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We consider a control problem where the state variable is a solution of a stochastic differ-
ential equation (SDE) in which the control enters both the drift and the diffusion coef-
ficient. We study the relaxed problem for which admissible controls are measure-valued
processes and the state variable is governed by an SDE driven by an orthogonal martin-
gale measure. Under some mild conditions on the coefficients and pathwise uniqueness,
we prove that every diffusion process associated to a relaxed control is a strong limit of a
sequence of diffusion processes associated to strict controls. As a consequence, we show
that the strict and the relaxed control problems have the same value function and that an
optimal relaxed control exists. Moreover we derive a maximum principle of the Pontria-
gin type, extending the well-known Peng stochastic maximum principle to the class of
measure-valued controls.
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1. Introduction

We are interested in questions of existence, approximation, and optimality of control
problems of systems evolving according to the stochastic differential equation

xt = x+
∫ t

0
b
(
s,xs,us

)
ds+

∫ t

0
σ
(
s,xs,us

)
dBs, (1.1)

on some filtered probability space (Ω,�, (�t)t,P), where b and σ are deterministic func-
tions, (Bt, t ≥ 0) is a Brownian motion, x is the initial state, and ut stands for the control
variable. The expected cost on the time interval [0,1] is of the form

J(u)= E
[∫ 1

0
h
(
t,xt,ut

)
dt+ g

(
x1
)]
. (1.2)

The aim of the controller is to optimize this criterion, over the class � of admissible
controls, that is, adapted processes with values in some set A, called the action space. A
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2 Relaxed stochastic control

control u∗ is called optimal if it satifies J(u∗)= inf{J(u), u∈�}. If, moreover, u∗ is in �,
it is called strict. Existence of such a strict control or an optimal control in � follows from
the convexity of the image of the action space A by the map (b(t,x,·), σ2(t,x,·), h(t,x,·))
(Filipov-type convexity condition—see [2, 5, 9, 10, 13]). Without this convexity condi-
tion an optimal control does not necessarily exist in �, the set � not being equipped with
a compact topology. The idea is then to introduce a new class � of admissible controls,
in which the controller chooses at time t, a probability measure μt(da) on the control set
A, rather than an element ut ∈A. These are called relaxed controls. It turns out that this
class of controls enjoys good topological properties. If μt(da) = δut (da) is a Dirac mea-
sure charging ut for each t, then we get a strict control as a special case. Thus the set � of
strict controls may be identified as a subset of � of relaxed controls.

Using compactification techniques, Fleming [7], derived the first existence results of
an optimal relaxed control for SDEs with uncontrolled diffusion coefficient. For such sys-
tems of SDEs, a maximum principle has been established in Mezerdi and Bahlali [19]. The
case of an SDE where the diffusion coefficient depends explicitly on the control variable
has been solved by El-Karoui et al. [5], where the optimal relaxed control is shown to be
Markovian.

In this paper we establish two main results. We first show that, under a continuity
condition of the coefficients and pathwise uniqueness of the controlled equations, each
relaxed diffusion process is a strong limit of a sequence of diffusion processes associated
with strict controls. The proof of this approximation result is based on Skorokhod’s se-
lection theorem, a limit theorem on martingale measures and Mitoma’s theorem [20] on
tightness of families of martingale measures. As a consequence, we show that the strict
and the relaxed control problems have the same value functions, which yields the exis-
tence of nearly optimal strict controls. Note that our result improves those of Fleming
[7] and Méléard [14], proved under Lipschitz conditions on the coefficients. Using the
same techniques, we give an alternative proof for existence of an optimal relaxed control,
based on Skorokhod selection theorem. Existence results were first proved using mar-
tingale problems by Haussmann [9] and El-Karoui et al. [5]. The second main result of
this paper is a maximum principle of the Pontriagin type for relaxed controls, extending
the well-known Peng stochastic maximum principle [22] to the class of measure-valued
controls. This leads to necessary conditions satisfied by an optimal relaxed control, which
exists under general assumptions on the coefficients. The proof is based on Zhou’s max-
imum principle [26], for nearly optimal strict controls and some stability properties of
trajectories and adjoint processes with respect to the control variable.

In Section 2, we define the control problem, we are interested in and introduce some
notations and auxiliary results to be used in the sequel. Section 3 is devoted to the proof
of the main approximation and existence results. Finally, in Section 4, we state and prove
a maximum principle for our relaxed control problem.

2. Formulation of the problem

2.1. Strict control problem. The systems we wish to control are driven by the following
d-dimesional stochastic differential equations of diffusion type, defined on some filtered
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probability space (Ω,�, (�t)t,P):

dxt = b
(
t,xt,ut

)
dt+ σ

(
t,xt,ut

)
dBt, x0 = x, (2.1)

where, for each t ∈ [0,1], the control ut is in the action space A, a compact set in Rn,
the drift term b :R+×Rd×A→R, and diffusion coefficient σ :R+×Rd ×A→Rd⊗Rk are
bounded measurable and continuous in (x,a).

The infinitesimal generator, L, associated with (2.1), acting on functions f in C2
b(Rd;

R), is

L f (t,x,u)= 1
2

∑
i, j

(
ai, j

∂2 f

∂xi∂xj

)
(t,x,u) +

∑
i

(
bi
∂ f

∂xi

)
(t,x,u), (2.2)

where ai, j(t,x,u) denotes the generic term of the symmetric matrix σσ∗(t,x,u). Let �
denote the class of admissible controls, that is, (�t)t-adapted processes with values in the
action space A. This class is nonempty since it contains constant controls.

The cost function to be minimized over such controls is

J(u)= E
[∫ 1

0
h
(
t,xt,ut

)
dt+ g

(
x1
)]

, (2.3)

where h and g are assumed to be real-valued, continuous, and bounded, respectively, on
R+×Rd×A and on Rd.

We now introduce the notion of strict control to (2.1).

Definition 2.1. A strict control is the term α= (Ω,�,�t,P,ut,xt,x) such that
(1) x ∈Rd is the initial data;
(2) (Ω,�,P) is a probability space equipped with a filtration (�t)t≥0 satisfying the

usual conditions;
(3) ut is an A-valued process, progressively measurable with respect to (�t);
(4) (xt) is Rd-valued, �t-adapted, with continuous paths, such that

f
(
xt
)− f (x)−

∫ t

0
L f
(
s,xs,us

)
ds is a P-martingale, (2.4)

for each f ∈ C2
b , for each t > 0, where L is the infinitesimal generator of the diffusion (xt).

In fact, when the control ut is constant, the conditions imposed above on the drift
term and diffusion coefficient ensure that our martingale problem admits at least one
solution, which implies weak existence of solutions of (2.1) (see [11]). The associated
controls are called weak controls because of the possible change of the probability space
and the Brownian motion with ut. When pathwise uniqueness holds for the controlled
equation it is shown in El Karoui et al. [5] that the weak and strong control problems are
equivalent in the sense that they have the same value functions.

2.2. The relaxed control problem. The strict control problem as defined in Section 2.1
may fail to have an optimal solution, as shown in the following simple example, taken
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from deterministic control. See Fleming [7] and Yong and Zhou [25] for other examples
from stochastic control. The problem is to minimize the following cost function:

J(u)=
∫ T

0
xu(t)2dt (2.5)

over the set Uad of open loop controls, that is, measurable functions u : [0,T]→ {−1,1}.
Let xu(t) denote the solution of

dxut = udt, x(0)= 0. (2.6)

We have infu∈� J(u)= 0. Indeed consider the following sequence of controls:

un(t)= (−1)k if
k

n
≤ t ≤ k+ 1

n
, 0≤ k ≤ n− 1. (2.7)

Then clearly |xun(t)| ≤ 1/n and |J(un)| ≤ T/n2 which implies that infu∈� J(u)= 0. There
is however no control u such that J(u) = 0. If this would have been the case, then for
every t, xu(t) = 0. This in turn would imply that ut = 0, which is impossible. The prob-
lem is that the sequence (un) has no limit in the space of strict controls. This limit, if
it exists, will be the natural candidate for optimality. If we identify un(t) with the Dirac
measure δun(t)(da) and set qn(dt,du)= δun(t)(du)dt, we get a measure on [0,1]×A. Then
(qn(dt,du))n converges weakly to (1/2)dt · [δ−1 + δ1](da). This suggests that the set �
of strict controls is too narrow and should be embedded into a wider class with a richer
topological structure for which the control problem becomes solvable. The idea of relaxed
control is to replace theA-valued process (ut) with P(A)-valued process (μt), where P(A)
is the space of probability measures equipped with the topology of weak convergence.

In this section, we introduce relaxed controls of our systems of SDE as solutions of
a martingale problem for a diffusion process whose infinitesimal generator is integarted
against the random measures defined over the action space of all controls. LetV be the set
of Radon measures on [0,1]×A whose projections on [0,1] coincide with the Lebesgue
measure dt. Equipped with the topology of stable convergence of measures, V is a com-
pact metrizable space (see Jacod and Mémin [12]). Stable convergence is required for
bounded measurable functions h(t,a) such that for each fixed t ∈ [0,1], h(t,·) is contin-
uous.

Definition 2.2. A relaxed control is the term μ= (Ω,�,�t,P,Bt,μt,xt,x) such that
(1) (Ω,�,�t,P) is a filtered probability space satisfying the usual conditions;
(2) (μt)t is a P(A)-valued process, progressively measurable with respect to (�t) and

such that for each t, 1(0,t]. μ is Ft-measurable;
(3) (xt)t is Rd-valued, Ft-adapted with continuous paths such that x(0)= x and

f
(
xt
)− f (x)−

∫ t

0

∫
A
L f
(
s,xs,a

)
μs(ω,da)ds (2.8)

is a P-martingale, for each f ∈ C2
b(Rd,R).

We denote by � the collection of all relaxed controls.
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By a slight abuse of notation, we will often denote a relaxed control by μ instead of
specifying all the components.

The cost function associated to a relaxed control μ is defined as

J(μ)= E
[∫ 1

0

∫
A
h
(
t,Xt,a

)
μt(da)dt+ g

(
X1
)]
. (2.9)

The set � of strict controls is embedded into the set � of relaxed controls by the mapping

Ψ : u∈� �−→Ψ(u)(dt,da)= dtδu(t)(da)∈�, (2.10)

where δu is the Dirac measure at a single point u. In fact the next lemma, known as the
chattering lemma, tells us that any relaxed control is a weak limit of a sequence of strict
controls. This lemma was first proved for deterministic measures in [8] and extended to
random measures in [6, 7].

Lemma 2.3 (chattering lemma). Let (μt) be a predictable process with values in the space
of probability measures on A. Then there exists a sequence of predictable processes (un(t))
with values in A such that the sequence of random measures (δunt (da)dt) converges weakly
to μt(da)dt, P-a.s.

In the next example, through considering the action spaceA to be a finite set of points,
hence reducing the problem to controlling a finite-dimensional diffusion process, we will
identify the appropriate class of martingale measures that drives the stochastic represen-
tation of the coordinate process associated with the solution to the martingale problem
(2.8).

Example 2.4. Let the action space be the finite set A = {a1,a2, . . . ,an}. Then every re-
laxed control dtμt(da) will be a convex combination of the Dirac measures dtμt(da) =∑n

i=1α
i
t dt δai(da), where for each i, αit is a real-valued process such that 0 ≤ αit ≤ 1 and∑n

i=1α
i
t = 1. It is not difficult to show that the solution of the (relaxed) martingale prob-

lem (2.8) is the law of the solution of the following SDE:

dxt =
n∑
i=1

b
(
t,xt,ai

)
αitdt+

n∑
i=1

σ
(
s,xs,ai

)(
αit
)1/2

dBi
s, x0 = x, (2.11)

where the Bi’s are d-dimensional Brownian motions on an extension of the initial proba-
bility space. The process M defined by

M
(
A× [0, t]

)=
n∑
i=1

∫ t

0

(
αis
)1/2

1{ai∈A}dB
i
s (2.12)

is in fact a strongly orthogonal continuous martingale measure (cf. Walsh [24], El-Karoui
and Méléard [4]) with intensity μt(da)dt =∑αitδai(da)dt. Thus, the SDE in (2.11) can be
expressed in terms of M and μ as follows:

dxt =
∫
A
b
(
t,xt,a

)
μt(da)dt+

∫
A
σ
(
t,xt,a

)
M(da,dt). (2.13)



6 Relaxed stochastic control

The following theorem due to El Karoui and Méléard [4] shows in fact a general represen-
tation result for solutions of the martingale problem (2.8) in terms of strongly orthogonal
continuous martingale measures whose intensities are our relaxed controls.

Theorem 2.5 [4]. (1) Let P be the solution of the martingale problem (2.8). Then P is the
law of a d-dimensional adapted and continuous process X defined on an extension of the
space (Ω,�,�t) and solution of the following SDE starting at x:

dXi
t =

∫
A
bi
(
t,Xt ,a

)
μt(da)dt+

d∑
k=1

∫
A
σi,k
(
t,Xt ,a

)
Mk(da,dt), (2.14)

where M = (Mk)dk=1 is a family of d-strongly orthogonal continuous martingale measures
with intensity μt(da)dt.

(2) If the coefficients b and σ are Lipschitz in x, uniformly in t and a, the SDE (2.14) has
a unique pathwise solution.

Using the chattering lemma, we get the following result due to Méléard [14] on ap-
proximating continuous orthogonal martingale measures with given intensity with a se-
quence of stochastic integrals with respect to a single Brownian motion. See also [15, 16]
for applications of martingale measures in infinite systems of interacting particles and
branching processes.

Proposition 2.6 [14]. LetM be a continuous orthogonal martingale measure with intensity
μt(da)dt onA× [0,1]. Then there exist a sequence of predictableA-valued processes (un(t))
and a Brownian motion B defined on an extension of (Ω,�,P) such that for all t ∈ [0,T]
and ϕ continuous bounded functions from A to R,

lim
n→+∞E

[(
Mt(ϕ)−

∫ t

0
ϕ
(
un(s)dBs

))2]
= 0. (2.15)

3. Approximation and existence results of relaxed controls

In order for the relaxed control problem to be truly an extension of the original one,
the infimum of the expected cost among relaxed controls must be equal to the infimum
among strict controls. This result is based on the approximation of a relaxed control by a
sequence of strict controls, given by Lemma 2.3.

The next theorem which is our main result in this section gives the stability of the
controlled stochastic differential equations with respect to the control variable.

Let (μt) be a relaxed control. We know from Theorem 2.5, that there exists a family
of continuous strongly orthogonal martingale measures Mt = (Mk

t ) such that the state of
the system satisfies the following SDE, starting at X0 = x:

dXt =
∫
A
b
(
t,Xt,a

)
μt(da)dt+

∫
A
σ
(
t,xt,a

)
M(da,dt). (3.1)

Moreover, thanks to Lemma 3.4 and Proposition 2.6, there exist a sequence (un(t)) of
strict controls and a Brownian motion B defined on an extension of (Ω,�,P) such that
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for each t ∈ [0,T] and each continuous bounded function ϕ from A to R,

lim
n→+∞E

[(
Mt(ϕ)−

∫ t

0
ϕ
(
un(s)

)
dBs

)2]
= 0. (3.2)

Denote by Xn
t the solution of

dXn
t = b

(
t,Xn

t ,unt
)
dt+ σ

(
t,Xn

t ,unt
)
dBt,

Xn(0)= x,
(3.3)

which can be written in relaxed form as

dXn
t =

∫
A
b
(
t,Xn

t ,a
)
μnt (da)dt+

∫
A
σ
(
t,Xn

t ,a
)
Mn(da,dt),

Xn
0 = x,

(3.4)

with respect to the martingale measureMn(t,A)=∫ t0 1A(un(s))dBs and μnt (da)=δun(t)(da).

Theorem 3.1. Let Xt and Xn
t be the diffusions solutions of (3.1) and (3.4), respectively. If

the pathwise uniqueness holds for (3.1), then

lim
n→∞E

[
sup

0≤t≤1

∣∣Xn
t −Xt

∣∣2
]
= 0. (3.5)

The proof of Theorem 3.1 will be given later.

Corollary 3.2. Let J(un) and J(μ) be the expected costs corresponding, respectively, to un

and μ, where un and μ are defined as in the last theorem. Then there exists a subsequence
(unk ) of (un) such that J(unk ) converges to J(μ).

Proof of Corollary 3.2. From Theorem 3.1 it follows that the sequence (Xn
t ) converges to

Xt in probability, uniformly in t, then there exists a subsequence (Xnk
t ) that converges to

Xt, P-a.s., uniformly in t. We have

∣∣J(unk)− J(μ)
∣∣≤ E

[∫ 1

0

∫
A

∣∣h(t,Xnk
t ,a

)−h
(
t,Xt,a

)∣∣δunkt (da)dt
]

+E
[∣∣∣∣
∫ 1

0

∫
A
h
(
t,Xt,a

)
δunkt (da)dt−

∫ 1

0

∫
A
h
(
t,Xt ,a

)
μt(da)dt

∣∣∣∣
]

+E
[∣∣g(Xnk

1

)− g
(
X1
)∣∣].

(3.6)

It follows from the continuity and boundness of the functions h and g with respect to
x that the first and third terms in the right-hand side converge to 0. The second term
in the right-hand side tends to 0 by the weak convergence of the sequence δun to μ, the
continuity and the boundness of h in the variable a. We use the dominated convergence
theorem to conclude. �

To prove Theorem 3.1, we need some auxiliary results on the tightness of the processes
in question.
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Lemma 3.3. The family of relaxed controls ((μn)n≥0,μ) is tight in V .

Proof. [0,1]×A being compact, then by Prokhorov’s theorem, the space V of probability
measures on [0,1]×A is also compact for the topology of weak convergence. The fact
that μn, n≥ 0 and μ being random variables with values in the compact set V yields that
the family of distributions associated to ((μn)n≥0,μ) is tight. �

Lemma 3.4. The family of martingale measures ((Mn)n≥0,M) is tight in the space CS′ =
C([0,1],S′) of continuous functions from [0,1] with values in S′ the topological dual of the
Schwartz space S of rapidly decreasing functions.

Proof. The martingale measures Mn, n ≥ 0, M can be considered as random variables
with values in CS′ = C([0,1],S′) (see Mitoma [20]). By applying [20, Lemma 6.3], it
is sufficient to show that for every ϕ in S, the family (Mn(ϕ), n ≥ 0,M(ϕ)) is tight in
C([0,1],Rd), where Mn(ω, t,ϕ)= ∫Aϕ(a)Mn(ω, t,da) and M(ω, t,ϕ)= ∫Aϕ(a)M(ω, t,da).
Let p > 1 and s < t. By the Burkholder-Davis-Gundy inequality, we have

E
(∣∣Mn

t (ϕ)−Mn
s (ϕ)

∣∣2p)≤ CpE
[(∫ t

s

∫
A

∣∣ϕ(a)
∣∣2
μnt (da)dt

)p]

= CpE
[(∫ t

s

∣∣ϕ(unt )
∣∣2
dt
)p]

≤ Cp sup
a∈A

∣∣ϕ(a)
∣∣2p∣∣t− s

∣∣p

≤ Kp

∣∣t− s
∣∣p,

(3.7)

where Kp is a constant depending only on p. That is the Kolmogorov condition is fulfilled
(see Lemma A.2 in the appendix below). Hence the sequence (Mn(ϕ)) is tight. The same
arguments can be used to show that E(|Mt(ϕ)−Ms(ϕ)|2p)≤ Kp |t− s|p, which yields the
tightness of Mt(ϕ). �

Lemma 3.5. If Xt and Xn
t are the solutions of (5) and (6), respectively, then the family of

processes (Xt,Xn
t ) is tight in C = C([0,1],Rd).

Proof. Let p > 1 and s < t. Using the usual arguments from stochastic calculus and the
boundness of the coefficients b and σ , it is easy to show that

E
(∣∣Xn

t −Xn
s

∣∣2p)≤ Cp|t− s|p, E
(∣∣Xt −Xs

∣∣2p)≤ Cp

∣∣t− s
∣∣p, (3.8)

which yields the tightness of (Xt, Xn
t , n≥ 0). �

Proof of Theorem 3.1. Let μ be a relaxed control. According to Lemma 2.3, there exists a
sequence (un) ⊂� such that μn = dtδun(t)(da) converges to dtμ(t,da) in V, P-a.s. Let Xn

t

and Xt be the solutions of (3.4) and (3.1) associated with μ and un. Suppose that the
conclusion of Theorem 3.1 is false. Then there exists β > 0 such that

inf
n
E
[∣∣Xn

t −Xt

∣∣2
]
≥ β. (3.9)
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According to Lemmas 3.3, 3.4, and 3.5, the family of processes

γn = (μn,μ,Mn,M,Xn,X
)

(3.10)

is tight in the space

Γ= (V×V)×(CS′ ×CS′
)×(C×C). (3.11)

By the Skorokhod selection theorem (Lemma A.1 in the appendix below), there exist a

probability space (Ω̂,�̂, P̂) and a sequence γ̂n = (μ̂n, v̂n, X̂n, Ŷ n,M̂n,N̂n) defined on it such
that

(i) for each n∈N, the laws of γnand γ̂n coincide,
(ii) there exists a subsequence (γ̂nk ) of (γ̂n) still denoted by (γ̂n) which converges to

γ̂, P̂-a.s. on the space Γ, where γ̂ =(μ̂, v̂, X̂ , Ŷ , M̂, N̂).
By the uniform integrability, it holds that

β ≤ liminf
n

E
[

sup
t≤1

∣∣Xn
t −Xt

∣∣2
]
= liminf

n
Ê
[

sup
t≤1

∣∣X̂n
t − Ŷ n

t

∣∣2
]
= Ê

[
sup
t≤1

∣∣X̂t − Ŷt

∣∣2
]

,

(3.12)

where Ê is the expectation with respect to P̂. According to property (i), we see that X̂n
t

and Ŷ n
t satisfy the following equations:

dX̂n
t =

∫
A
b
(
t, X̂n

t ,a
)
μ̂n(t,da)dt+

∫
A
σ
(
t, X̂n

t ,a
)
M̂n(da,dt), X̂n

0 = x,

dŶn
t =

∫
A
b
(
t, Ŷ n

t ,a
)
v̂n(t,da)dt+

∫
A
σ
(
t, X̂n

t ,a
)
N̂n(da,dt), Ŷ n

0 = x.

(3.13)

Since b and σ are continuous in (x,a), then using the fact that (γ̂n) converges to γ̂, P̂-
a.s., it holds that

∫ t
0

∫
A b(t, X̂n

t ,a)μ̂n(t,da)dt converges in probability to
∫ t

0

∫
A b(t, X̂t,a)μ̂(t,

da)dt, and
∫
A σ(t, X̂n

t ,a) M̂n(da,dt) converges in probability to
∫
A σ(t, X̂t,a) M̂(da,dt).

The same claim holds for the second equation in (3.13). Hence, (X̂n
t ) and (Ŷ n

t ) con-
verge, respectively, to X̂t and Ŷt which satisfy

dX̂t =
∫
A
b
(
t, X̂t,a

)
μ̂(t,da)dt+

∫
A
σ
(
t, X̂t,a

)
M̂(da,dt), X̂0 = x,

dŶt =
∫
A
b
(
t, Ŷt,a

)
v̂(t,da)dt+

∫
A
σ
(
t, Ŷt,a

)
N̂(da,dt), Ŷ0 = x.

(3.14)

The rest of the proof consists in showing that μ̂ = v̂, P̂-a.s., and M̂(da,dt) = N̂(da,dt),
P̂-a.s. By Lemma 2.3, μn → μ in V, P-a.s, it follows that the sequence (μn,μ) converges to
(μ,μ) in V2. Moreover,

law
(
μn,μ

)= law
(
μ̂n, v̂n

)
(3.15)

and as n→∞,
(
μ̂n, v̂n

)−→ (
μ̂, v̂
)
, P̂-a.s. in V2. (3.16)
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Therefore law(μ̂, v̂)= law(μ,μ) which is supported by the diagonal of V2. Hence μ̂= v̂, P̂-
a.s.

The same arguments may be applied to show that M̂(da,dt)= N̂(da,dt), P̂-a.s. It fol-
lows that X̂ and Ŷ are solutions of the same stochastic differential equation with the same
martingale measure M̂ and the same relaxed control μ̂. Hence by the pathwise uniqueness
property we have X̂ = Ŷ , P̂-a.s., which contradicts (3.9). �

Using Skorokhod selection theorem, we show in the next proposition that an opti-
mal solution for the relaxed control problem exists. Note that another proof based on
martingale problems of the type (2.8) is given in El-Karoui et al. [5].

Proposition 3.6. Suppose that the coefficients b, σ , h, and g are bounded, measurable, and
continuous in (x,a). Then the relaxed control problem admits an optimal solution.

Proof. Let β = inf{J(μ);μ∈�}, where

J(μ)= E
[∫ 1

0

∫
A
h
(
t,Xt,a

)
μt(da)dt+ g

(
XT
)]
. (3.17)

Let (μn,Xn)n≥0 be a minimizing sequence for the cost function J(μ), that is, limn→+∞ J(μn)
= β, where Xn is the solution of

dXn
t =

∫
A
b
(
t,Xn

t ,a
)
μnt (da)dt+

∫
A
σ
(
t,Xn

t ,a
)
Mn(da, dt), Xn

0 = x. (3.18)

Using the same arguments as in the proof of Theorem 3.1, it holds that γn = (μn,Mn,Xn)
is tight in the space Γ = V×CS′×C. Moreover, using the Skorokhod selection theorem

(Lemma A.1 in the appendix), there exist a probability space (Ω̂,�̂, P̂) and a sequence
γ̂n = (μ̂n,M̂n, X̂n) defined on it such that

(i) for each n∈N, the laws of γn and γ̂n coincide;
(ii) there exists a subsequence (γ̂nk ) of (γ̂n) still denoted by (γ̂n) which converges to

γ̂, P̂-a.s., on the space Γ, where γ̂ = (μ̂,M̂, X̂).
According to property (i), we see that X̂n

t satisfies the following equation:

dX̂n
t =

∫
A
b
(
t, X̂n

t ,a
)
μ̂n(t,da)dt+

∫
A
σ
(
t, X̂n

t ,a
)
M̂n(da,dt), X̂n

0 = x. (3.19)

Since b and σ are continous in (x,a), then using the fact that (γ̂n) converges to γ̂, P̂-a.s., it
holds that

∫ t
0

∫
A b(t, X̂n

t ,a)μ̂n(t,da)dt converges in probability to
∫ t

0

∫
A b(t, X̂t ,a) μ̂(t,da)dt,

and
∫
A σ(t, X̂n

t ,a) M̂n(da,dt) converges in probability to
∫
A σ(t, X̂t ,a) M̂(da,dt).

Hence, (X̂n
t ) and (Ŷ n

t ) converge, respectively, to X̂t and Ŷt which satisfy

dX̂t =
∫
A
b
(
t, X̂t ,a

)
μ̂(t,da)dt+

∫
A
σ
(
t, X̂t,a

)
M̂(da, dt), X̂0 = x. (3.20)

The instantaneous cost h and the final cost g being continuous and bounded in (x,a),
we proceed as in Corollary 3.2, to conclude that β = limn→+∞ J(μn)= J(μ̂). Hence μ̂ is an
optimal control. �



Seı̈d Bahlali et al. 11

4. Maximum principle for relaxed control problems

4.1. Assumptions and preliminaries. In this section we establish optimality necessary
conditions for relaxed control problems, where the system is described by a SDE driven
by a martingale measure of the form (3.1) and the admissible controls are measure-valued
processes. The proof is again based on the chattering lemma, where, using Ekeland’s vari-
ational principle, we derive necessary conditions of near optimality for the approximat-
ing sequence of strict controls. We obtain the maximum principle for our relaxed control
problem by using stability properties of the corresponding state equations and adjoint
processes.

Recall the controlled SDE:

dxt =
∫
A
b
(
t,xt,a

)
μt(da)dt+

∫
A
σ
(
t,xt,a

)
M(da, dt), x0 = x, (4.1)

where M(da,dt) is an orthogonal martingale mesure whose intensity is the relaxed con-
trol μt(da)dt. The corresponding cost is given by

J(μ)= E
[
g
(
x1
)

+
∫ 1

0

∫
A
h
(
t,xt,a

)
μt(da)

]
. (4.2)

We assume that the coefficients of the controlled equation satisfy the following hy-
pothesis.

(H1) b : R+×Rd×A→Rd, σ : R+×Rd×A→Rd⊗Rk, and h : R+×Rd×A→R are
bounded measurable in (t,x,a) and twice continuously differentiable functions in x for
each (t,a), and there exists a constant C > 0 such that

∣∣ f (t,x,a)− f (t, y,a)
∣∣+

∣∣ fx(t,x,a)− fx(t, y,a)
∣∣≤ C|x− y|, (4.3)

where f stands for one of the functions b, σ , h.
b, σ , h and their first and second derivatives are continuous in the control variable a.
g :Rd→R is bounded and twice continuously differentiable such that

∣∣g(y)− g(y)
∣∣+

∣∣gx(y)− gx(y)
∣∣≤ C|x− y|. (4.4)

Under the assumptions above, the controlled equation admits a unique strong solution
such that for every p ≥ 1, E[sup0≤t≤T |xt|p] <M(p).

We know by Proposition 3.6 that an optimal relaxed control denoted by μ exists. We
seek for necessary conditions satisfied by this control in a form similar to the Pontryagin
maximum principle.

The next lemma is an approximation result which we prove directly without using
Skorokhod’s selection theorem, the coefficients being smooth in the state variable.
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Lemma 4.1. Let μ be a relaxed optimal control and X the corresponding optimal trajectory.
Then there exists a sequence (un)n ⊂� of strict controls such that

lim
n→∞E

[
sup

0≤t≤T

∣∣Xt −Xn
t

∣∣2
]
= 0,

lim
n→∞ J(μ

n)= J(μ),

(4.5)

where μn = dtδunt (da) and Xn denotes the solution of equation associated with μn.

Proof. (i) The sequence (un) is given by the chattering lemma (Lemma 2.3). Let x and xn

be the trajectories associated, respectively, with μ and μn, and t ∈ [0,T],

E
[∣∣xt − xnt

∣∣2
]
= E

[∣∣∣∣
∫ t

0

∫
A
b
(
s,xns ,a

)
δuns (da)ds+

∫ t

0
σ
(
s,xns ,uns

)
dBs.

−
∫ t

0

∫
A
b
(
s,xs,a

)
μs(da)ds+

∫ t

0

∫
A
σ
(
s,xs,a

)
M(ds, da)

∣∣∣∣
2
]

≤ C1

{
E

[∣∣∣∣
∫ t

0

∫
A
b
(
s,xns ,a

)
δuns (da)ds−

∫ t

0

∫
A
b
(
s,xs,a

)
μs(da)ds

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0
σ
(
s,xns ,uns

)
dBs−

∫ t

0

∫
A
σ
(
s,xs,a

)
M(ds, da)

∣∣∣∣
2
]}

≤ C2

{
E

[∣∣∣∣
∫ t

0
b
(
s,xns ,uns

)
ds−

∫ t

0
b
(
s,xs,uns

)
ds
∣∣∣∣

2
]

+E

[∣∣∣∣
∫ t

0

∫
A
b
(
s,xs,a

)
δuns (da)ds−

∫ t

0

∫
A
b
(
s,xs,a

)
μs(da)ds

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0
σ
(
s,xns ,uns

)
dBs−

∫ t

0

∫
A
σ
(
s,xs,uns

)
dBs

∣∣∣∣
2
]

+E

[∣∣∣∣
∫ t

0
σ
(
s,xs,uns

)
dBs−

∫ t

0

∫
A
σ
(
s,xs,a

)
M(ds, da)

∣∣∣∣
2
]}

= C2
{
I1 + I2 + I3 + I4

}
.

(4.6)

Since the coefficients b and σ are Lipschitz continuous in the state variable x, then

I1 + I3 ≤ C3E
[∫ T

0

∣∣xns − xs
∣∣2
ds
]
. (4.7)

Since dtδunt (da) −−−→
n→∞ dtμt(da) in V, P-a.s, b is bounded and continuous in the control

variable a, therefore using the dominated convergence theorem, I3 converges to 0 as n
tends to +∞.
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We use Proposition 2.6 to prove that I4 converges to 0 as n tends to +∞. Using Gron-
wall’s lemma, we conclude that

lim
n→∞E

[∣∣xt − xnt
∣∣2
]
= 0. (4.8)

Applying Burkholder-Davis-Gundy inequality for the martingale part allows us to obtain
a uniform convergence in t:

lim
n→∞E

[
sup

0≤t≤T

∣∣xt − xnt
∣∣2
]
= 0. (4.9)

(ii)

∣∣J(μ)− J
(
μn
)∣∣≤

{
E

[∣∣∣∣
∫ t

0
h
(
s,xns ,uns

)
ds−

∫ t

0
h
(
s,xs,uns

)
ds
∣∣∣∣

2
]

+E

[∣∣∣∣
∫ t

0

∫
A
h
(
s,xs,a

)
δuns (da)ds−

∫ t

0

∫
A
h
(
s,xs,a

)
μs(da)ds

∣∣∣∣
2
]

+E
[∣∣g(XT

)− g
(
Xn
T

)∣∣]
}
.

(4.10)

The first and the third terms in the right-hand side converge to 0 because h and g are
Lipschitz continuous in x and the fact that

lim
n→∞E

[
sup

0≤t≤T

∣∣xt − xnt
∣∣2
]
= 0. (4.11)

h is bounded and continuous in a; hence an application of the dominated convergence
theorem allows us to conclude that the second term in the right-hand side tends to 0. �

4.2. Necessary conditions for near optimality. According to the optimality of μ, there
exists a sequence (εn) of positive real numbers with limn→+∞ εn = 0 such that

J
(
un
)= J

(
μn
)≤ inf

{
J(μ); μ∈�

}
+ εn, (4.12)

where μn = dtδunt (da).
In this section, we give necessary conditions for near optimality satisfied by the mini-

mizing sequence (un).

4.2.1. Stability of the state equation and adjoint processes. To derive necessary conditions
for near optimality, we use Ekeland’s variational principle (Lemma 4.2), along with an
appropriate choice of a metric on the space � of admissible controls.
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Lemma 4.2 (Ekeland). Let (V ,d) be a complete metric space and F : V → R∪ {+∞} be
lower semicontinuous and bounded from below. Given ε > 0, suppose uε ∈V satisfies F(uε)
≤ inf{F(v); v ∈V}+ ε. Then for any λ > 0, there exists v ∈V such that

(i) F(v)≤ F(uε);
(ii) d(uε,v)≤ λ;

(iii) for all w 
= v;F(v) < F(w) + ε/λ ·d(w,v).

We denote by d the metric on the space � defined by

d(u,v)= P⊗dt
{

(ω, t)∈Ω× [0,T]; u(ω, t) 
= v(ω, t)
}

, (4.13)

where P⊗dt is the product measure of P and the Lebesgue measure.

Lemma 4.3. (i) (�,d) is a complete metric space.
(ii) For any p ≥ 1, there exists M > 0 such that for any u,v ∈� the following estimate

holds:

E
[

sup
0≤t≤T

∣∣xut − xvt
∣∣2p
]
≤M · (d(u,v)

)1/2
, (4.14)

where xut and xvt are the solutions of (2.1) corresponding to u and v.
(iii) The cost functional J : (�,d)→ R is continuous. More precisely if u and v are two

elements in �, then

∣∣J(u)− J(v)
∣∣≤ C · (d(u,v)

)1/2
. (4.15)

See [17, 26] for the detailed proof.
For any strict control u ∈�, we denote (p1,Q1) and (p2,Q2) the first- and second-

order adjoint variables satisfying the following backward SDE are called sometimes ad-
joint equations:

dp1(t)=−[b∗x (t,x(t),u(t)
)
p1(t) + σ∗x

(
t,x(t),u(t)

)
Q1(t)

+hx
(
t,x(t),u(t)

)]
dt+Q1(t)dBt,

p1(T)= gx
(
x(T)

)
,

−dp2(t)=−[b∗x (t,x(t),u(t)
)
p2(t) + p2(t)bx

(
t,x(t),u(t)

)

+ σ∗x
(
t,x(t),u(t)

)
p2(t)σx

(
t,x(t),u(t)

)

+ σ∗x
(
t,x(t),u(t)

)
Q2(t)

+Q2(t)σx
(
t,x(t),u(t)−Hxx

(
x(t),u(t), p1(t),Q1(t)

))]
dt

+Q2(t)dBt,

p2(T)= gxx
(
x(T)

)
,

(4.16)

where x(t) is the trajectory associated with u.
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The derivatives of the data being bounded, the generators of these backward SDEs
are globally Lipschitz and have linear growth. Then by the result of Pardoux and Peng
[21], there exist unique Ft-adapted pairs (p1,Q1) and (p2,Q2) with values, respectively, in
Rd ×Rd×d and Rd×d × (Rd×d)d which solve (4.16) such that

E
[

sup
0≤t≤T

∣∣p1(t)
∣∣2

+
∫ T

0

∣∣Q1(t)
∣∣2
dt
]
< +∞,

E
[

sup
0≤t≤T

∣∣p2(t)
∣∣2

+
∫ T

0

∣∣Q2(t)
∣∣2
dt
]
< +∞.

(4.17)

Lemma 4.4. For any 0 < α < 1 and 1 < p < 2 satisfying (1 + α) < 2, there exists a constant
C1 = C1(α, p) > 0 such that for any strict controls u and u′ along with the corresponding
trajectories x and x′ and the solutions (p′1,Q′1, p′2,Q′2) and (p′1,Q′1, p′2,Q′2) of the backward
SDE (·) and (·), the following estimates hold:

E
[∫ T

0

(∣∣p1(t)− p′1(t)
∣∣2

+
∣∣Q1(t)−Q′1(t)

∣∣2
)
dt
]
≤ C1d(u,u′)αp/2,

E
[∫ T

0

(∣∣p2(t)− p′2(t)
∣∣2

+
∣∣Q2(t)−Q′2(t)

∣∣2
)
dt
]
≤ C1d(u,u′)αp/2.

(4.18)

The proof uses usual arguments from the theory of backward stochastic differential
equations (see [26] for the details).

4.2.2. Necessary conditions for near optimality. For each (t,x,a, p,q) ∈ [0,1]×Rd × A
×Rd ×Rd×d define the Hamiltonian of the system

H(t,x,a, p,q)=−h(t,x,a)− p · b(t,x,a)− q · σ(t,x,a). (4.19)

Moreover we define the �−function associated with a strict control u(·) and its cor-
responding trajectory x(·) by

�(x(·),u(·))(t,x,a)=H
(
t,x,a, p1(t),Q1(t)−p2(t) · σ(t,x,u(t)

))− 1
2
σ∗(t,x,a)p2(t)σ(t,x,a),

(4.20)

where (t,x,a) ∈ [0,1]×Rd ×A and (p1(t),Q1(t)), (p2(t),Q2(t)) are solutions of the ad-
joint (4.16).

The next proposition gives necessary conditions for near optimality satisfied by the
minimizing sequence (un) (i.e., (μn)= (dtδunt (da)) that converges to the optimal relaxed
control dtμt(da)).

Proposition 4.5. Let un be an admissible strict control such that

J(un)= J
(
μn
)≤ inf

{
J(μ); μ∈�

}
+ εn, (4.21)
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then the following inequality holds:

E
(∫ 1

0
�(xn(t),un(t))(t,xn(t),un(t)

)
dt
)
≥ sup

a∈A
E
(∫ 1

0
�(xn(t),un(t))(t,xn(t),a

)
dt
)
− ε1/3.

(4.22)

Sketch of the proof. According to Lemma 4.3, the cost functional J(u) is continuous with
respect to the topology induced by the metric d. Then by applying Ekeland’s variational
principle for un with λ= ε2/3, there exists an admissible control ũn such that

d
(
un, ũn

)≤ ε2/3,

J
(
ũn
)≤ J(u) ∀u∈�,

J(u)= J(u) + ε1/3d
(
u, ũn

)
.

(4.23)

The control vn which is εn-optimal is in fact optimal for the new cost functional J(u).
We proceed as in the classical maximum principle (Peng [22], Bensoussan [3]) to derive
a maximum principle for ũn(·). Let t0 ∈ (0,1), a∈ A; we define the strong variation by

ũnδ =
⎧⎪⎨
⎪⎩
a on

(
t0, t0 + δ

)
,

vn(t) otherwise.
(4.24)

The fact that J(vn)≤ J(ũn) and d(ũn, ũnδ)≤ δ imply that

J
(
ũnδ
)− J

(
ũn
)≥−ε1/3

n δ. (4.25)

Proceeding as in Peng [22] (see also [26]) and using the smoothness of the data defin-
ing the control problem, we can expand X̃n

δ (·) (the solution of (2.1) corresponding to ũnδ)
to the second order to get the following inequality:

E
∫ t0+δ

t0

{
1
2

(
σ
(
t, X̃n(t),a

)
− σ

(
t, X̃n(t), ũn

))∗
p̃n2
(
σ
(
t, X̃n(t),a

)
− σ

(
t, X̃n(t), ũn

))

+ p̃n1
(
b
(
t, X̃n(t),a

)
− b

(
t, X̃n(t), ũn

))
+ Q̃n

1

(
σ
(
t, X̃n(t),a

)
− σ

(
t, X̃n(t), ũn

))

+
(
h
(
t, X̃n(t),a

)
−h

(
t, X̃n(t), ũn

))}
dt+ o(δ)≥−εnδ,

(4.26)

where ( p̃n1 ,Q̃n
1 ) and ( p̃n2 ,Q̃n

2 ) are the first- and second-order adjoint processes, solutions
of (4.16) corresponding to (ũn, X̃n).

The variational inequality is obtained for ũn by dividing by δ and tending δ to 0.
The same claim can be proved for un by using the stability of the state equations and

the adjoint processes with respect to the control variable (Lemmas 4.1 and 4.4). �
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Remark 4.6. The variational inequality (4.22) can be proved with the supremum over
a∈ A replaced by the supremum over u(·)∈� by simply putting u(t) in place of a in the
definition of the strong perturbation.

4.3. The relaxed maximum principle. Assume that �t is the natural filtration of the
Brownian motion Bt. Let μ be a relaxed control and x(·) the corresponding trajectory. Let
(p1, Q1) and (p2, Q2) be the solutions of the first- and second-order adjoint equations,
associated with the optimal relaxed pair (μ,x),

dp1(t)=−[b∗x (t,x(t),μ(t)
)
p1(t) + σ∗x

(
t,x(t),μ(t)

)
Q1(t)

+hx
(
t,x(t),μ(t)

)]
dt+Q1(t)dBt,

p1(T)= gx
(
x(T)

)
,

−dp2(t)=−[b∗x (t,x(t),μ(t)
)
p2(t) + p2(t)bx

(
t,x(t),μ(t)

)

+ σ∗x
(
t,x(t),μ(t)

)
p2(t)σx

(
t,x(t),μ(t)

)

+ σ∗x
(
t,x(t),μ(t)

)
Q2(t)

+Q2(t)σx
(
t,x(t),μ(t)−Hxx

(
x(t),μ(t), p1(t),Q1(t)

))]
dt

+Q2(t)dBt,

p2(T)= gxx
(
x(T)

)
,

(4.27)

where the notation f (t,x(t),μ(t))= ∫A f (t,x(t),a)μ(t,da), and f stands for bx, σx, hx, and
Hxx.

Define the function associated with the optimal pair (μ,x(·)) and their corresponding
adjoint processes,

�(x(·),μ(·))(t,x,a)=H
(
t,x,a, p1(t),Q1(t)−p2(t) · σ(t,x,μ(t)

))− 1
2
σ∗(t,x,a)p2(t)σ(t,x,a).

(4.28)

Theorem 4.7 (maximum principle). Let (μ,x) be an optimal relaxed pair, then

E
(∫ 1

0
�(x(t),μ(t))(t,x(t),μ(t)

)
dt
)
= sup

a∈A
E
(∫ 1

0
�(x(t),μ(t))(t,x(t),a

)
dt
)
. (4.29)

Corollary 4.8. Under the same conditions as in Theorem 4.7, it holds that

E
(∫ 1

0
�(x(t),μ(t))(t,x(t),μ(t)

)
dt
)
= sup

υ∈P(A)

∫ 1

0
E
[
�(x(t),μ(t))(t,x(t),υ

)]
dt, (4.30)

where �(x(t),μ(t))(t,x(t),υ)= ∫A�(x(t),μ(t))(t,x(t),a)da.
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Proof. The inequality

sup
μ∈P(A)

∫ 1

0
E
[
�(x(t),μ(t))(t,x(t),υ

)]
dt ≥ sup

a∈A
E
(∫ 1

0
�(x(t),μ(t))(t,x(t),a

)
dt
)

(4.31)

is obvious. Indeed it suffices to take μ= δu, where u is any point of A. Now if υ ∈ P(A) is
a probability measure on A, then

∫ 1

0
E
[
�(x(t),μ(t))(t,x(t),υ

)]
dt ∈ conv

{
E
(∫ 1

0
�(x(t),μ(t))(t,x(t),a

)
dt
)

, a∈A
}
. (4.32)

Hence, by using a result on convex analysis, it holds that

∫ 1

0
E
[
�(x(t),μ(t))(t,x(t),υ

)]
dt ≤ sup

u∈A
E
(∫ 1

0
�(x(t),μ(t))(t,x(t),a

)
dt
)
. (4.33)

�

Remark 4.9. Since P(A) is a subspace of V consisting of constant (in (ω, t)) relaxed con-
trols, then (4.29) may be replaced by

E
(∫ 1

0
�(x(t),μ(t))(t,x(t),μ(t)

)
dt
)
= sup

υ∈V

∫ 1

0
E
[
�(x(t),μ(t))(t,x(t),υ(t)

)]
dt. (4.34)

Corollary 4.10 (the Pontriagin relaxed maximum principle). If (μ̂, x̂) denotes an optimal
relaxed pair, then there exists a Lebesgue negligible subset N such that, for any t not in N ,

�(x(t),μ(t))(t,x(t),μ(t)
)= sup

υ∈P(A)
�(x(t),μ(t))(t,x(t),υ

)
, P-a.s. (4.35)

Proof. Let θ ∈]0,T[ and B ∈�θ , for small h > 0, define the relaxed control

μht =
⎧⎨
⎩
υ1B for θ < t < θ +h,

μ̂t otherwise,
(4.36)

where υ is a probability measure on A. It follows from (4.29) that

1
h

∫ θ+h

θ
E
[
1B�(x(t),μ(t))(t,x(t),μ(t)

)]
dt ≥ 1

h

∫ θ+h

θ
E
[
1B�(x(t),μ(t))(t,x(t),υ

)]
dt. (4.37)

Therefore passing at the limit as h tends to zero, we obtain

E
[

1B

∫
A
H
(
θ, x̂θ ,a, pθ

) · μ̂θ(da)
]
≥ E

[
1B

∫
A
H
(
θ, x̂θ ,u, pθ

)
μ(da)

]
(4.38)

for any θ not in some Lebesgue null set N .
The last inequality is valid for all B ∈�θ , then for any bounded �θ-measurable ran-

dom variable F, it holds that

E
[
F�(x(t),μ(t))(t,x(t),μ(t)

)]≥ E
[
F�(x(t),μ(t))(t,x(t),υ

)]
, (4.39)
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which leads to

E
[
�(x(θ),μ(θ))(θ,x(θ),μ(θ)

)
/�θ

]
≥ E

[
�(x(θ),μ(θ))(θ,x(θ),υ

)
/�θ

]
. (4.40)

The result follows from the measurability with respect to �θ of the quantities inside the
conditional expectation. �

The proof of Theorem 4.7 is based on the next lemma on the passage to the limit as n
tends to +∞ in the adjoint processes (pn1 , Qn

1 ) and (pn2 , Qn
2 ) as well as in the variational

inequality (4.22).

Lemma 4.11. Let (pn1 ,Qn
1 ) and (pn2 ,Qn

2 ) (resp., (p1,Q1) and (p2,Q2)) be defined by (4.16)
associated with the pair (un,xn), (resp., (4.27)), then it holds that

(i) limn→+∞E[
∫ T

0 (|p1(t)− pn1 (t)|2 + |Q1(t)−Qn
1 (t)|2)dt]= 0;

(ii) limn→+∞E[
∫ T

0 (|p2(t)− pn2 (t)|2 + |Q2(t)−Qn
2 (t)|2)dt]= 0;

(iii) limn→+∞E(
∫ 1

0 �(xn(t),un(t))(t,xn(t),un(t))dt)= E(
∫ 1

0 �(x(t),μ(t))(t,x(t),μ(t))dt).

Proof. Let us prove (i).
For simplicity of notations, we denote by

An(t)= b∗x
(
t,xn(t),un(t)

)
, A(t)= b∗x

(
t,x(t),μ(t)

)
,

Bn(t)= σ∗x
(
t,xn(t),un(t)

)
, B(t)= σ∗x

(
t,x(t),μ(t)

)
,

Cn(t)= h∗x
(
t,xn(t),un(t)

)
, C(t)= h∗x

(
t,x(t),μ(t)

)
,

fn(t, p,Q)= An(t)p+Bn(t)Q+Cn(t), f (t, p,Q)= A(t)p+B(t)Q+C(t),

ξn = gx
(
xn(T)

)
, ξ = gx

(
x(T)

)
.

(4.41)

gx being Lipschitz continuous and xn(T) converging in probability to x(T), hence ξn con-
verges to ξ. Then without loss of generality we may suppose that ξn = ξ.

Applying Ito’s formula for |p1(t)− pn1 (t)|2, it holds that

∣∣p1(t)− pn1 (t)
∣∣2

+
∫ 1

t

∣∣Q1(s)−Qn
1 (s)

∣∣2
ds

= 2
∫ 1

t

(
p1(s)− pn1 (s)

)∗(
fn
(
s, pn1 (s),Qn

1 (s)
)− f

(
s, p1(s),Q1(s)

))
ds

−
∫ 1

t

(
p1(s)− pn1 (s)

)∗(
Q1(s)−Qn

1 (s)
)
dBs,

(4.42)

where (p1(t)− pn1 (t))∗ denotes the transpose of (p1(t)− pn1 (t)).
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Let α be an arbitrary real positive number. By using Young inequality and taking ex-
pectations in both sides, we get

E
(∣∣p1(t)− pn1 (t)

∣∣2
+
∫ 1

t

∣∣Q1(s)−Qn
1 (s)

∣∣2
)

≤ 2E
∫ 1

t

∣∣p1(s)− pn1 (s)
∣∣∣∣ fn(s, pn1 (s),Qn

1 (s)
)− f

(
s, p1(s),Q1(s)

)∣∣ds

≤ 2α2E
∫ 1

t

∣∣p1(s)− pn1 (s)
∣∣2
ds+

2
α2

E
∫ 1

t

∣∣ fn(s, pn1 (s),Qn
1 (s)

)− f
(
s, p1(s),Q1(s)

)∣∣2
ds

≤ 2α2E
∫ 1

t

∣∣p1(s)− pn1 (s)
∣∣2
ds

+
4
α2

E
∫ 1

t

∣∣ fn(t, pn1 (t),Qn
1 (t)

)− fn
(
t, p1,Q1

)∣∣2
ds

+
4
α2

E
∫ 1

t

∣∣ fn(t, p1,Q1
)− f

(
t, p1,Q1

)∣∣2
ds

≤ 2α2E
∫ 1

t

∣∣p1(t)− pn1 (t)
∣∣2
ds

+
4
α2

{
E
∫ 1

t

∣∣An(t)
∣∣2∣∣p1(t)− pn1 (t)

∣∣2
ds+E

∫ 1

t

∣∣Bn(t)
∣∣2∣∣Q1(t)−Qn

1 (t)
∣∣2
ds
}

+
4
α2

{
E
∫ 1

t

∣∣An(t)−A(t)
∣∣2∣∣p1(t)

∣∣2
ds+E

∫ 1

t

∣∣Bn(t)−B(t)
∣∣2∣∣Q1(t)

∣∣2
ds

+E
∫ 1

t

∣∣Cn(t)−C(t)
∣∣2
ds
}
.

(4.43)

An(t) and Bn(t) are uniformly bounded by the common Lipshitz constant C of b and σ .
We choose α such that 4C2/α2 < 1, and use Gronwall lemma to get

E
(∣∣p1(t)− pn1 (t)

∣∣2
+
∫ 1

t

∣∣Q1(t)−Qn
1 (t)

∣∣2
)

≤M
{
E
∫ 1

t

∣∣An(t)−A(t)
∣∣2∣∣p1(t)

∣∣2
ds+E

∫ 1

t

∣∣Bn(t)−B(t)
∣∣2∣∣Q1(t)

∣∣2
ds

+E
∫ 1

t

∣∣Cn(t)−C(t)
∣∣2
ds
}
.

(4.44)

The result follows from the fact that An(t), Bn(t), Cn(t) converge to A(t), B(t), and
C(t).
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To get the result with sup norm, it is sufficient to use Burkholder-Davis-Gundy in-
equality to the martingale part in Ito’s formula.

(ii) and (iii) are proved by using the same arguments. �

Proof of Theorem 4.7. The result is proved by passing to the limit in inequality (4.22) and
using Lemma 4.11. �

Appendix

Lemma A.1 (Skorokhod selection theorem [11, page 9]). Let (S,ρ) be a complete separable
metric space, and let P and Pn, n= 1,2, . . . , be probability measures on (S,BS) such that (Pn)

converges weakly to P. Then, on a probability space (Ω̃,�̃, P̃), there exist S-valued random
variables Xn, n= 1,2, . . . , and X such that

(1) P = P̃X ;
(2) Pn = P̃Xn , n= 1,2, . . . ;
(3) Xn −−−→

n→∞ X P̃-a.s.

Lemma A.2 (Kolmogorov’s theorem [11, page 18]). Let (Xn
t )n≥0 be a sequence of d-dimen-

sional continuous processes satisfying the following two conditions:
(i) there exist positive constants m and γ such that E[|Xn

0 |γ]≤m,n≥ 0;
(ii) there exist positive constants α, β, mk, k = 1,2, . . . , such that

E
[∣∣Xn

t −Xn
s

∣∣α]≤mk|t− s|1+β, n≥ 0∀t, s∈ [0,k], k = 1,2, . . . . (A.45)

Then there exist a subsequence (nk), a probability space (Ω̃,�̃, P̃), and d-dimensional con-
tinuous processes X̃nk , k = 1,2, . . . , and X̃ , defined on it such that

(1) the laws of X̃nk and Xnk coincide;
(2) X̃nk

t converges to X̃t uniformly on every finite time interval, P̃-a.s.

Lemma A.3 (Mitoma [20]). Let CE′ = C([0,1],E′) be the space of continuous mappings
from [0,1] to E′ the topological dual of some Frêchet space E. Let (Pn) be a sequence of
probability measures on CE′ . Suppose that for each ξ in E, the sequence (PnΠ−1

ξ ) is tight in

C, where Πξ : x ∈ CE′ → 〈x·,ξ〉 ∈ C = C([0,1],Rd). Then the sequence (Pn) itself is tight.
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