
Computer Technology and Application 2 (2011) 638-643

Shadow Volume in Real-Time Rendering

Abd El Mouméne Zerari and Mohamed Chaouki Babahenini
Department of Computer Science, LESIA Laboratory, University Med Khider Biskra, Biskra 07000, Algeria

Received: May 16, 2011 / Accepted: June 09, 2011 / Published: August 25, 2011.

Abstract: This paper presents an optimization of shadow volume algorithm, which allow a rendering in real-time. This technique is
based on previous works which makes it possible to obtain shadows in real-time, although the calculation of the silhouette requires a
pretreatment of the geometry implemented on the CPU (Central Processing Unit). By using last version of the GPU (Graphic
Processing Unit), the authors propose to implement the calculation of the silhouette on the GPU by using Geometry Shader. The
authors present the step which made it possible to lead to a concrete implementation of this algorithm, the modifications which were
made, as well as a comparative study of results, followed by a discussion of these results and choices of implementation.

Key words: Shadow volumes, silhouette, GPU (graphic processing unit), real-time, shaders.

1. Introduction

Shadows enhance the realism of computer-generated
images and also provide information about the spatial
relationships of objects. An intuitive way to think of
the shadows is in a purely geometrical way. This
approach was initially described by Crow in 1977 [1]
and then implemented using graphic material by
Heidmann in 1991 [2].

Shadows have a relatively long history in the young
science of computer graphics. It nevertheless took
more than 20 years before it was finally applicable for
real-time rendering of average complexity scenes [3].
The algorithm in Ref. [3] was very fast for its time,
based on very particular representations in order to
adapt the computation to a graphics card. Today, this
solution is mostly historical. More direct and efficient
implementations are possible on the latest generations
of cards. The paper is organized as follows: Section 2
discusses on shadow volumes; section 3 introduces the
Stencil shadow volumes; section 4 is fine proposed
model; section 5 introduces new Shaders; section 6

Mohamed Chaouki Babahenini, Ph.D., associate professor,
research field: computer graphics and vision.

Corresponding author: Abd El Mouméne Zerari, master by
research, research field: computer graphics and vision. Email:
sssokba@hotmail.com.

presents results and discussions; section 7 gives
conclusions; section 8 presents future work.

2. Shadow Volumes

The approach consists in generating a polygonal
shadow starting from the occulting objects of the scene
opposite to a point source, then to display only certain
parts of these volumes, classically, those ranging
between the front faces and back of shadow volumes,
as illustrated in Fig. 1. With the source, the silhouettes
edges (i.e., incidental edges with two polygons, one
directed towards the source, the other not) form plans
which delimit the shadow volume of the object. Only
the points of space not contained in such a volume are
lighted by the source [3].

Fig. 1 Shadow volume.

Shadow Volume in Real-Time Rendering

639

• Silhouette Edge:
A silhouette edge is an edge shared by a front and

back facing polygon. Front facing is any polygon
visible from the light source. Back facing is any
polygon non visible from the light source.

3. Stencil Shadow Volumes

Many methods were developed to allow the fast
compute of the shadows parts of a sequence of images.
One of these methods is known under the name of
stencil shadow volumes [4]. It uses the geometry of the
scene 3D to extract volumes. These volumes are then
drawn in an image called “stencil buffer” to obtain a
mask indicating which pixels are in the shadow of the
point light source. There exist two basic techniques to
draw these shadow volumes in the stencil buffer. They
are known under the names of Z-pass [2] and Z-fail [5].
The first technique (Z-pass) presents some defects
whose correction is made by Z-Fail method.

3.1 Algorithm Z-Pass

In 1991, Tim Heidmann presented the basic
technique for rendering of Shadow Volumes is
commonly called method Z-pass [2].

The principle of Z-pass is the following:
• Render front faces of volume, by incrementing the

stencil when the test of depth is true, else anything. To
disable the display of volume;

Fig. 2 Z-Pass technique.

• Render faces back of volume, by decrementing
the stencil when the test of depth is true, else nothing.
To disable the display of volume.

A point having a value of stencil different from zero
is in the shadow (Fig. 2).

3.2 Algorithm Z-Fail

The opposite version was proposed in 2000 per John
Carmack [5]. Indeed, Z-pass does not functioning if the
observer is located in the shadow volume.

The principle of Z-fail is the following:
• Render faces back of volume, by incrementing the

stencil when the test of depth is false, else anything. To
disable the display of volume;

• Render front faces of volume, by decrementing
the stencil when the test of depth is false, else anything.
To disable the display of volume.

3.3 Comparison of Z-Pass and Z-Fail

The Z-Pass method has a higher performance than
the Z-Fail method. But the Z-Pass algorithm fails when
the shadow volume intersects the near clipping plane.
This near clipping problem was the reason for the
development of the Z-Fail technique, which processes
shadow volume fragments that fails (instead of pass)
the depth test. This approach moves the problems from
the near to the far clipping plane which can be handled
robustly by moving the far plane to infinity. However,
this robustness comes at the expense of performance
since in the Z-Fail case the shadow volumes must be
closed at both ends.

3.4 Shadow Volume Disadvantages

Shadows volume require that the object which
projects shadow have to be closed (each edge of the
grid must be divided exactly by two polygons).
Several pass of rendering are necessary to generate
shadow volume what results in consuming much
fill-rate. The calculation of silhouette can charge the
CPU for dynamic scenes. The information of
adjacencies between the primitive basic ones
(calculated by the CPU) is required too.

Shadow Volume in Real-Time Rendering

640

3.5 Shadow Volumes Optimizations

Recently, some works tried successfully to improve
the method of shadows volume based on optimization
of fill-rate, Culling [6], the clipping, and Clamping [7],
or by rendering optimizing shadow volume by using
the shaders [8]. And finally silhouette determination
optimizations by simplified occluder geometry or using
Geometry Shader (our contribution).

4. Proposed Model

Our work is based on Ref. [8] the technique of Z-Fail
and the extrusion of the silhouette is implemented by
program GPU (shader), but in Ref. [8] the stage of
silhouette generation (Create the face connectivity
information, i.e., store the neighboring faces for every
polygon in the mesh) is implemented in the CPU, i.e., it
requires a pre-process of the geometry, because the
information of adjacency between the primitives is
absent.

Our analysis made on the limits of the method [8]
enabled us to propose a method faster for generation of
the silhouette, by an improvement using the new
performances of the recent material graphic.

There was several research works to find an effective
manner of detection the silhouette in real-time [4, 9-11],
although the majority of the algorithms require a
pre-process of the geometry or multiple rendering
passes [12]. In the preceding cases there is no support
geometry underlying the silhouette.

With the new stage of the geometry shaders of GPUs,
a new possibility is open, since the information of
adjacencies is available. Thanks to Geometry Shaders
we can produce geometry of silhouette.

Our contribution consists in implementing the stage
of generation of the silhouette on the GPU by using
Geometry Shaders.

5. Shaders

The Shaders Programs are programs carried out by
graphics card (GPU). They are used to replace the fixed
functions implemented in the graphics card (cabled

functions) by other functions written by the
programmer [13]. They intervene at various levels of
the graphic pipeline. The most used shaders are the
Vertex and Shaders Fragment. In the modern graphics
cards, the stage Geometry Assembly of the pipeline
became programmable what gives to the programmers
more flexibility to manage the vertices and their
connectedness (addition or removal of vertices or
edges). The Direct3D and OpenGL graphic libraries
use three types of shaders:

• Vertex shader: They are carried out at the
treatment of each vertex of the primitives;

• Fragment shader: Still called Shader Pixel, they
intervene for the treatment of each pixel to display;

• Geometry shader: Geometry shaders can add and
remove vertices from a mesh. Geometry shaders can be
used to generate geometry procedurally or to add
volumetric detail to existing meshes that would be too
costly to process on the CPU. If geometry shaders are
being used, the output is then sent to the rasterizer.

5.1 Geometry Shader

These last years, vertex and fragment shaders
profited from a strong passion on behalf of the graphic
community. Compared to CPU or old version of the
GPU, they have the advantage of making it possible to
accelerate computing times and to improve quality of
rendering. The vertex shader does not receive
information of connectivity (triangles or quads), it
receives only the coordinates of the points,
independently from/to each other.

The fourth version of the shader model introduced a
new kind of treatment named geometry shaders [13],
which manages the connectivity of the polygons like
their subdivisions or simplifications. They are
available on the very recent graphics cards. In the chain
of operations of OpenGL, this last takes seat between
the vertex shader and the phase of clipping. The
objective of this shader is to be able to handle, on GPU,
unquestionable primitive by making it possible to
transform them, duplicate or to act on the vertices.

Shadow Volume in Real-Time Rendering

641

Being given a whole of elements in entry, the geometry
shader makes it possible to obtain primitives like points,
lines or triangles.

5.2 Using Geometry Shader to Implement Generation
Silhouette

The first step is to create a mesh with adjacency
information. This is done by creating a vertex buffer
with three vertices per primitive, and then creating an
index buffer containing the adjacent vertices in the
proper winding order. The primitive-type triangle with
adjacency must be declared in both the host code and
the geometry shader constructor. As a result, the
geometry shader gets access to vertex information from
three triangles: the primary triangle and the three
adjacent triangles for a total of six vertices, as it is
shown in Fig. 3.

With this information we should test the primary
triangle to see if it’s front-facing by calculating the dot
product of the face normal and the view direction. If the
result is less than zero, we have a front-facing triangle
and need to check whether it contains a silhouette edge.

If the current triangle is facing the light source. If it
isn’t, there’s no need to perform the rest of the shader
as the current triangle wouldn’t be affected by light
anyway, and thus the geometry shader can fall through

Fig. 3 The triangle currently processed is the one
determined by vertices (0,2,4). The ones determined by
vertices (0,1,2), (2,3,4) and (4,5,0) are the triangles that share
an edge with the current triangle.

with no output corresponding to the current triangle. If
the triangle did face the light source, then we’d perform

a few steps more in the geometry shader. For each edge
of the triangle, it is determined whether that particular
edge is on the silhouette of the geometry with regard to
the light position. If it is, new triangles are created
inside the geometry shader to construct the extrusion
faces for that edge.

5.3 Geometry Shader Pseudo Code

Algorithm that extrudes the silhouette edge using the
Geometry Shader pseudo code:

Calculate the triangle normal and view direction
if triangle is front facing then

for all adjacent triangles do
Calculate normal
if triangle is back facing then

Extrude silhouette
end if

end for
end if

6. Results and Discussion

The test results are base on the Intel (R) Pentium (R)
D CPU 3.00GHz, nVidia GeForce 9400M GT, version
OpenGl Core: 3.3 and version GLSL: 3.30 and 1024
MB memory with Windows operating system.

After having implemented the calculation of the
shadow volume, we had the following results (Figs.
4-5).

Fig. 4 represents the result of implementation of the
algorithm of the shadow volume [8] with the method of
Z-Fail and the detection of the silhouette by the CPU,
in this case our scene generates 17 FPS with the
shadows activates. Fig. 5 represents the result of our
implementation of the algorithm of the shadow volume
with the method of Z-Fail and the detection of the
silhouette by the GPU and silhouette generation
implemented by Geometry Shader, in this case our
scene generates 25 FPS with the shadows activates.

Here we see very well shadow volumes as well as
the self-shadow.

Shadow Volume in Real-Time Rendering

642

Fig. 4 Implementation of the method [8].

Fig. 5 Implementation of our contribution.

Fig. 6 shows the values of the FPS according to
many triangles in the scene, knowing that our scene in
this case is made up of 10 objects. This same scene is
render while using three methods different, the first by
deactivating shadow volumes, the second by activating
shadow volumes and by using the method of [8] (Fig.
4), and the third by activating shadow volumes and by
using our proposed model (Fig. 5). The evaluations are
represented in the graph of Fig. 6.

Compared with the CPU silhouette method, the GPU
silhouette method has the same scalability but has
much lower performance, which only could get about
50% FPS compared with the CPU one. As a creative
technique the GPU silhouette did show a new approach
to let the GPU do some general computation, but it is
still not mature.

Fig. 6 Scalability when triangles increase in CPU and GPU
shadow volume.

7. Conclusions

The integration of the geometry shaders for
calculates the silhouette for shadow volumes to show
its effectiveness in the optimization of the computing
time, which enabled us to obtain the generation of the
scenes in real-time. The contribution that we presented
in this paper constitutes a first stage, thus we plan in the
future to extend our study for other more complex
scenes, and integration of the levels of details in the
generation of the shadows.

8. Future Work

We are currently exploring some optimizations of
our method by adding some features like infinite view
frustums, occluder cullings, clamping and choosing
z-pass or z-fail automatically. Another suggested
future work is to explore the performance of GPU
silhouette in other use like NPR, etc.

References
[1] F.C. Crow, Shadow algorithms for computer graphics, in:

Proceedings of SIGGRAPH 77, Juillet 1977, pp. 242-248.
[2] T. Heidmann, Real shadows real time, Iris Universe 18

(1991) 23-31.
[3] S. Brabec, H.P. Seidel, Shadow volumes on programmable

graphics hardware, Computer Graphics Forum 22 (2003)
433-440.

[4] J. Kainulainen, Stencil shadow volumes,
Telecommunications Software and Multimedia
Laboratory, Helsinki University of Technology, April 15,
2002.

[5] J. Carmack, On Shadow Volumes, available online at:

Shadow Volume in Real-Time Rendering

643

http://developer.nvidia.com/attach/5628, 2000.
[6] N. Govindaraju, B. Lloyd, S. Yoon, A. Sud, D. Manocha,

Interactive shadow generation in complex environments,
ACM Transactions on Graphics 22 (2003) 501-510.

[7] B. Lloyd, J. Wendt, N. Govindaraju, D. Manocha, CC
shadow volumes, in Proc. Eurographics Symposium on
Rendering, Eurographics, Eurographics Association,
2004.

[8] G. Wallner, Geometry of real time shadows, Scientific and
Professional Journal of Croatian Society for Geometry and
Graphics, No. 10, 2006, pp. 37-45.

[9] J. Doss, Inking the cube: edge detection with direct3D 10,

August 2008.
[10] C. Dyken, M. Reimers, J. Seland, Realtime gpu silhouette

refinement using adaptively blended bézier patches.
Computer Graphics Forum 27 (2008) 1-12.

[11] Y. Shi, Performance comparison of CPU and GPU
silhouette extraction in a shadow volume algorithm,
Master’s Thesis in Computing Science, Department of
Computing Science, Sweden, January 27, 2006.

[12] J.R. Randi, L.K. Bill, OpenGL Shading Language, 3rd ed.,
Addison-Wesley, 2009.

[13] B. Lichtenbelt, P. Brown, EXT_gpu_shader4 Extensions
Specifications, NVIDIA, 2007.

