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Abstract–Social foraging behavior of Escherichia coli bacteria 

has recently been explored to develop a novel algorithm for 
distributed optimization and control. This paper exploits the 
metaphor of natural foraging of bacteria in the context of image 
segmentation. We adapt the bacteria chemotaxis multi-objective 
optimization algorithm to optimize simultaneously two 
segmentation criteria (Between-class variance criterion and 
entropy criterion) to improve the quality of the segmentation. 
The proposed method was evaluated on various types of images. 
The obtained results show the robustness of the method, and its 
non dependence towards the kind of the image to be segmented. 
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I. INTRODUCTION 
 

Nature ecosystems have always been the rich source of 
mechanisms for designing artificial computational systems to 
solve difficult engineering and computer science problems. 
The increasing interest of these systems is motivated by two 
basic aspects [7]: 

- Traditional methods have proven to be unable to 
adequately handling complex problems, characterized 
by the lack of complete mathematical models and the 
manipulation of a large number of variables. 

- To a variety of engineering problems there is a similar 
version in nature. 

In the optimization domain, researchers have been inspired 
by biological processes to develop some effective stochastic 
techniques that mimic the specific structures or behaviors of 
certain creatures. For examples, genetic algorithms (GA), 
which represent a fairly abstract model of Darwinian 
evolution and biological genetics, ant colony optimization 
(ACO) which is based on foraging behaviors of ant colonies 
and particle swarm optimization (PSO) which is inspired by 
the choreography of a bird flock.  

Recently, search and optimal foraging of bacteria 
(chemotaxis) have been used for solving optimization 
problems. Bacterial chemotaxis multiobjective optimization 
algorithm (BCMOA) [8] is a novel algorithm to solve 
multiobjective optimization problem (MOP) which is based 
on bacterial chemotaxis and communication exchange in 
bacterial colonies. Some benchmark optimization problems 

were used to demonstrate the effectiveness of BCMOA in 
finding the solutions close the Pareto optimal front, and its 
performance compared to NSGA-II [6] regarding 
convergence and diversity.  

In this work, we treat one of the central problems in 
computer vision and pattern recognition witch is the image 
segmentation. We exploit the flexibility of multiobjective 
fitness functions and the power of a Bacterial chemotaxis 
multiobjective optimization algorithm (BCMOA) to propose 
a new image thresholding method that allows to optimize 
several segmentation criteria simultaneously, in order to 
improve the quality of the segmentation.  

The organization of the paper is as follows: the Sections 2, 
we introduce the problem of multi-level image thresholding 
as a multiobjective problem. We expose in Section 3, the 
multiobjective optimization approaches in image 
thresholding. In Section 4, the bacterial chemotaxis as 
optimization process is reviewed. In Section 5, the 
mathematical formulation of the different criteria is given in 
the first part of this section, in the second part, we present the 
proposed algorithm based on Pareto multiobjective 
optimization. In Section 6, we illustrate the obtained results 
through the proposed image thresholding algorithm. Finally, 
Section 7 concludes the paper. 

    
II. IMAGE THRESHOLDIN 

 
Image thresholding is an important technique for image 

segmentation [18, 26] that can be classified as bi-level 
thresholding and multilevel thresholding. Bi-level 
thresholding classifies the pixels of an image into two 
classes, one including those pixels with gray-levels above a 
certain threshold, the other including the rest. Multilevel 
thresholding divides the pixels into several classes. The 
pixels belonging to the same class have gray-levels within a 
specific range defined by several thresholds. Thresholding is 
widely used in many image processing applications such as 
optical character recognition [1], automatic target recognition 
[10, 13], inspection applications [24] and medical image 
applications [15].  

Various parametric and non-parametric thresholding 
methods and criteria have been proposed in order to perform 



 
Computer Science Section 

 

 10

bi-level thresholding [22, 23]. They are extendable to 
multilevel thresholding as well, however, for optimal 
multilevel thresholding, existing algorithms are being trapped 
by an exhaustive search of all possible threshold subsets. To 
overcome this problem, several techniques have been 
proposed [9]. Some of them are designed especially for 
computation acceleration of a specific objective function, 
such as the Otsu’s function, while other techniques are 
designed to be used with a general purpose. Among the last 
category, we can find dichotomization techniques, iterative 
schemes, reduction strategies and the meta-heuristic 
techniques.  

In the literature several criteria to regularize the 
segmentation problem are presented [22, 23]. However, there 
is no single criterion able to regularize the segmentation 
problem for all kinds of images. Then, in order to have a 
good segmentation on more kinds of images, some criteria 
are used simultaneously. To optimize simultaneously these 
criteria, the multiobjective optimization (MO) techniques are 
used in image thresholding problem. 

 
III. MULTIOBJECTIVE OPTIMIZATION IN IMAGE 

SEGMENTATION  
 

In multiobjective optimization problems, we have two or 
more objective functions to be optimized at the same time, 
instead of having only one. As a consequence, there is no 
unique solution to multiobjective optimization problems, but 
instead, we aim to find all of the good trade-off solutions 
available (the so-called Pareto optimal set) [20].  

Several bio-inspired optimization techniques have been 
developed for MO problems, the most known are genetic 
algorithms (AGs). The nondominated sorting genetic 
algorithm II “NSGA-II” [6] is the most popular genetic 
algorithm for solving MOP.  

Another interesting biological process that has been 
already implemented as a multi-objective optimization 
technique is the bacterial chemotaxis [8]; this algorithm uses 
fast nondominated sorting procedure [6], communication 
between the colony members and a simple chemotactical 
strategy to change the bacterial positions in order to explore 
the search space to find several optimal solutions.  

The use of multi-objective problem approaches has been 
found in image segmentation methods [3] with clustering and 
histogram thresholding methods. There is also an attempt of 
using multi-objective approaches for evaluation of image 
segmentation methods. As compared to multi-objective 
clustering approaches, there is limited research endeavour of 
using methods with MO in classical histogram thresholding 
methods.  

The use of MO in image segmentation with thresholding 
techniques has been dominated by Nakid et al. [15,16]. They 
have proposed to find the optimal thresholds that allow to 
optimize a set of criteria as the objective functions. The aim 

is to increase the information on the positions of the optimal 
thresholds to obtain the correct segmentation. 

 
IV. BACTERIAL CHEMOTAXIS AS OPTIMIZATION PROCESS  

 
Bacteria have the tendency to gather to the nutrient “rich 

areas” by an activity called chemotaxis. This process is 
achieved through swimming and tumbling [4, 5]. Depending 
upon the rotation of the flagella in each bacterium, it decides 
whether it should move in a predefined direction (swimming) 
or an altogether different direction (tumbling), in the entire 
lifetime of the bacterium. 

Based on this concept, Passino proposed an optimization 
technique known as the bacterial foraging optimization 
algorithm (BFOA) [19]. This novel algorithm considers not 
only the chemotactical strategy but also other stages of 
bacterial foraging behavior as swarming, reproduction and 
elimination and dispersal; besides communication between 
bacteria acquires great influence on the entire process, getting 
closer to the concept that foraging is a phenomenon of a 
bacterial colony rather than an individual behavior.  

Since its advent in 2002, BFOA has attracted researchers 
from diverse domains of knowledge. This has resulted in a 
few variants of the classical algorithm as well as many 
interesting applications of the same to the real-world 
optimization problems. Tang et al. [25] proposed a bacterial 
foraging behavior in varying environments. Li et al. proposed 
a modified bacterial foraging algorithm with varying 
population (BFAVP) [14].  

Amos et al. [2] exposed the potential of implementing 
bacterial chemotaxis as a distributed optimization process, 
recognizing that in natural colonies, it is the interaction and 
communication between bacteria the mechanism that enables 
them to develop biologically advantageous patterns. 

Guzman et al. [8] proposed the first extension of the 
chemotaxis strategy for solving multi-objective problems. 

 
V. PROPOSED APPROACH  

 
Suppose that an image I having N pixels with L+1 gray 

levels L = {0, 1, ..., L}, is to be classified into k+1 classes 
(C0, C2,..., Ck) with the set of k thresholds T={t1 ,t2 ,...,  tk}. To 
optimize M segmentation criteria simultaneously and to 
obtain the Pareto front and then the optimal Pareto solution 
(optimal threshold values for image segmentation), we adapt 
the Bacteria Chemotaxis Multiobjective Optimization 
Algorithm BCMOA [8] that consists in using a colony of S 
bacteria 1( ,..., ,..., )i S

j j jBac X X X=  that are located initially at 

random positions. ,1 , ,( ,..., ,..., )i i i i
j j j p j kX x x x=  is the ith 

bacterium at jth chemotactic step.  ,
i
j px  is the p parameter of 

the bacterium i
jX , such that [ ], 0, 1  i

j px L∈ −  and 

, 1 , , 1<  <i i i
j p j p j px x x− + .  
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For each bacterium i
jX in the initial location (j=o), the 

objective function values ( )i
l jJ X ; l= 1,…, M, are calculated. 

Applying a fast nondominated sorting procedure [5] the 
bacteria whose locations represent nondominated solutions, 
are classified in a list POF1j, and all dominated bacteria are 
stored in a list Bacdomj.  

Each strong bacterium in POF1j, apply the flowing 
chemotactical equation for position update: 

( )( )
( )

i i
j c u r r e n t j p r e v T

iX X C i
i

− −

Δ
= +

Δ Δ
       (1) 

Where: i
jΔ is a random vector generated by the strong 

bacterium i, in which each element 
, ,  1 , 2 , . . . ,  i

j p p KΔ = , is a random number on [ -1,1] 
and C(i) is the size of the step taken in the random direction 
specified by the tumble (run length unit). 

Making use of its temporal-space memory, the strong 
bacterium compares its current objective function values 

( )i
l j c u r r e n tJ X −

 with the previous ( )i
l j p r e vJ X −

; 
l=1…M, using nondomination concept. As a result of the 
comparison each strong bacterium reacts with any of these 
possible movements: if one of the locations previous 

i
j p r e vX −

 or current i
j c u r r e n tX −

dominates the other, the 
bacterium moves to the nondominated location and from 
there, takes a very small tumble ST in a random direction 
(short tumble), according to (2) or (3). On the other hand, if 
any of the locations previous i

j p r e vX −
and current  

i
j c u r r e n tX −

 dominates the other, from its current location 
the bacterium takes a bigger tumble LT in a random direction 
(long tumble), according to the (4). 

1 , , , ,
i i i
j p j p r e v p j p j px x S T+ −= + Δ                (2) 

1 , , , ,
i i i
j p j c u r r e n t p j p j px x S T+ −= + Δ              (3) 

1 , , , ,
i i i
j p j c u r r e n t p j p j px x L T+ −= + Δ              (4) 

 
Each weak bacterium i

jX  in Bacdomj randomly selects a 
strong bacterium, moves to a location near the strong 
bacterium selected and keeping the same direction, takes a 
step (swim) besides the rich location. The new position 

i
jX of weak bacterium after tumbling is given by: 

 
1 , , , ,1i s t r o n g s t r o n g

j p j p j p p j px x x r S W+ = + × +   (5) 
 
Where: r1p  is a random number on [-0.1, 0.1].  
 
After the application of the chemotactical strategy for 

every bacterium in the colony, a complete chemotactical step 
was executed. 

The long tumble, short tumble and swim sizes for each 
parameter p are automatic updated during the process and are 
defined by (6), (7) and (8), respectively: 

 
, ,0.1j p j pST Lt= ×                                 (6) 

,
1 (max( 1 ) min( 1 ) )j p j j p j pLT FAC POF POF
S

= −         (7) 

, , ,( )strong weak
j p j j p j pSW FAC x x= −                 (8) 

 
Where: ,

strong
j px is the parameter p of strong bacterium 

location at jth chemotactic step. ,
weak
j px is the parameter p of a 

weak bacterium location at jth chemotactic step. 
ax( 1 )j pm POF  is the maximum values for the parameter p 

within the set of nondominated solutions POF1 at jth 
chemotactic step. in( 1 )j pm POF is the minimum values for 
the parameter p within the set of nondominated solutions 
POF1 at jth chemotactic step. FACj is a factor, which 
decreases linearly from one to zero at every chemotactic step 
and given by: 

max max( - ) /jFAC CHS j CHS=                    (9) 
Where: CHSmax is the maximum number of chemotactic 

steps. 
When a bacterium hits the boundary the boundary of the 

solution space in one of the p parameter dimensions, its 
location is pulled back to the allowed solution space in that 
dimension (strategy of Absorbing Walls) [21]. 

In order to stimulate the diversity of solutions, the density 
parameter proposed in [12] was applied; when the size of the 
POF1 is above 50% the size of the colony, density parameter 
is calculated for all strong bacteria in order to be sorted in 
non-descending order according to this value. To select its 
strong bacterium to apply the chemotactical strategy, each 
weak bacterium must select from the 25% top part of that 
strong bacteria sorted list. 

 
A.    Segmentation Criteria 

In this approach, we use two threshold criteria witch can 
be described as follows: let there be N pixels in a given 
image, with gray-level range over [0..L] and ni denote the 
occurrence of gray-level i, giving a probability of gray-level i 
as:  

 i
i

n
p

N
=                                        (10) 

 
 A1.    Between-class variance criterion 

The Otsu’s method [17] is based on the discriminant 
analysis. It consists in the maximization of the between-class 
variance of the thresholded image as: 
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2 2
1 1 2 0 1 0 1 0 2 0 2

2 2
0 3 0 3 0 0

2 2
1 2 1 2 1 3 1 3

2 2
1 1 1 1

( , ,..., )= ( ) ( )

                   ( ) ... ( )

                   ( ) ( ) ...

                   ( ) ... ( )

k

k k

k k k k k k

J t t t ωω μ μ ωω μ μ

ωω μ μ ωω μ μ

ωω μ μ ωω μ μ

ωω μ μ ω ω μ μ− −

− + − +

− + + − +

− + − + +

− + + −

           (11)  

 Where:  
1 1n

n

t

n i
i t

pω
+ −

=

= ∑ , 
1 1n

n

t
i

n
i t n

i p
μ

ω

+ −

=

×
=∑     and   0 n k≤ ≤  

The optimal segmentation threshold vector 
* * *
1 2( , ,..., )kt t t  

makes the total variance maximum:  

1 21 2 0 ... 1 1 2( , , ..., ) max ( , ,..., )k t t L kt t t Arg J t t t∗ ∗ ∗
< < < <=  

 
A2.Entropy Criterion  

The Kapur’s method [11] is based on the entropy theory. It 
consists in the maximization of the sum of entropies for each 
class, as follows:  

2 1 2 0 1( , ,..., ) ...  k kJ t t t H H H= + + +                         (12) 
Where: 

1 1

0
0 0 0

ln
t

i i

i

p pH
ω ω

−

=

= −∑
  , 

1 1

0
0

t

i
i

pω
−

=

=∑
 

2

1

1

1
1 1

ln
t

i i

i t

p pH
ω ω

−

=

= −∑
, 

2

1

1

1

t

i
i t

pω
−

=

=∑
 

3

2

1

2
2 2

ln
t

i i

i t

p pH
ω ω

−

=

= −∑
, 

3

2

1

2

t

i
i t

pω
−

=

= ∑
 

ln
k

L
i i

k
i t k k

p pH
ω ω=

= −∑
, k

L

k i
i t

pω
=

= ∑
 

The optimal segmentation threshold vector * * *
1 2( , ,..., )kt t t  is 

that maximizing the total entropy: 

1 21 2 0 ... 2 1 2( , , ..., ) max ( , ,..., )k t t L kt t t Arg J t t t∗ ∗ ∗
< < < <=  

 
B. Proposed Algorithm 

The proposed Thresholding using Pareto Bacteria 
Chemotaxis Multiobjective Optimization algorithm 
“TPBMO” consists in the optimization simultaneously of the 
functions: the between-class variance and the total entropy. 
Then, the optimal threshold vectors X correspond to the 
Pareto solution. The TPBMO algorithm is summarized 
below:  

- Initialization  
1) Input the parameters: S, CHSmax, k, M.  
2) Generate the first positions (j=0) of the 

threshold values randomly for a population Bac 
of bacteria;  

- For  j=0 to CHSmax   

1) For each bacterium i
jX  in  Bac ; i= 1,…, S, 

calculate the objective function values 
( )i

l jJ X ; l= 1,…, M , using (11) and (12).   
2) Classify the location Bac of all bacteria using 

nondomination concept on ( )i
l jJ X ; l= 1,…, 

M; 
3)  Store each bacterium that was classified as 

nondominated in a list POF1j and store all 
dominated bacteria in a list Bacdomj. 

4) Calculate the density parameter denj for all 
strong bacteria. 

5) If   denj > 50 Then   
Sort the list POF1j in non-descending order  

6) Calculate the parameters of steps sizes ST, LT 
and SW, using (6), (7 )and (8) respectively. 

7) For each bacterium i
jX  in POF1j   

a) Generate a random vector i k
jΔ ∈ ℜ  

b) Apply the chemotactical equation for 
position update,  using (1) 

c) Calculate the objective function values 
( )i

l j currentJ X − ; l= 1,…, M, using (11) and 
(12). 

d) Apply nondomination concept to calculate 
the new location using (2), (3) or (4).  

e) Apply strategy of Absorbing Walls  
f) Store the location  in the  list Bac 

8) For each weak bacterium i
jX  in Bacdomj  

a) If   denj > 50  then 
Select a strong bacterium from the 25% 
top part of POF1j 

Else  
Randomly select a strong bacterium 

s t r o n g
jX  from POF1j. 

b) Calculate  the new location of the weak 
bacterium by using (5).  

c) Apply strategy of Absorbing Walls  
d) Store the location in the  list Bac. 

End For 
- Return the results: the threshold values and 

segmented image.  
 

VI. EXPERIMENTAL RESULTS  
 
To evaluate the performance of the proposed TPBMO 

algorithm, we present some experiments with two selected 
images among the images usually used to test the 
segmentation algorithms. These experiments are performed 
on a computer having Intel Core 2 Duo processor (3 GHZ) 
and 2 GB memory.  

The parameters used in all tests were: the number of 
bacteria (S) was 200, the maximum number of chemotactical 
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steps was 100 and the number of objective functions (M) was 
2. 

The figures Fig. 1 and Fig. 2 present the obtained results of 
the images Screws (into two and three classes) and Peppers 
(into four and five classes). From a visual point of view, the 
segmentation of the image Screws is of good quality. 
Furthermore, the borders of the Screws are protected well. In 
the case of results of the images Peppers (into four and five 
classes), we notice that the objects, in these images, are 
globally well extracted from the background. 
 

a b c

 
Fig. 1. Thresholding Results of Screws image: (a) Original,         

(b) Segmentation into 2 classes threshold t = 188, (c) segmentation into 3 
classes thresholds t = (190, 240). 

a b c

 
Fig. 2. Thresholding Results of Peppers image: (a) Original, (b) 

Segmentation into 4 classes thresholds t= (54, 133, 213), (c) segmentation 
into 5 classes thresholds t = (46, 90, 139, 206). 
 

In order to measure the performance of the segmentation, 
we used the criterion of Peak Signal to Noise Ratio “PSNR”, 
which is used as a quality measurement between the original 
image and the thresholded image, the value is normally 
expressed in decibels (dB). The higher the PSNR, the better 
the quality of the thresholded, or reconstructed image. The 
PSNR is defined as: 

10
25520 logPSNR

RMSE
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                        (13) 

Where RMSE is the root mean-squared error, which is 
defined as: 

( )2

1 1

1 ˆ( , ) ( , )
M N

i j

RMSE I i j I i j
M N = =

= −
× ∑∑

 
Where I and Î are the original and the thresholded images, 

and M×N are the dimensions of the image. 
In order to show the quality of the thresholded  results in 

segmentation based on the simultaneous optimization of 
some criteria and their results when these criteria used 
separately, a comparison of PSNR values for the proposed 
TPBMO method and  Otsu’s,  Kapur’s  methods  with  
exhaustive search  is  presented  in  TABLE  1. 

TABLE 1 COMPARISION OF  PSNR VALUES FOR METHODS UNDER 
EVALUATION 

Images Otsu Kapur TPBMO 
Screws (two classes) 8.13 8.71 8.74 
Screws (three classes) 10.34  10.03  10.42 
Peppers (four classes) 13.29  13.11  13.35 
Peppers (five classes) 16.49 16.64 16.68 

 
From the results presented in TABLE 1, it can be seen that 

the proposed TPBMO algorithm gives the highest value of 
PSNR value for almost all the segmented images, this 
performance is due to the inclusion of several criteria in the 
segmentation process. 

The figures Fig. 3 and Fig. 4 illustrate, in two dimensions, 
the Pareto fronts in the case of segmentation of the images 
Screws (into three classes) and Peppers (into four classes). 
These results are the average of 25 successive executions of 
the TPBMO algorithm. Every point in the front corresponds 
to a segmentation result. 
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Fig. 3. Pareto front found by TPBMO, in the case of segmentation into 3 

classes for image Screws. 
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Fig. 4. Pareto front found by TPBMO, in the case of segmentation into 4 

classes for image Peppers. 
 



 
Computer Science Section 

 

 14

The average computational cost on our configuration is 
around 2 s , 7s ,  15s and  27s, in the case of two classes,  
three classes, four classes and  five classes respectively. 

 
IV. CONCLUSION 

 
In this paper, we have presented a supervised thresholding 

approach TPBMO based on Pareto multi-objective 
optimization and the bacterial chemotaxis. We have adapted 
the BCMOA algorithm by changing the size of the initial 
population and the number of generations, and by adding a 
simple strategy to handle constraints for each bacterial 
location in order to sort the parameters of bacterial, in 
descending order, and not to hit the boundary of the solution 
space. This approach enables to determinate the optimal 
thresholds of two criteria: the between-class variances 
criterion and the entropy criterion. The proposed method is 
validated by illustrative examples; comparison with the 
exhaustive search Otsu’s, and Kapur’s methods showed the 
robustness of the proposed method and its non dependence 
towards the kind of the image to be segmented, and also 
showed that image segmentation based on the simultaneous 
optimization of some criteria gives satisfactory results and 
increases the ability to apply one same technique to a wide 
variety of images. 

In the future work, we will improve this approach by 
adding other segmentation criteria which allow highlighting 
the textures within the image, and by using the GPU 
(Graphics Processing Unit) to accelerate the segmentation 
process.  
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