Exploitation of the potentiality of graphic cards for
optimising phylogenies problem by using evolutionary
algorithm

Nour EI-Houda BENALIA and NourEddine DJEDI

LESIA Laboratory/ Biskra University
BP 145 RP Biskra, Algeria
benaliahouda@live.fr
noureddine.djedi@lesialab.net

Keywords: Evolutionary Algorithm, Optimization and Acceleration, GPU Computing,
Performance Evaluation, Recurrent Neural Network.

1 Introduction

Nowadays, many algorithms are redesigned and rewritten for the GPU since modern GPUs [1]
introduce massive parallelism for a budget price and new APIs simplify the development of parallel
applications.

The aim of humanoid robotic researchers is to obtain robots that can imitate the human
behaviours to collaborate, in the best way, with humans. An obvious problem confronting humanoid
robotics [2] is the generation of stable and efficient gaits in a reasonable time. In order to address this
problem, alternative, biologically inspired control methods have been proposed, which do not require
the specification of reference trajectories. The objective of this work is to propose a model that
accelerates a method already proposed [2] which is the combination of evolutionary algorithm and
recurrent neural network. Evolutionary algorithms are very effective in solving many practical
problems, but their execution time can become a limiting factor for some huge problems [3], because a
lot of candidate solutions must be evaluated. The power of these algorithms depends on various
factors, including the available computing power. Increasing it is interesting, as it would allow to
explore the usually huge search spaces more widely and deeply, for better results. There is variety of
possibilities how to accelerate EAs [4].

Modern graphics hardware plays an important role in the area of parallel computing. Used to
accelerate gaming and 3D graphics applications [1], they have been recently used to accelerate
computations for various topics. In order that the controller of the humanoid robot can emerge toward
good solutions, he must take a great time. To overcome this problem, the obvious idea is to accelerate
the evolutionary process by immersing the evolutionary algorithm used in GPUs. The purpose of this
paper is to propose a technique to accelerate the process of the controller in GPUs. To do this, we
proposed four combinations for the acceleration of the controller:

1- A recurrent neural network with an evolutionary algorithm parallelized by the model Master/Slave.
2- A recurrent neural network with an evolutionary algorithm parallelized by the island model.

3- A recurrent neural network with an evolutionary algorithm parallelized by the model Master/slave
taking into account the parallelism within chromosome (the parallelism between genes).

4- A recurrent neural network with an evolutionary algorithm parallelized by the island model taking
into account the parallelism within the chromosome (the parallelism between genes).

The goal of having all these combinations is to choose the most efficient combination. In this
paper, we are interesting with the first combination. The results are compared with the serial
algorithm by studying the effect of a number of parameters: (a) differing population sizes, (b) differing
number of threads, (c) differing problem sizes, and (d) problems having differing complexities, such
as evaluation time and interactions among variables.


mailto:benaliahouda@live.fr
mailto:noureddine.djedi@lesialab.net

2 Description of the used model

2-1 Representation of the population

Population is laid out in main memory of GPU, as a two dimensional N x L matrix such that
columns refer to chromosomes and rows corresponds to genes within chromosomes as shown in
Figure 1, where N is population size and L is chromosome length.

2-2 the evolutionary algorithm with the RNN

The purpose of the evolutionary algorithm (EA) is to optimize the weights of the neural
network which controls the humanoid robot [2]. At start-up, the population’s chromosomes are
initialized at random. The chromosome length is 1130 genes, with 1 gene per RNN weight. The
number of connections represents the number of genes in the chromosome; a floating-point number
represents each gene.

< The Whole Population ) "
- - GPU
" = -
— s Jnput layer :
ot Hidden Output >

= Initialisation

Parent eval

il

Shared Memory
Global Memory

Context ;
Y ; Croisement
Sensors units Effeciors
t t + 4 :
= > Mutation
Environment

N g ;’;
|
v V¥ v
The weights of each neural network

(each humanoid robot) represent
each chromosome in the pooulation

Child eval

Generation of weigths in the CPU

Will be mapped to the memory of the GPU

Fig2: the strategy of the combination between the RNN and EA.

The fitness function is based on the distance travelled by the robot within a certain
period of time. Our idea is to apply an evolutionary algorithm on the RNN, where we exploit
each time a methodology for parallelization of an evolutionary algorithm, as mentioned above.
The results of this Implementation will be compared to the sequential one. We are currently
implement our method (the first combination) using C/C++ and CUDA (4.0) and run
experiments on the Fermi architecture (GTX480). However, this study has to be seen as a first
step in the development of a heterogeneous computing solver for a robot controller and
application in artificial life.

References

[1] P.Kroémer (2011) . An Implementation of Differential Evolution for Independent Tasks Scheduling on GPU.
[2] N.Ouannes (2012). Gait Evolution for Humanoid Robot in a Physically Simulated Environment.

[3] P.Pospichal (2010). Parallel Genetic Algorithm on the CUDA Architecture.

[4] O.Maitre (2012) .EASEA: specification and execution of evolutionary algorithms on GPGPU.

[5] R.Arora (2010). Parallelization of Binary and Real-Coded Genetic Algorithms on CUDA.



	Introduction
	Description of the used model

