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Abstract: Fuzzy rules for control can be effectively tuned via reinforcement learning. Reinforcement learning is 

a weak learning method wich only requires information on the succes or failure of the control application. In this 

paper a reinforcement learning method is used to tune on line the conclusion part of fuzzy inference system 

rules. The fuzzy rules are tuned in order to maximize the return function . To illustrate its effectivness, the 

learning method is applied to the well known Cart-Pole balancing system problem. The results obtained show 

significant improvements of the speed of learning. 

 
1. Introduction  

Reinforcement learning (RL) refers to a class of 

learning tasks and algorithms in which the learning 

system learns an associative mapping by 

maximizing a scalar evaluation (reinforcement) of 

its performance from the environment [1,2,3]. 

Compared to supervised learning , RL is more 

difficult since it has to work with much less 

information. Fuzzy inference systems have been 

shown able to provide excellent control in a number 

of practical applications. However, the problem in 

fuzzy systems is how to define the appropriate 

fuzzy rules. Several approaches have been proposed 

to autamitically extract rules from data ; gradient 

descent[4] , fuzzy clustering, genetic algorithms 

[5,6] and reinforcement learning[7,8,9,10,11]. In 

this paper we use Q-learning to determine the 

appropriate conclusions for a Mamdani fuzzy 

inference system. We assume that the structure of 

the fuzzy system and the membership functions are 

specified a priori. 

 

2. Reinforcement Learning 

2.1 Reinforcement learning model 

In reinforcement learning an agent learns to 

optimize an interaction with a dynamic 

environment through trial and error. The agent 

receives a scalar value or reward with every action 

it executes. The goal of the agent is to learn a 

strategy for selecting actions such that the expected 

sum of discounted rewards is maximized[1]. 

In the standard reinforcement learning model, an 

agent is connected to its environment via percetion 

and action, as depicted in figure 1. At any given 

time step t, the agent perceives the state st , of the 

environment and selects an at. The environment 

responds by giving the agent scalar reinforcement 

signal, r(st) and changing into state st+1. The agent 

should choose actions that tend to increase the long 

run sum of values of the reinforcement signal. It 

can learn to do this overtime by systematic trial and 

error, guided by a wide variety of algorithms. 

The agent goal  is  to  find  an  optimal  policy,  π : 

S → A, which maps states to actions, that maximize 

some long-run mesure of reinforcement. In the 

general case of the reinforcement learning problem, 

the agent’s actions determine not only its immediate 

rewards, but also the next state of the environment. As 

a result, when taking actions, the agent has to take the 

future into account. The reinforcement learning can be 

summarized  In the following steps. 

 

Initialize the learning system 

repeat 

   1-With the system in state s, choose an action a 

according to an exploration policy and apply it to the 

system 

  2- The system returns a reward r, and also yields next 

state’. 

  3- Use the experience, (s,a,r,s’) to update the 

learning system 

  4 – s  s’ 

until s is terminal 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 The return function 

The agent's goal is to maximize the accumulated future 

rewards. The return function, or the return, R(t), is a 

long-term measure of rewards. We have to specify 

how the agent should take future into account in the 

decisions it makes about how to select an action now. 

There are three models that have been the subject of 

the majority of work in this area.  

The finite-horizon model 

In this case, the horizon corresponds to a finite number 

of steps in the future. It exists a terminal state and the 

sequence of actions between the initial state and the 

terminal one is called a period. The return is given by: 
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        Figure 1. Reinforcement learning scheme 
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where K is the number of steps before the terminal 

state.  

The discounted return (infinite-horizon model) 

In this case the longrun reward is taken into 

account, but rewards that are received in the future 

are geometrically discounted according to discount  

factor  , 0 <  < 1 and the criteria becomes. 
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The average-reward model 

A third criteria, in which the agent is supposed to 

take actions that optimize its long-run average 

reward is also used : 
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2.2 The state value function or value function 

The value function is a mapping from states to 

states values. The value function V (s) of state s, 

associated with a given policy (s) is defined as 

[1] :  
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Where st is the state at time t, rt+k+1 is the reward 

received for performing action : 

 ktkt sa                                  (5) 

at time t+k, and  is the discount factor ( 0 <<1). 

 

2.3 Action-value function or Q-function  

The action-value function measures the expected 

return of executing action at at state st, and then 

following the policy  for selecting actions in 

subsequent states. The Q-function  corresponding to 

policy (s) is defined as [1]: 

    1111 ,,   ttttttt ssQrasQ  
         (6) 

The advantage of using Q-function is that the agent 

is able to perform one-step lookahead search 

without knowing the one-step reward and dynamics 

functions.  

The disavantage is that the domain of the Q-

function increases from the domain of states S to 

the domain of state-action pairs (s,a). 

 

3- Reinforcement Learning Methods 

 3.1 Q-Learning 

It exists several approaches for reinforcement 

learning without models. Some are based on policy 

iteration, such as the Actor Critic Learning, and 

others on value iteration, such as Q-Learning or 

SARSA. The Q-Learning, proposed by Watkins 

[12], is perhaps the more popular of algorithms, by 

reason of its simplicity.  

One-step Q-Learning 

The first version of Q-Learning is based on the 

temporal differences of order 0, TD(0), while only 

considering the following step (one-step Q-

Learning). The agent observes the present state, st, and 

executes an action, at, according to the evaluation of 

the return that it makes at this stage. It updates its 

evaluation of the value of the action while taking in 

account,  

a) the immediate reinforcement, rt+1, and  

b) the estimated value of the new state, Vt(st+1), that 

is defined by: 

),(max)( 11 bsQsV ttAbtt                        (7) 

The update corresponds to the equation: 

 ),()(),(),( 111 tttttttttttt asQsVrasQasQ     (8) 

  is a learning rate such that    0 as t .  

In addition to its simplicity, Q-Learning presents 

several interesting characteristics. 

- The evaluations of Q, the Q-values, are independent 

of the policy followed by the agent. This one can 

follow any policy, while continuing to construct 

correct evaluations of the value of actions. 

- Q-values are exploitable a long time before the 

formal convergence that can be sometimes very slow. 

- Lastly, there are proofs of convergence toward the 

optimal policy[12]. 

 

4. Optimization of fuzzy inference systemes by Q-

Learning  

Reinforcement learning has been used for optimization 

of fuzzy inference systems by two types of methods: 

Methods based on policy iteration, driving to Actor-

Critic architectures [7,8], and the others based on value 

iteration, generalize Q-Learning[9,10,11], in [11] 

Glorennec  uses Q-Learning for the optimization of a 

zero order Takagi-Sugeno FIS, with a constant 

conclusions. If the action space is continuous the 

conclusions are equally distributed between lower and 

upper bounds of the action.  

In this paper, we consider a Madani FIS, and 

continuous state and action spaces. The FIS structure is 

fixed a priori by the user  and the fuzzy sets for the 

inputs and output are supposed fixed. Our approach, 

consist in determining the optimal conclusions of the 

fuzzy inference system. 

 

4.1 Mamdani fuzzy inference system 

A Mamdani inference system is described by a set of 

fuzzy rules of the form [13]: 

Rule i : if s is Ai then a is Bi  

Where s is the fuzzy system input, Ai is a fuzzy label 

for input in ith rule, a is the output of the fuzzy system 

and Bi is fuzzy label for the output in ith rule. 

The problem is how to choose the appropriate rules in 

order to optimize system performance (in RL 

maximize the accumulated future rewards)[13]. In this 

paper we use Q-learning to optimize rule conclusions. 

Several competing conclusions are associated to each 

rule, and a quality value is assigned to each 

conclusion. The conclusion with the high quality is 

used by the system to generate actions . The fuzzy rule 

becomes: 

 Rule i : if s is Ai then a is ),(maxarg bsQBb  
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4.2 Learning process 

At each rule, several conclusions are associated, 

and each conclusion has a Q-value: 

The fuzzy rule is of the form: 

Rule i : if s is Ai then a is B1 with  Qi(s, B1) 

                               or a is B2 with  Qi(s, B2)     

                               or a is B3 with  Qi(s, B3)     

                                  

                               or  a is Bm with  Qi(s, Bm)     

where B1, B2,….., Bm are the fuzzy sets of the 

outputs and Qj(s, Bi) is the Q-value of the 

conclusion a is Bi of the rule j. 

During learning the Q-value of each conclusion is 

updated using Q-learning ( equation 8): 
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 Where μi(st) is the truth value of the ith rule and Bj  

is the jth conclusion of the ith rule. 

With the value of the new state given by: 
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if st+1 is a final state then : 

                                   01 tt sV                                                     (11) 

5. Results 

 The proposed method is applied to a classic 

problem; the pole balancing problem or inverted 

pendulum problem. In this problem a pole is hinged 

to a motor-driven cart which moves on rail tracks to 

its right or its left. The primary control task is to 

keep the pole vertically balanced. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Cart-Pole System 

 

The dynamics of the cart-pole system are modeled 

by the following non linear differential equation 

[7,13]: 
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where g is the gravity, mc is the mass of the cart, m 

is the mass of the pole, l is the half-pole length and 

μp is the coefficient of friction of pole on cart. The 

sample period is 20 ms. 

We assume that a failure happen when |θ| > 45°. Also, 

we assume that the equation of motion is not known to 

the controller and that only a vector describing the 

cart-pole system’s state at each time step is known. 

The inputs of the fuzzy controller are error e and error 

change Δe: 

)()( kke                                   (13) 

)1()()(  kekeke                         (14) 

The output is the force f and the Q-values of 

conclusions. 

The fuzzy partitions of the inputs and output are 

described in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Membership functions 

 

The rule base is  choosen arbitrary and the Q-values of 

the conclusions are set initially to zero. We use center 

of area defuzzification and the min operator to 

implement the premise and implication. 

A trial in our experiments refers to starting with the 

cart-pole system set to an initial state and ending with 

the appearance of a failure signal or successful control 

of the system for an extended period (1000 time steps 

or 20 seconds). The Q-learning was applied to tune 

fuzzy rule conclusions. The free constants were =0.95 

and  set initially to 0.1 and decreases. Figure 4. 

shows the average return per trial performance of the 

controller during the learning process; the average 

return per trial and figures 5 and 6 show the response 

of the system , after learning, for initial angle equal to 

–50° and 28° respectively.  

It is clear that the average return increases during 

learning until it reaches a sub-optumal value. The 

obtained fuzzy controller is able to stabilize the pole 

for angles inferior to 55°. 
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figure 4. The Average Return 
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Figure 5.  Angle, velocity and force for  initial 

angle equal 50° 
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Figure 6.  Angle, velocity and force for  initial 

angle equal to 28° 

 

 

5. Conclusions 

In this work we have proposed a new method of 

optimizing fuzzy inference system based on Q-

learning.  This method was applied to cart-pole system. 

After learning , the  controller  is able to stabilize the 

pendulum. We assume that structure of the fuzzy 

system is fixed a priori. The optimization of 

membership function parameters and number of rules 

will improve the performance of the proposed method. 
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