 Rule2.
 .
 .
 .
 Rulen
 endm

Part1

Part2

Figure 16. Specification of an FTS transition in Maude

crl <Trani >:<Statei ; ListSelectFeats ; false> -> <Statej ; ListSelectFeats ; flag>

 if IsIn (fi , ListSelectFeats)

.

.

.

.

and (not IsIn (fk , ListSelectFeats)

or (IsIn (fk , ListSelectFeats) and not IsIn (fk , SetOfDesc fi)))

and (not IsIn (fn , ListSelectFeats)

or (IsIn (fn , ListSelectFeats) and not IsIn (fn , SetOfDesc fi))).

FtsState_From and FtsState_To
Segment1

Segment2

Presence Condition

Priority Conditions

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2527

© 2012 ACADEMY PUBLISHER

Step3: Verification and analysis
After generating automatically the SPL Maude
specification, we pass to the verification and analysis. To
check the behaviour of a given product, the user has to:
• Specify this product by giving an initial state. This

latter is an FTS state that contains the set of its
specific features.

• Describe manually the property to be verified with an
LTL formula.

Then, the model-check function can be called. Maude
model checker verifies automatically if the LTL formula

is valid in this state or in the set of all accessible states
from the initial state. If the formula is not valid, a
counterexample is displayed (Fig.18). In this case, the
FTS and FD models present errors. They must be
corrected.

It should be noted that:

• The proposed meta-models and graph grammars
are standards and applicable for all SPLs, whereas
the LTL formulas must be redefined to each
family of products studied according on the
property to check.

• For the three graph grammars, we are concerned
by calculating attributes value or code generation.
So, none of the proposed rules changes the input
models.

• The resulting Maude specification expresses the
behaviour of all products of the SPL.

VII. ILLUSTRATIVE EXAMPLE

To illustrate our framework, let us consider the
vending machine example which was seen previously
(Section 2). As input, we have to create FD and FTS
models using the generated user interface as shown in
Fig.19. The toolkit provided allows manipulating all
entities of the two formalisms.

::=

 CONDITION
 Node(3).Current ==1 and Node(3).Visited ==0
 and Node(3).step == 0

1- GenLHSandRHS-Rule:

1

LHS

3
2

<ANY> / <ANY>

<ANY> <ANY>

RHS

ACTION
Node(3).step = 1
+ Python Code

1
3

2

<COPIED> / <COPIED>

<COPIED> <COPIED>

::=

3- SetCurrentTransitionAsVisited:

ACTION
Node(3).Current = 0
Node(3).Visited = 1

RHS

1
3

2

<COPIED> / <COPIED>

<COPIED> <COPIED>

 CONDITION
 Node(3).Current ==1 and Node(3).Visited ==0

LHS

1
3

2

<ANY> / <ANY>

<ANY> <ANY>

 CONDITION
 Node(3).Current ==1 and Node(3).Visited ==0
 and Node(3).step ==1 and
 Node(4).name. == Node(3).required_Feat.

4
<ANY>

::=

 2- GenPresAndPriority-Conds:
LHS

1
3

2

<ANY> / <ANY>

<ANY> <ANY>

RHS

ACTION
Node(3).step = 2
 + Python Code

1
3

2

<COPIED> / <COPIED>

<COPIED> <COPIED>

4
<COPIED>

::=

ACTION
Node(3).Current =1
Node(3).Visited =0

RHS

1
3

2

<COPIED> / <COPIED>

<COPIED> <COPIED>

 CONDITION
 Node(3).Current ==0 and
 Node(3).Visited ==0

 4- Select-Transition:
LHS

1
3

2

<ANY> / <ANY>

<ANY> <ANY>

Figure 17. Gen_SystemMod Graph Grammar

Figure 19. Initial FD and FTS models

Figure 18. Model Checking

Resulting Maude Specification

Model Checker

System
Module

Functional
Modules

Property
not satisfied

Counter
example

Property
satisfied

LTL
Property

Initial
State

2528 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

In order to translate these models into the equivalent
Maude specification, we have to apply the three
previously defined graph grammars. First, by executing
Gen_FeatFunctMod graph grammar on the FD model, we
obtain the functional module Feature_FunctMod (Fig.20)
and a decorated FD model for which each feature is
enriched with the set of its descendants (Fig.21).

For example, Fig.21 shows that the attribute
Set_DescFeats of the feature b contains the features s and
t which are exactly the descendants of the feature b.

Then, to generate the functional module FTS_FunctMod
(Fig.22) and to extend the FTS model we have to execute
the Gen_FTSFunctMod graph grammar. Each transition
is equipped by a set containing all the required features in
its concurrent transitions (Fig.23).

For example, Fig.22 shows that the attribute
Set_ReqFeatCTs of the transition soda contains the
features c and t which are exactly the features required in
the concurrent transition cancel and tea.

Finally, to generate automatically the system module
FTS_SysMod (Fig.24), we have to execute the
Gen_SystemMod graph grammar. It uses, as input, the
enriched FTS and FD models obtained by applying the
first two graph grammars.

After obtaining the generated SPL Maude specification

by applying these graph grammars, we can now move to
simulation and analysis.

Figure 20. The functional module Feature_FunctMod

 fmod Feature_FunctMod is
 sort Feature FeatSet .
 subsort Feature < FeatSet .

 ops v b s c t f : -> Feature [ctor] .
 op empty : -> FeatSet [ctor] .
 op __ : FeatSet FeatSet -> FeatSet [ctor assoc id: empty] .
 op isEmpty : FeatSet -> Bool .
 op size : FeatSet -> Nat .
 op Isin : Feature FeatSet -> Bool .
 vars E E' : Feature .
 vars S S' : FeatSet .
 eq isEmpty(empty) = true .
 eq isEmpty(E S) = false .
 eq size(empty) = 0 .
 eq size(E S) = 1 + size(S) .
 eq Isin(E, empty) = false .
 eq Isin(E, E' S) = E == E' or Isin(E,S) .

 endfm

Figure 22. The functional module FTS_FunctMod

in Feature_FunctMod.txt
fmod FTS_FunctMod is
protecting Feature_FunctMod .

sorts TsState FtsState .
ops State1 State2 State3 State4

 State5 State6 State7 State8 : -> TsState [ctor].
op < _ ; _ ; _ > : TsState FeatSet Bool -> FtsState .

endfm

in FTS_FunctMod.txt
mod FTS_SysMod is
including FTS_FunctMod .

var ListSelectFeats : FeatSet .
crl [pay] : < State1; ListSelectFeats ;false > => < State2 ; ListSelectFeats;false >
 if Isin(v , ListSelectFeats) and (not Isin(f , ListSelectFeats)
 or (Isin(f , ListSelectFeats) and not Isin(f , c f s t b))) .
crl [change]:< State2; ListSelectFeats ;false > => < State3; ListSelectFeats;false >
 if Isin(v , ListSelectFeats) .
crl [free] : < State1; ListSelectFeats ; false > => < State3; ListSelectFeats ; false>
 if Isin(f , ListSelectFeats) and (not Isin(v , ListSelectFeats)
 or (Isin(v , ListSelectFeats) and not Isin(v , empty))) .
crl [return]:< State4; ListSelectFeats ; false > => <State1; ListSelectFeats ; true >
 if Isin(c , ListSelectFeats) .
crl [cancel]:< State3; ListSelectFeats; false > => <State4 ; ListSelectFeats;false >
 if Isin(c , ListSelectFeats) and (not Isin(s , ListSelectFeats)
 or (Isin(s , ListSelectFeats) and not Isin(s , empty)))
 and (not Isin(t , ListSelectFeats)
 or (Isin(t , ListSelectFeats) and not Isin(t , empty))) .
crl [soda]:< State3; ListSelectFeats ; false > => <State5 ; ListSelectFeats;false >
 if Isin(s , ListSelectFeats) and (not Isin(t , ListSelectFeats)
 or (Isin(t , ListSelectFeats) and not Isin(t , empty)))
 and (not Isin(c , ListSelectFeats)
 or (Isin(c , ListSelectFeats) and not Isin(c , empty))).
crl [tea] : < State3; ListSelectFeats ; false > => < State6; ListSelectFeats ;false >
 if Isin(t , ListSelectFeats) and (not Isin(c , ListSelectFeats)
 or (Isin(c , ListSelectFeats) and not Isin(c , empty)))
 and (not Isin(s , ListSelectFeats)
 or (Isin(s , ListSelectFeats) and not Isin(s , empty))) .
crl [serveSoda]:<State5;ListSelectFeats ;false> => <State7;ListSelectFeats;false>
 if Isin(s , ListSelectFeats) .
crl [serveTea]:<State6; ListSelectFeats ;false > => < State7;ListSelectFeats;false>
 if Isin(t , ListSelectFeats) .
crl[open]:< State7; ListSelectFeats ; false > => < State8 ; ListSelectFeats;false >
 if Isin(v , ListSelectFeats) and (not Isin(f , ListSelectFeats)
 or (Isin(f , ListSelectFeats) and not Isin(f , c f s t b))) .
crl [skip]:< State7; ListSelectFeats ; false > => < State1 ;ListSelectFeats ; true>
 if Isin(f , ListSelectFeats) and (not Isin(v , ListSelectFeats)
 or (Isin(v , ListSelectFeats) and not Isin(v , empty))).
crl [close]: < state8; ListSelectFeats; false> => < state1 ; ListSelectFeats; true >
 if Isin(v , ListSelectFeats) .

endm

Figure 24. The system module FTS_SysMod

Figure 21. Decorated FD model

Figure 23. Decorated FTS model

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2529

© 2012 ACADEMY PUBLISHER

A. Simulation
As an initial state of the FTS, we use:

< State1 ; v b s f ; false >
In Fig.25, we show the simulation of the resulting Maude
specification.

According to the simulation results, we see that the

priority relation between transitions is preserved.

B. Verification and Analysis

For the verification and analysis purpose, we have to
define manually properties to verify. This section
illustrates the use of Maude's LTL model checker.
Consider the vending machine SPL example. A temporal
property, that each valid product must satisfy, is the fact
that, from the initial state, the system always finishes in a
final state. Properties are expressed using predicates. First,
using the Boolean flag of the FTS state, we define two
predicates Initial and Final in a new module called
FTS_PredicatesMod as follows:

The latter property is expressed in LTL as:

[] (Initial (State1) |-> Final (State1))

Now, consider two variants of the vending machine SPL:

P1 { v , b , s } and P2 { v , b , f }.

The following module verifies the propriety on P1 and P2:

Maude's LTL model checker results are:

The results show that the property is successfully verified
for the product P1 {v, b, s}. For the product P2 {v, b, f},
the property does not hold and a counterexample path is
displayed.
Using the specification proposed in this work, other
temporal properties can be verified.

C. Discussion
The proposed approach has many advantages. The

most important are:
• Our framework is fully automated.
• Our approach considers that the SPL can evolve.

In case of updating the source models, the
correction of the Maude specification will be
automatically made.

• According to Classen et al. [1], if the modelled
SPL consists of several processes running in
parallel, each process can be modelled as a
separate FTS, all sharing the same FD. The FTS of
the system is obtained by composing these
processes. As Maude offers great possibilities for
parallel programming, our approach allows
composition.

VIII. CONCLUSION

Research in the field of SPL is becoming increasingly
important, particularly through its ability to increase
software reuse. Over the past few years, several
modelling and analysis techniques have been published.

In this paper we proposed and implemented a graph
transformations and rewriting logic based framework for
SPLs specification and analysis. The basic idea is to
automatically translate FTS and FD models into their
equivalent Maude specification by applying three

in FTS_PredicatesMod.txt
mod FTS_Check is
protecting FTS_PredicatesMod .
including MODEL-CHECKER .
including LTL-SIMPLIFIER .

ops FTS_Init1 FTS_Init2 : -> FtsState .
eq FTS_Init1 = < State1 ; v b s ; false > .
eq FTS_Init2 = < State1 ; v b f ; false > .
endm

red modelCheck (FTS_Init1 , [] (Initial (State1) |-> Final (State1))) .
red modelCheck (FTS_Init2 , [] (Initial (State1) |-> Final (State1))) .

Figure 27. LTL property to check

Figure 26. FTS-PredicatesMod module

in model-checker
in FTS_SysMod.txt
mod FTS_PredicatesMod is

protecting FTS_SysMod .
including SATISFACTION .

subsort FtsState < State .
op Initial : TsState -> Prop .
op Final : TsState -> Prop .

var State : TsState .
var ListSelectFeats : FeatSet .
var flag : Bool .

ceq < State ; ListSelectFeats ; flag > |= Initial (State) = true
 if (flag == false and State == State1) .
ceq < State ; ListSelectFeats ; flag > |= Final (State) = true
 if (flag == true and State == State1) .
endm

Figure 28. Property verification results

Figure 25. Results of simulation

2530 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

proposed graph grammars. Transitions that express the
dynamic of an FTS are directly translated into rewriting
rules. The priority between alternative transitions is
expressed in the conditions of rewriting rules by using FD
model. The power of this specification resides in the fact
that the transformation preserves FTS and FD semantics.
The result procures a formal description that offers a solid
basis for the verification process. The rewriting logic
language Maude is used. Its LTL model checker has
allowed verifying temporal properties. Thus, verification
of the individual behavior of each product is guaranteed
and therefore we can identify the products that violate the
required properties.

As Maude offers great possibilities for parallel
programming, our approach allows composition of FTSs.
We consider this work as a new way of investigation in
SPLE domain. It combines the advantages of both, graph
transformations and rewriting logic into an automatic
framework.

In Software Product Line engineering, a Feature
Diagram defines features and their relationships. Each
product is defined as a combination of features. For a
given valid product, dependencies that have each feature
with the others must be respected. As example,
mandatory feature must be selected whenever its parent is
selected. Note that in this paper, the proposed method
allows to check the behavior of a given product without
worrying about these dependencies. In a future work, we
plan to extend our framework to be able to check
automatically the validity of products according to this
perspective.

ACKNOWLEDGMENT

We would like to thank the referees for their helpful
comments and suggestions.

REFERENCES
[1] A. Classen, P. Heymans, P. Y. Schobbens, A. Legay and J.

F. Raskin, ″Model checking lots of systems: efficient
verification of temporal properties in software product
lines″, Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, vol.1, pp. 335–344,
May 2010.

[2] K. Kang, S. Cohen, J. Hess, W. Novak and S. Peterson,
″Feature-oriented domain analysis (FODA) feasibility
study″, Technical Report, CMU/SEI- 90-TR-21, 1990.

[3] J. Meseguer, ″Conditional rewriting logic as a unified
model of concurrency″, Theoretical Computer Science,
vol. 96(1), pp. 73-155, 1992.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J.
Meseguer, and J. F. Quesada, ″Maude : specification and
programming in rewriting logic″, Internal Report, SRI
International, 1999.

[5] K. Khalfaoui, A. Chaoui, C. Foudil and E. Kerkouche,
″Specification of software product lines in rewriting logic″,
Internal Report MFGL-01-11, Misc Laboratory,
Department of Computer Science, University of
Constantine, Algeria, 2011, unpublished.

[6] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.
J. Kreowski, S. Kuske, D. Pump, A. Schürr and G.
Taentzer, ″Graph transformation for specification and
programming″, Science of Computer Programming, vol.
34(1), pp. 1-54, April 1999.

[7] J. De Lara and H. Vangheluwe, ″AToM3: a tool for multi-
formalism modelling and meta-modelling″, Lecture Notes
in Computer Science, vol. 2306, pp.174-188, April 2002.

[8] P. Clements and L. Northrop, ″Software product lines:
practice and patterns″, Addison-Wesley, 2001.

[9] K.G. Larsen, U. Nyman and A. Wasowski, ″Modal I/O
automata for interface and product line theories″, Lecture
Notes in Computer Science, vol. 4421, pp. 64–79, 2007.

[10] D. Fischbein, S. Uchitel and V. Braberman, ″A foundation
for behavioural conformance in software product line
architectures″, Proceedings of the ISSTA 2006 Workshop
on Role of Software Architecture for Testing and Analysis
(ROSATEA 06), ACM Press, pp. 39–48, 2006.

[11] A. Fantechi and S. Gnesi, ″Formal modeling for product
families engineering″, Proceedings of the 12th
International Software Product Line Conference
(SPLC’08), IEEE Computer Society Press, pp. 193–202,
2008.

[12] P. Asirelli, M. H. ter Beek, S. Gnesi and A. Fantechi, ″A
deontic logical framework for modelling product families”,
Fourth International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS’10), ICB Research
Report, vol.37, pp. 37–44, 2010.

[13] H.C. Li, S. Krishnamurthi and K. Fisler, ″Verifying cross-
cutting features as open systems″, Proceedings of the tenth
ACM SIGSOFT symposium on Foundations of software
engineering, vol. 27(6), pp. 89–98, 2002.

[14] K. Lauenroth, S. Toehning and K. Pohl, ″Model checking
of domain artifacts in product line engineering″,
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pp.
269–280, 2009.

[15] J. De Lara and H. Vangheluwe, ″Computer aided multi-
paradigm modelling to process Petri-nets and Statecharts″,
Lecture Notes in Computer Science, vol. 2505, pp.
239-253, October 2002.

[16] E. Kerkouche, A. Chaoui, E. B. Bourennane and
O. Labbani, ″On the use of graph transformation in the
modeling and verification of dynamic behavior in UML
models″, Journal of Software, vol. 5(11), pp. 1279-1291,
2010.

[17] R. Elmansouri, H. Hamrouche and A. Chaoui, ″From UML
Activity diagrams to CSP expressions: a graph
transformation approach using AToM3 tool″, International
Journal of Computer Science Issues, vol. 8(2), pp.
368-374, 2011.

[18] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J.
Meseguer and C.Talcott, ″Maude manual (version 2.2)″,
Internal Report, SRI International, December 2007.

[19] A. Pnueli, ″The temporal logic of programs″, Proceedings
of the 18th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 46–57, 1977.

[20] S. Eker, J. Meseguer and A. Sridharanarayanan, ″The
Maude LTL model checker″, Proceedings of the 4th
International Workshop on Rewriting Logic and Its
Applications (WRLA), Electronic Notes in Theoretical
Computer Science, vol. 71, 2002.

[21] G. Rozenberg, ″Handbook of graph grammars and
computing by graph transformation″, World Scientific,
Singapore, vol. 1, 1999.

[22] J. De Lara, J. Vangheluwe, and M. Alfonseca, ″Meta-
modelling and graph grammars for multi-paradigm
modelling in AToM3″, Software and Systems Modelling,
Springer Verlag, vol 3(3), pp. 194-209, August 2004.

[23] Python Home page, http://www.python.org

Khaled Khalfaoui is Assistant Professor in the department of
computer science, University of Jijel, Algeria. His research field
is Software Product Lines, graph transformations and formal
methods.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2531

© 2012 ACADEMY PUBLISHER

Allaoua Chaoui is Professor in the department computer
science, University Mentouri Constantine, Algeria. His research
interests include mobile computing, formal specification,
verification of distributed systems and model transformations.
Foudil Cherif is Associate Professor in the department of
computer science, University of Biskra, Algeria. His research
field is complex systems, artificial life and behavioral
simulation.
Elhillali Kerkouche is Associate Professor in the department of
computer science, University of Jijel, Algeria. His research field
is formal methods and distributed systems.

2532 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

