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ABSTRACT

The limit distributions of linear and non-linear combinations of the &, = o(n) order statistics of i.i.d. random variables whose
maximum belongs to the domain of attraction of the Gumbel law are obtained. Our results may be applied in actuarial studies,
estimation of scale-location parameters, estimation of squared deviation in tail of a distribution, robustness theory and
detection of the outliers in statistical data. It is also closely related to the moment estimator of Dekkers-Einmahl-de Hann
(1989) for the index of an extreme distribution. This study completes that of Necir (1990, 1991a, 1991b, 2000a, 2000b).
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1. INTRODUCTION

Let X;, X,,..., be a sequence of independent and identically
distributed random variables with distribution function F.
For each integer n > 1, let X;, <...< X, denote the order
statistics based on X}, ..., X,

Assume that F' belongs to the domain of attraction of the
Gumbel distribution A(x) = exp (-¢™), written Fe D(A).
This means that there exist constants a, > 0 and b, such that
for all real x

lim F"(a,x+b,)=lim P(a,'(X,, —b, <x)=A(x)(1.1)

n—>x0

Necessary and sufficient conditions for Fe D(A) are well
known; see Gnedenko (1943), de Hann (1970), and
Galambos (1987) Chapter 2. In particular, if (1.1) holds,
then we may choose a, and b, by

a,=U(l/en)-U(/n)and b, =U(1/n), (1.2)

where U(l—s)=Q(s)=inf{x:F(s)2s }, 0<s<l1,is

the quantile function pertaining to F, and e is the constant

such that log e = 1.

Let o= Sup{x F(x)< 1} denote the right endpoint of F.
Along this paper, we suppose that F satisfies von Mise's

conditions (see e.g. von Mises (1936)) as follows :

(F) there exists an x, < ® such that F'is twice

continuously differentiable on (x),®) with derivatives f and
f,and

L S@0-F@)
P fz (x)

Among distributions, which satisfy the Von Mises,
conditions are the usual distributions as the Exponential,
Double-Exponential, Gamma, Logistic, Normal, Log-

(1.3)

Normal, Gumbel, Weibull, Poisson distributions.
Deheuvels, Haeusler and Mason (1990) has shown in
proposition 1 that the conditions (F) are equivalents to the
following

(U) there exist constants 0 < sy < 1, ¢ > 0 and a and a
continuous function b(.) with b(v)—0 as w40 such that

1
U(s)=a+'[R(u)/udu,0<s<sO, (1.4)
where
R(u) = cexp( j b(v)/v]. (1.5)
1

Statements (F) and (U) are also equivalents if in (F) f” is
the Radon-Nikodym derivative with respect to Lebesgue
measure and in (U) b(.) is a measurable function such the
function R(.) is well defined.)

It's clear, from (U) and representation (1.4) that the function
U is differentiable on 0 < s < s, and we have

—sU'(s)=R(s), 0<s <5, (1.6)

REMARK 1.2. Using (1.5) , it easy to check that the
function R(.) satisfies the following proprieties:

i) lim, , R(ps)/ R(s) =1,

s—0

d
ii)limﬁw[x—”j Rx) g (1.7)
Vo) R(W,)

i) R(A/n)=~R(A/(n+1)) asn—>

for any 0 < p < o, 0 < d < oo and for any non-negative
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sequences (x, ) and (,) such that: x,40, y,40, and x,/ y, 40
as n—. On the other word the function R(.) is slowly
varying in the neighbourhood of zero.

REMARK 1.3. Under assumptions (U), (1.6)-(1.7) (iii) and
the finite increments theorem imply that we also have

lim F" (d,x + b, )= lim P(a@;, (X, —b,) < x) = A(x) (1.8)

n—>0

where
a, =(n-)"U'1/n+1) (1.9)
and

b, =U(1/(n+1)).

Let J be positive measurable functions defined on [0.1]
satisfy assumptions among (H0 J is bounded on [0.1].

(H1) J is uniformly Lipshitz of order & > 0 there exists
a O<M<w such that for
s,t €[0.1]JJ(s)-J(t)| < M|s —1*

(H2) There exists a 0<v<1/2, such that:

T oy
L s~ NI (8)ds < oo,
(H3) There exists a 0<t<1/2, such that:

1
J:) s 27T (8)ds < .

REMARK 1.4. Along this paper we use only assumptions
(H1)-(H2) , while (H3) has been introduced in strong
theorems given by Necir (2000a) (see also theorem A
below).

Further, let (k,),, be an integer sequence satisfying, for
suitable sequences p, and g,

(K) 1<k, <nk, ~p, T oo,

k,~q,¥0as n—o, where u,~v, means that
u,/v, —>1 as n—oo.

Introducing a sequence of functions {Jn }”21 defined on

[0,1] by
. (i-1) i
J, () =J(ilk,) for ——L<i<,
(D) =J(i/k,) for . .

n n

i=1..,k

geees Ny

J(0)=J(1/k,).

It’s easy to verify, under (H1), the sequence of functions
{J " }nZI is uniformly convergent on [0.1] to J, moreover, we

have

suplJ,, () —J(s)| < Mk,* (1.10)

0<s<1

and

Z=supJ,(s)<oo, (1.11)

0<s<1

For each integer n=>1,and for any positive measurable
function ¢ define on [0,1], let

1
101 (9) =k, [UCk,s/ mo(s)ds, (1.12)
0
1
:un,z(q)):anUz(an/n)(P(S)dS: (113)
0
iln
Vi, =n .[U(S)ds, i=1,...k,; (1.14)
(i-1)/n
and
k)l
()= J(i/k,)v;, (1.15)

i=1

We consider in this paper the statistics:

kﬂ
L (a)= Za[’kn X, i (L -Statistics Type)  (1.16)

i=1

and
~ k”
Dn ((l) = Zai,k,, (Xn—i+l,n _Vi,n)29 (117)
i=1
with
a;, =J/k,)i=1,...k,. (1.18)
We also consider
klt
L,(B)=) by X, i1, (1.19)
i=1
~ K,
Dn (b) = Zbi,k,, (Xn—i+1,n _vi,n)2’ (120)
i=1
and

Ky
D, (b)= Zbi,k,, (X i =Ly (h))*, (E, - Statistics type) (1.21)

i=1
with

ilk,

b, = [J(s)ds; i=1,..k, (1.22)

(i-1)/k,

The statistics L,(a) and L,(b) are very popular in
Nonparametric Estimate, are well known by the “L-
statistics based upon extreme values” (see e.g. Shorack and
Wellner (1986), p. 660). These one are useful in estimation
of scale-location parameters and detections of largest
outliers in a sample of observations. They can be found in
insurance statistics and extreme values theory. For instance,
if X; ,X; ,..denote successive claims in an insurance
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business, one may seek the behavior of sums of the £,
extreme claims with a penalty function increasing with the
claim size (see e.g. Teugels (1984) and Beirlant and
Teugels (1987)). They can be also used to construct a robust
estimator of the mean for a series of observations (see e.g.
Dixon and Tukey (1968)). We can use these statistics to
estimate the endpoints of distributions (see e.g. Hall (1982),
Csérgd and Mason (1989) or Falk (1995)). We can also use
the statistics L,(a) and L,(b) to improve the Hill (1975)
estimator using the kernel estimate method (see Deheuvels,
Csorgo, Horvath and Mason (1985)).

As for statistics 5n (b)and D, (b) represent the

squared deviation between the largest order statistics and
their expected values. They can be found in the area of
estimation of the extreme index, for instance in a Pareto
type situation one typically takes log’s of the data to get
back to the domain of attraction of the Gumbel distribution
(see Dekkers, Einmahl and de Hann (1989) and Tabbal
(1995)). They also can be used for the detection of outliers
observations (see e.g. Barnett and Lewis (1994) p. 259,
Fung and Paul (1985), Tietjen and Moore (1972), Hawkins
(1979), Dixon and Tukey (1968)).

In the sequel, we shall see that there exists an algebraic

relation between the three statistics L,(b) , 5n (b) and

D, (b) . Then, the given of the asymptotic behaviors of the

first and the second of these one gives also that of the third.

The smooth function J which defined above, will be
suitably chosen according to the problem formulate. In
general we chose the function J to obtain the asymptotic
optimality of estimators (see, e.g. Chernoff, Gastwirth and
Johns (1967), Stigler (1969, 1974), Ruymgaart and van
Zuijlen (1977), Mason (1981), Singh (1981), Mason and
Shorack (1990), Shorack and Wellner (1986); p. 640,
Csorgd, Deheuvels and Mason (1985), and Falk (1995)).
We also can chose the function J as the penalty function
when X; ,X, ,... denote successive claims in an insurance
business.

In the near future we shall present an application of our
below results to improve Dekkers, Einmahl and de Hann's
estimator in introducing a kernel function J. This idea was
inspired from the results of Deheuvels, Csoérgo, Horvath
and Mason (1985) and that of Falk (1985).

Recently Necir (2000a) has described the almost sure

behavior of statistic 5}1 (@) using the functional law of the

iterated logarithm for the empirical quantile process (see,
(3.1)) given by Einmahl and Mason (1988). Among these
results is the following theorem.

THEOREM A (Necir (2000a)). Assume that (F) holds.
Then for any sequence {kn }nzl satisfying (K) with

log log n=o(k’"), fora0<v<1/2, and for any function

J satisfying (H1)-(H3), with probability one, there exists a
1

constant 0 </(J) < J.S_IJ(S)dS, 0 such that
0

limsup(loglogn) '[R(k, / n]* x

< (D, (@) + t,,(J,) = £, (D}=1(J)
and

liminf (loglogn)~'[R(k, /n] ™ x

< {D, (@) + 1,,(J,) = £, ())}=0

REMARK 1.4. To have the exact value of constant /(J)
see the proposition given by Necir (2000a).
In this paper, we shall consider the corresponding limit

distributions of statistics 5” (b)and L,(a). We profit for

this study to describe moreover that of D, ().

The general technique used along this paper was
inspired from the famous results of M.Csérgé S.Csérgo
Horvath and Mason (1986) concerning the asymptotic
approximation of the uniform empirical quantile process
(see lemma A in Section 3) by a sequence of Brownian
bridges and those of Csorgd, Deheuvels and Mason (1985),
Lo (1986), Necir (1990, 1991a, 1991b, 2000a, 2000b).

We shall show in the sequel, for suitable normalization'
constants, that the limit distributions of L,(a), L,(b) and
D,(b) are asymptotically standard normal MO0,1) as the
statistics D, (a)and D,(b) has a particular limit

distributions which will be precise later on.
Denote by (W(t) 0<t<1) a standard Wiener process

on [0,1]. To know more on such process consult Csdrgd
and Révész (1981).

2. MAIN RESULTS

TEHEOREM 1. Assume that (F) holds. Then for any
sequence {kn }nZO satisfying (K) and for any function J

satisfying (H1), we have

1
(e, 2[R G, )T Ly (@) = s (T} [ 750 (5)ds
0

TEHEOREM 2. Assume that (F) holds. Then for any
sequence {kn }nZO satisfying (K) and for any function J

satisfying (H1) and (H2), we have

[RGk, ) HB, (@) = 1,0, = £, ()} [ s I (s)ds

TEHEOREM 3. Assume that (F) holds. Then for any
sequence {kn }nZO satisfying (K) and for any function J

1
satisfying (H2), with jJ(s)ds =1, we have
0
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(kn )1/2 [R(kn / n)]72 {Dn (a) - lun,Z (J) + luiil (J)}
D 1
—>Is’lw(s)W(s)ds,
0

where

w(s) =2(logs — I(J))J(s), 0<s<l, @.1)
1

with 1(J)=— j J(s)log sds.
0

All constants /un,l(']n) s ﬂn,l("])’ lun,Z(Jn)t /un,Z(J) and

D
€,(J) are defined in (1.12)-(1.15). (—)J denotes

convergence in distribution.

REMARK 2.1. The Wiener process introduced in last
three theorems is define in the same probability space in
which has defined the sequence if X; ,X;,...of i.i.d. random
variables (see lemma A in Section 3).

The following two corollaries 2.1 and 2.2 give us the exact
limit distributions of statistics L,(a), and D,(b).

COROLLARY 2.1. Under assumptions of theorem 1,
we have

(k) 2R GE, ImL (@) — ()} N (0,62 (),

where

11
62 (J) = Ijs_lt_l mins, £).J (s)J (£)dsdt.
00

COROLLARY 2.2. Assume that (F) holds. For any
sequence {kn }nZO satisfying (K) and for any function J

satisfying (H2)
(kn )1/2 [R(kn / n)]72 {Dn (a) - lun,Z (J) + luiil (J)}

SN, W),

where
11

52 (y) = j js—lz—l min(s, )y (s)y(t)dsdt.
00

The following corollary shows that we also can obtain,
relatively, the same result as theorem 1, whenever we take

the weighting constants b, , instead of a,, .

COROLLARY 2.3. Assume that (F) holds. For any
sequence {kn }m satisfying (K) and for any function J
satisfying (HO).

1
()[R Gk, ] {2, 8) (D [ 776 ().
0

REMARK 2.2. It's clear from corollary 2.3, that the
result of corollary 2.1 remains always valid for L, (b),

In proof of theorem 3, we shall see that the following
corollary allow us to deduce the limiting distribution of
statistic D, (b).

COROLLARY 2.4. Assume that (F) holds. For any
sequence {kn }nzl satisfying (K) and for any function J

satisfying (H2)
()" 2[RUe, I )2 {D, () + p, 2 ()) =, ()

B)IS'ZJ(S)WZ(s)ds.
0

k,
Cu() = by v

where i=l

REMARK 2.3. The statistics 5,1 (a)and 5,1 (b) play an

auxiliary roles in our study. Consequently we have
interested only by there asymptotic bounds.

REMARK 2.4. By a simple integral calculation, it is
casy to verify that from (H2), both of constants 6>(J) and

o’ (y) are finites.

3. PRELIMINARY

Let U, U,,..., be a sequence of independent uniform (0,1)
random variables. For each integer n2>1, let

V,.®)=U,,, (i-1)/n<t<i/n,
V,(0)=U

based on U}, U,,..., be the sample quantile function.
We write the uniform quantile process as

i=1,...n, with

where U, , <...<U, , are the order statistics

Ln> n,n

B,(s)=n"2{V (s)-s}, 0<s<I (3.1)

We shall use the notation En (s) to denote the truncated
uniform quantile process, which is equal to B,(s) for
1/(n+1)<s<n/(n+1) and defined to be 0 elsewhere.

The two sequence {X " }nzl and {Q(Un)}nzl are equal
in distribution, and, consequently the two processes
X, :1<i<nn>1{ and {OU,,):1<i<nn>1} are
equal in distribution as well. Therefore, without loss of
generality, we may assume that X, =Q(U,,) for all
1<i<nmn,andn=>1.

We begin by the following lemma which is the base of
our results.
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LEMMA A. (M. Csorgd, S. Csorg6, Horvath and
Mason (1986)).

On a rich enough probability space carrying a sequence
U, U,,..., of independent uniform (0,1) random variables

and a sequence of Brownian bridges {Bn (H):1Lt< n,}

n=1

such that for all 0 <v <1/2 and for a large n,

1/ n<s<l-1/n (s(l_s))l/Z—v = Op (n) 3.2)

On the sequel, we shall use the notation A, =k, /n.
The Taylor formula gives

n1/2 (U(l - I/n (1 - xnu)) - U(l - (1 - xnu)) =
=—p,0-4,u)U'6,(1,u)), (3.3)

where 0,(z) is a function of z € [0,1] and n>1, with
values in the interval with endpoints z and 1-V,(1-2z),
defined via
UQ-V,(1-z2)-U(z)=-{,(1-2)-1-zJU'(0,(z)), (3.4)
Thus, we may write
0,(,s)=vyA,s+(1-y)A-V, (1-A,s)) for some
appropriate Yy =Yy,(A,s) € [0,1], depending upon n>1

and s e [0,1]. Observe now that for each integer n>1, we

have Va-i/n)=U, ;,, and
Ud-V(1=i/n)=0F(1-i/n)=X, ., for
i=1,2,...n

4. PROOFSOF THE THEOREMS

4.1 Proof of theorem 1

Recalling that A, =k, /n. Using both of representations
(3.2) and (3.3), we get

1
L,(@) =, (J,) =k, [UQ=V,(1=1,5), (s)ds
0

1 5
—nh, j UQ.,9)J,(8)ds =D L,
0 i=1
where

1
_ 12
Ln,l =n xn
1/&, (n+1)

xU"'(A,s)J,(s)ds,

I—U@AM@qX

B, (1~ MS)( U0ns)

Lo=n""%,  [B,A=2,8)U'(,8),(5) = (5)ds,

1/, (n+1)

1
Lia==n"%, [(B,(1=2,9)+B,(1=1,0))U'(,5)J,(s)ds,

n
1/2,, (n+1)

1
L,,=n""., j B,(1=1,5)<U"(\,5)J (s)ds,

/2, (n+1)

and

1/ 2, (n+1)
[ua-v,a=2,50,(s)ds
0

1/ 2, (n+1)

—nl j U(A,5)J,(s)ds.

n
0

L,s=nl,R

For the definition of o, and O,, which is used below, we
refer to Serfling (1980) Section 1.2.5. Further, denote by
(=) convergence in probability.

We begin the proof of theorem 1 by the following.

LEMMA 4.1.1. Let (K), (F) and (H1) be satisfied. Then
(nh,) "R, 'L, , >, 0 as n— .
Proof. Set ©,(s)=|E|B,(1-%,9)} By (1.10), we

have
(n2,) "[RO EIL, o[ < M2, (n2,) 2[R,
1
X J.®n(s)|U’(/1ns)|ds 4.1.1)
1/ 2, (n+1)
From (1.6), the right-hand-side of (4.1.1) is equal to
1
M(@nr,)*(X,) j@n(s)s*I[R(xn)]‘lensds 4.12)
1/, (n+1)
Using (1.7) (i), expression (4.1.2) become as 7 —> 00,
1

M(1+o(1))(n,) " (A7 j 0, (s)s'ds, (4.1.3)

1/, (n+1)
Since, for any n>1and s € [0,1],
E[B,(1-%,9)| < (A,)"2(1-1%,9)"* <1, s,

then, for a large n, expression (4.1.3) is less than or equal to

1

M1+ o(D))mh,) 0o (02572 ) as

1/, (n+1)

< M(1+0(1))(nk,) ™ (1/2)™ =o(1),
(because o > 0). This achieves the proof of lemma 4.1.1.0
LEMMA 4.1.2. Let (K), (F) and (H1) be satisfied. Then

() P[RON] 'L, =, 0 as n > 0.
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Proof. Let 0 <v<1/2 and setting:

I1-A,s)+B,(1-A,s
o= l/x,,?n‘iﬂqqpﬁ"((a - xn,,s))(xn:)())“zg )q’ @y
It's easy to check, that
) B.a-r B0
i 9 e 0 B
consequently, by lemma A we have
N =0,(n"), as n—>w, (4.1.6)

Then, for n sufficiently large, using (1.11), (4.1.3), (1.6)
and (1.7) (i) successively, we obtain

() P [ROD]IL, 4| <

Ln,4

1
200, () RO (=290, 80"
1/%, (n+1)

x[U'(h,,)|ds, <

1
D [ 09, ) P [RO)TOO.,5)ds
0

= 0,70 [ s [ROT RO, ) s

0
=0,((nr,))",

which converges to =zero as n—>o0, because

nh, Tooas nToo ,with 0<v<1/2.7

LEMMA 4.1.3. Let (K), (F) and (H1) be satisfied. Then
(”M)_l/z[R(M)]_ILn’S —,0as n—> o,

Proof. We have,
U=V, (0=r,5)=X,,,
and
J,(s)=J(1A/nk,) for 1/1,(n+1)<s<]1,
consequently,
L,s=n\,J(1/nk)X,, L, (n+1)"

1/, (n+1)

—nh, J(Unk,)  [U,s)ds.
0

171, (n+1)
= J(l/n?»n){n(n X, -k, | U(xns)ds}.

0

Combining (1.8) with (1.9), we get

_ 1 . AR
Ln,S = I’IJ(WJ(VI + 1) X Op (1)(1’1 + 1) U (m)

and

i 1 . 1 (n+1)
L= w(mj{(n +1) U(mj - ! U(s)ds}.

Using (1.6) $ and (1.7) (iii), for a large n, we get

() 2RO, 5 =0, (1)1 +o0(1)J(1/nL, )
<n2,) 2 Ry RO,

Since nh, Tooandd, 4 0 as n— o, then using (1.7)

(ii), we get

(m0, Y RA/m)R(L,) = 0(1) as nT oo,

therefore
(”kn)il/z[R(kn)]ill_m,s =o0,(1) as n T oo,

An integration by part gives

1/(n+1) 1/(n+1)
j U(s)ds = (n+ 1)U /n +1)) - J.SU’(s)ds.
0 0

Then, substituting (4.1.4) in to LAnj5 and using (1.6) and
(1.7) (iii), yields for a large n

) ROITL, 5
——(1+ o(W)J(1/mh,) x [(nh,) 2R/ ) RO,

which converges to zero as n — o0, by (1.7) (ii).0

LEMMA 4.14. Let (K), (F) and (H1) be satisfied.
Then, as n —> .

D 1
(k)" PRGN L, 5= [T (s)ds.
0

Proof. By a same argument as above we can write for a
large n

(n2,) " *[RA) 'L, 4

=2, [B,0-2,9[RG)] '[RG, (5)d
4

1/, (n+1) .1.8)

1
=—(1+o(1))A, "2 j B,(1-A5)s"J(s)ds  (4.1.9)

1/ 4, (n+1)
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D
Since — B, (t)=N(0,#(1—1¢)) for every n =1, consequently

we can put

D
~B,(1)=B(t), 0<t<1, for n=1.2,.., (4.1.10)

when B(t), 0<¢<1, is a Brownian bridge define on the

D
same probability space. (= denotes equality in
distribution).
Then the right-hand-side of (4.1.5), without loss of
generality, can be written as follows

1
1+ o)X j B(1—2,5)s ™' J(s)ds. 4.1.11)

/A, (n+1)

On the other hand, from the proprieties of the Brownian
bridges and Wiener processes we have

@) BOW () —w (1), 0<1<1,

(4.1.12)
D
(i) s2W (st)=W (t),forany 0 <t <o0,s >0,  (4.1.13)
D
(iii) B(H)=B(1—1), 0<r<1. (4.1.14)

Then using (4.1.8) (4.1.10), expression (4.1.7) is equal in
distribution to

1
j W (s)s " J(s)ds -

1/ 4, (n+1)

(1+o())

1
IsilJ(s)ds.

1/ 2, (n+1)

—(1+o() AW (1)

D
Since W(1)=N(0,1), then the second term of Ilast
expression converges in probability to zero as n—> 0,

which achieves proof of this lemma. o
Recalling that

0,(A,5)=vh,s +(=7)A=V,(1=%,s)),

for some appropriate y =17, (A,s) € [0,1] depending upon
n>1and s € [O,Xn], or

0,(5)=1-38)s+5(1-V,(1-5)),

or some appropriate 6=8n(s)e[0,1] depending upon
n>1and s e [O,an

The following lemma gives some results with respect to
asymptotic behavior of €, (s) .

LEMMA 4.15. Let (F) be satisfied. For a large n, we
have forall 1/(n+1)<s< A4,

U,(en(s)j_ (s/6,(s)"*,if s<0,(s)<1=V,(1-5)
U'(s) - (s/H,,(s))l_g,ifl—Vn(l—s)<6’n(s)<s

forany 0< ¢ <1.

Proof.  Let l/(n+1)<s<A,. We  have
0,(s)=(1-0)s+06(1-V,(1-5)), from of Glinvenko-
Cantelli' theorem, we have, almost surely, for a large n
sup|l—s =V, (1-5)| = o(1),
0<s<1
it follows that, almost surely, for a large =n,
6.(s)=s+0(1), and consequently, both of s and 8,(s)
are in right neighbourhood of zero.

Suppose that s <8, (s)<1-V, (1-5).Let 0<e&<l1. By
(1.5), it's easy to verify that for a large n we have
R(O,(5))/R(s)=(s/0,(s))", forl/(n+1)<s<A,.
Suppose now that 1-V, (1-s)<6,(s)<s. By a same
arguments as last, we prove that, for a large
n, R(0,(s))/ R(s)=(s/6,(s)), forl/(n+1)<s<A,.

This achieves proof of this lemma.o

LEMMA 4.1.6. Let (K) and (F) be satisfied. Then, we
have almost surely

1-U'6,(4,s)

U'(hs) j =0(1), asn — o,

1/4, (n+1)<s<l£

Proof. Let 0 <& <1. From (1.4) and (1.5) we can easel
show, that for a large n

(1 ~U'(0,s)

_ Ite
T j— (5/0,()™

In view of the Theorem of Hajek and Bickel (1972) (see
e.g. Shorack and Wellner (1986), p. 640), we have almost

surely for a large n sup|1—s/ 0,1(s)|=0(1). Since

0<s<l1

1+ & > 0, then with probability 1 a n — o0,

sup (1— a j =0(1),

(n+1)<s<A, 0,(s)

which achieves proof of lemma 4.1.6.0

LEMMA 4.1.7. Let (K), (F) and (H1) be satisfied. Then

(n2,)"[RA)]'L,, =, 0 as n— .

n,l

Proof. In view of lemma 4.1.6, for a large 1, we have
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1
Ly=0,0n"4, [ B,(-4,9U'(4,5)],(s)ds,
1/ 4, (n+1)
= Op (1)[Ln,2 + Ln,3 + Ln,4 + Ln,Sl

It's now clear, that the proof of this lemma achieves by
applying successively lemmas 4.1.1-4.1.6. O

4.2 Proof of theorem 2

1/,
First recall that kn'[) J,(s)ds=J(1/k,). Write

D,(b)+ 1 (J,) =&, ()= Ay + 4 + 4] 4.2.1)
where
A, =J(1 k)X, -w,)
k, k,
A; = Z‘](i/kn )er—i+1,n - 22 JA k)i X i
=2 =2

Uk,
+k, jo U (k,s/n)J,(s)ds,

" 1/k, 5 5
A =k, jo U (k,s/m)J, (s)ds — J(1/ k, V2,

Recalling that u,,(J), v;, and ¢, (J) are constants as

in 1.14 and 1.15 respectively.
We shall show in lemma 4.2.1 and 4.2.2 that for a large n

(R 4, =[R(A)N 4, =0,(1).

LEMMA 4.2.1. Let (K), (F), (H1) and (H2) be satisfied.
Then

[RA)N] 4, —, 0 as n— o,

1/n
Proof. Recalling that v, (J)= nJ.OU (s)ds. From

4.14, 1.8 and 1.9 and by a same argument as proof of
lemma 4.1.3, we write, for a large n

2
A =J1/4, )[op W U1/ n) +n I;S/’i]'(s)ds}

JA/A)RA/ n) + (1 + 0(1)R(1/n)))2.
Under (H2) we have

(4.2.2)

1/k, 1k,
knL J@)ds <k [ s (5)ds

= o(k_zv), as n—> oo,

n

10

which implies from (1.10) that
1/k,
J(/nA) =0k “)+k, IO J(s)ds
—0(k;") +olk;>) as n— o,
Consequently

(R(k, /n))” 4, =

2
i+ oa))l(lﬁg—//”}z)j OWk*) + ok ))}

hence for a large n, (R(k,/n))™ A4, =o(l), from (1.7)
(ii). O

Foreach n>1, set

Q,(s)=p,0-4,5)+B,(1-4,5), 1/4,(n+1)<s<1.
We have

" 1 B B B 5
a4, =n, | /M"(n+1)(U(l V, (1= 24,8) ~U(Ays)* W, (s)ds
=¢,+T, (4.2.3)
where

1
¢ =/1j e
n n l/nln(nﬂ)ﬂn( n )

x {1 —(U'(8,(4,5))/U"(4,5))* }U’2 (A,9)J,(s)ds,

_ ! 2 12
1= o B0 A (A,5), (5)ds

Remark now that 7, can be written as follows

T =T,+T,+T,+T,, 4.2.4)
where

Ty=4 e @ 2,0 (2,57, (5)ds.
T,=-24[ Q. (5)B,(1+ A U™ (4.5)J., (s)ds.

"Nna, (n+1)

T3= By (14 2,5)U" (2,5)(J,,(5) = J (5))ds,

)
" hina, (ne1

and

— ! 2 12
T,=2, jl iy BE O+ 280 (2,)(5)ds.

We have

D

Tn4 - /1’1 J.l/n/l,,(nﬂ) Bn (/1ns)U (//LnS)J(S)dS.
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On the other hand we have

B2(2,5) =W (4,8) - 2, sW (1))
=W?2(A,5) = 24,sW()sW(4,s)+ LLs*W?*().

Consequently T, can be also written as follows

T4::Tn4+]:q”4+Tm

n n4>

where

Y ! 2 12
T, =2, jl V2 GaS U (248) (5)ds,

" 1
T, =222W (1) N W (AU (A,5)J (s)ds,
and
To=2pPWf  SUR (A, (5)ds.

The below two lemmas give us the asymptotic behaviors of

" "

terms 7, , T,,and T, .

LEMMA 4.2.2. Let (K), (F) and (H1) (H2) be satisfied.
Then as n — ®©

RO T, = [ROAN]T), =0, ().

Proof. First we have W (1) = O, (1), moreover we have

|W(/1ns)| < (4,5)""?, therefore, from (1.7) (ii),

(RG22 ET ;

=20, (1)(1+o(1) A2 j 52 (s)ds,

which converges, in probability, to zero as n — o, since

A, =0 and Jls‘3/2J(s)ds<w. On the other hand we
0

have from (1.6) and (1.7) (i)

1
(RGN, = 2,0, +0()[ S (s)ds,
which converges, in probability, to zero as n—o0 as well. O

LEMMA 4.2.3. Let (K), (F) and (H1)-(H2) be satisfied.
Then

(RO T, = [ S ()ds, as 1o

Proof. It suffices to apply (1.6), (1.7) (ii) and (4.1.6)
together.
Recapitulate, the two last lemmas show that 7, is the only

term in series (4.2.4) which gives us the limit distribution as
in theorem 2. Hence, in order to achieve the proof of
theorem 2, it suffices to show that for a large n

11

(R T, =[RAD]T,,
=[R2 T,
=[R2 e, =0, ),
which will be the aim of the following lemmas.

LEMMA 4.2.4. Let (K), (F), (H1) and (H2) be satisfied.
Then

[RGAN]T, =0,(1) as n — .

Proof. First observe, by (1.10) we have
J,(s)=0((n4,) ")+ J(s), forany0<s <1, (4.2.5)
then from (1.6) and (1.7) (ii) we can write

[RON]'T,

nl

=(1+o()T,, +T,),
where
T, =0((n4,) ™) x

-1 1

_ _ 2 2
" J‘l/n/l,,(nﬂ) (ﬂn (1 ﬂ/"s) + Bn (1 /IHS)) s °ds.

and

v ! B B 2 2
Do =] o Ba =209+ B, (1= 4,85 ds.
We have

, e !
0< Tnl = 0((}11”) )ﬂ’nl (nn,v)z

1/nA, (n+1)

(A,8) s %ds

1
=0((n2,))0, (1A [ 572 ds

1/nA, (n+1)
=0((n2,) " )(=2v) " (1-n 2,)*")O((n4,)™)
=0,((n2,)™>™)-0,1)0((na,)™ ). (4.2.6)

Since 2v>0 and a >0, with 4, -0 and nd, >0 as

n — oo, then (4.2.6) converges, in probability, to zero as
n — oo . By a same technique, we also show, under (H2),
that

0<T, =0, (n*”)ﬂ,};ﬂ s (s)ds,

1
nl o
which converges to zero as # — 00 .0

LEMMA 4.25. Let (K), (F), (H1) and (H2) be satisfied.
Then

[ROANIT,, =0,(1) as n — .
Proof. We have

[RUNPT,, =1+ 0T, + T )

where
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T,, =0,(n"")O0((nk,) ) x

1
227! j (4,5) (1= A,5)" s 2B, (1— A,5)ds,

"4, (1)

and
T,,=0,(n")x

x 24! 1
", (n1)

(/’Lns)v(l - //{’ns)vs_an (1 - //i’ns)J(S)dS'

Then using a same technics as proofs of lemmas 4.1.1. and
4.2.4, we show easily, under assumptions that for a large n,

T,=T,=o0 , (1), consequently the details are omitted.o

LEMMA 4.2.6. Let (K), (F), (H1) and (H2) be satisfied.
Then

[RGAN]T,; =0,(1) as n— o,

Proof. Obvious, from (1.10) and the fact that for any
n>1and se [0,1],

E|B,(1-2,5)| < (4,5)"2(1- 2,9 < 2,%s"%.0

Finally we achieve proof of theorem 1 by the following
lemma which shows the asymptotic behavior of term

&, appearing in (4.2.3).

LEMMA 4.2.7. Let (K), (F), (H1) and (H2) be satisfied.
Then

[R)]Pe, =0,(1) as n— .

Proof. It's straightforward, by applying successively
lemmas, (4.1.6), (4.2.2)-(4.2.7). O
We finish proof of theorem 2 by the following lemma.

LEMMA 4.2.8. Let (K), (F), (H1) and (H2) be satisfied.
Then

[R(AN] 4, = 0,(1) as n— .

1/n
Proof.  Recall  that Vi, = njo U(s)ds. Since
J,(s)=J(1/k,), on 0<s5<1/k

variables we obtain

then by a change of

n?

" 1/n 5 5
A, =J1/k,) nJ‘O U“(s)ds.—v;, |=J(1/k,)S,.
An integration by part gives
1/n ) 5 1/n
njo U2(s)ds =U>(1/ n) — 2nj0sU'(s)U(s)ds,
and

1/n
vl,n = U(l/l’l) - n.[OSU'(S)dS.

Therefore
S, =8,+S5,,,

where
1/n 2
S, = —(nJ-OSU'(s)ds) , and

1/n
S, =-2n jo sU'(s)(U(s) = U(1/ n))ds
It's clear that, From (1.6) and (1.7) (i), we have
S,=8,=>0+ o())(R(1/n))*, as n — oo
On the other hand, remark that
1/k, 1/k,
JAk) =k, [ T, (5)ds = Ok, “ )+, [, (s)ds.
0 0
From (H3) we have
1k, —ov (VR oy P
kn'[) J,(s)ds <k, .[o sTT L (s)ds =o(k,”).  as
n — oo . Consequently
(R(kn /n))_2 Snl = (R(kn /n))_2 Sn2

2
=(1+ 0(1))(%) {O(l)k;a + 0(1)k;2v}

Finally, in applying (1.7) (ii) we achieve this lemma. o

4.3 PROOF OF THEOREM 3

The general idea of proof of the present theorem, consists to
represent the statistics D,(b) on function of L,®) and

1
5,, () . Recall that .[J (s)ds =1. First, we can verify that
0

D,(b)y=r,+7m,,+7,;+7, (4.3.1)

nl

where

2

7 = [JOWA-V,0- 2,9 -U2,9)] ds
7, = ZJ:J(S)U(/lns)[U(l —V,(1-2,5)— U(/l,,s)]zds,
T ==L (B)[ (5)ds = ~Lb),

Tos = [ TSV (4,5

Setting K(s) = J::J (t)dt. 1t's clear that K(0)=0
and K(1) =1. Moreover, we show easily,

from (H2), that lig]ls_lK(s)<oo. Recall  that
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1
u(J)= LJ (s)U(A,s)ds. An integration by part gives

AW =U(2,) =2, [ KU (A,5)3s

(we have used the fact that lif(r)llU (t)=0).
t

Substituting last result in to term
= -2U (A, (L, (0) ~ ) + 22, [ K()U' (4, 5)ds
X (Ln (b) - /7(‘]))
1
=202, [J@UA-V,0- 2,50 -UZ,)s

vy jol K($)U'(A,5)ds x (L, (b) - B(J))

D,(b)=A, +A,, + A +A,, +A, (4.3.2)

where

Ay = [ IWWA-V,0-2,0) -V, ds

A =2[J@UA-V,0-2,9)-UG4,9)]
x(U(4,s)-U(4,))ds,

Ay = (L, ()~ EU),

Ays = =2, [ K(SWU' (A, 5)ds(L, (b) ~ (),

and

Ays = [ J6YU* (2y8)ds - ()Y

We show in the sequel that for a large 7

(n2,)"*R(A,)7A, =0,(1), i=13;

while
D 1
(n4,)">R(A,) A, -2 jo s J(s)log s (s)ds
as n —> oo and
D 1
(n4,)">R(A,) A, ——21(J) jo s J(s)W (s)ds, where

1) = —jOlJ(s) log sds.

LEMMA 4.3.1. Let (K), (F) and (H2) be satisfied. Then
(nﬂ’n )I/ZR(ﬂ’n)_2An1 = Op(l) as n — oo,

Proof. Expanding statistic 5” (b) , we show that

Ay = (12,) (D, (b) + 1 (J) = &, ().

13

Then from theorem we have for a

(R(A,) (D, (b)+ 1, ,() =&, () =0, (1),
Consequently

(n2,)""(R(A,)) (D, (B) + 2 (J) = &, ()
=0,((n4,)""?).

large n

which converges to zero as 7 — o0 . This achieves proof
of the present lemma. O

LEMMA 4.3.2. Let (K), (F) and (H2) be satisfied. Then
as n—>0o0.

D
(n2,) 2RO YA, —>—2 jol 7T (s) log s (5)ds.

Proof. From the finite increments theorem, there exits a
function

U(/lns) - U(/In) — uU' (pn (S)) )
log(4,s) =log4,  (log(p,(s)))

Moreover the right- hand-side of last expression is equal ,
by (1.16), to

—(1+o()R(p,(s)), as n — oo,

consequently as # —>
U(j’ns) - U(j’n) = _R(pn (S)) IOgS (433)

Further it is easy to verify that we have also , from (1.7)
(ii),

R(p,(s))=(1+o0()R(4,)

Substituting (4.3.3) and (4.3.4)into A, ,, we get

(4.3.4)

A =21+ 0()R(A, )jOlJ(s)logs
x[U1=V,(1-4,8))-U(A,s)|ds
=20+ o()R(A,|L, (&) - ()]
where
j(s) =J(s)logs, 0<s <1,

and
U F(s)ds, i =1
Cin —J-(i_l)/nln (s)ds, i=1,...,n4,.
We can write then that for a large n
(n2,) *[RA)]7 A, =20+ 0)[R(A,)]

% (14,)"2[L, () - 7 ()

It's clear now, from corollary 2.3, that the right-hand-side of
last expression converges in distribution to
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1~
2]0 s T (s)W (s)ds, asn — oo,
which proves this lemma.

LEMMA 4.3.3. Let (K), (F) and (H2) be satisfied. Then
(n4,)*[R(GAN] A, =0,(1) as n— .
Proof. It's straightforward, by applying still corollary

23.o
Recall that K(0)=0 and K(1)=1.

LEMMA 4.3.4. Let (K), (F) and (H2) be satisfied. Then
as n—» oo

(nA,) 2[R A, - 21(J)j01 s ()W (s)ds,

1)) =— I;J(s)logsds.

Proof. It suffices to apply (1.6), (1.7) and corollary 2.3
and using the fact that

L .
jo s K (s5)ds = L J(s)log sds.
This last yields by an integration by part. 0

Finally, from lemmas 4.3.2 and 4.3.4, we write then that
as n—> o,

(12,)" 2[R} (D, (b) ~ A, 5)—> J‘;s’ll//(s)W(s)ds,

w(.)is as in theorem 3, which achieves proof of lemma
4.3.3 and consequently the proof of theorem 3. o

5. PROOFS\ OF COROLLARIES

51 PROOFSOF COROLLARIES2.1AND 2.2.

The proofs of corollaries 2.1 and 2.2 are immediate from
the definition of the Wiener process. In fact we have

Cov(W (s),W(t))=min(s,t), forO<s<l1, 0<t<]l.

1
Let E= L s J(s)W (s)ds. Then we have

2
Var(E) = E(E)? = E( Lls_lJ(s)W(s)ds)

- ﬁ I; st J(8)J (1) Cov(W (5),W (1))dsdt

_ E J:S‘lt‘lJ(s)J(t)min(s,t)dsdt

o (J).

14

Since (W(s), 0<s<1) is N(0,1), then Zis also

N(0,5%(J)) which achieves proof of corollary 2.1, and

consequently by a same arguments the proof of corollary
22.0

(Cov(Y,,Y,) (resp. Var(Y;)) denote the covariance of the
couple of random variables (¥;,Y,) (resp. the variance of
the random variable (1))).

52 PROOFSOF COROLLARIES23AND 24

They are straightforward, it suffices to take in theorem 1
ilk,

and 2 the weighting function knJ‘( o J(s)ds instead of
i-1)/k,

J(i/k,) , and follow the same representation technics as in

theorem 3. This completes the proofs of corollaries 2.3 and
24.0
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