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Abstract : Nonlinear model base predictive control (MBPC) is one of the most powerful techniques in 
process control, however, two main problems need to be considered : obtaining a suitable nonlinear model 
and an efficient optimization procedure. In this paper, fuzzy Takagi-Sugeno (TS) models are used for 
nonlinear systems modeling and the optimization routine is based on genetic algorithms(GAs). First a 
fuzzy TS model of the non-linear system is derived from input-output data by means of fuzzy clustering 
and least squares  parameter estimation. Next, the fuzzy model is used in an MBPC structure where the 
critical element is the optimisation routine which is nonconvex and thus difficult to solve. A genetic 
algorithm based approach is proposed to deal with this problem. The efficiency of this approach had been  
demonstrated with a simulation example. 

 
1. Introduction 
   Model based predictive control MBPC  
was developed in the process industries in 
the 1960's and 70's, based primarily on 
heuristic ideas and input-output step and 
impulse response models[1,2]. The basic 
principle is to solve an open-loop optimal 
control problem at each time step. The 
decision variables are a set of future 
manipulated variable and the objective 
function is to minimize deviations from a 
desired trajectory; constraints on 
manipulated, state and output variables are 
naturally handled in this formulation. 
Feedback is handled by providing a model 
update at each time, and performing the 
optimization again[3,4].  
 The classical MBPC algorithm use linear 
models of the process to predict the output 
of the process over the prediction horizon. 
When no model of the system is available, 
the classical system identification theory 
provides possible solutions to the problem, 
but when the process is non-linear and it is 
driven over a wide dynamic operating 
range, the use of linear models becomes 
impractical, and the use of non-linear 
models for control becomes  a necessity[5]. 
   In recent years, the use of fuzzy systems 
for nonlinear system modelling has proved 
to be extremely successful[6,7]. In this 
paper we propose to use fuzzy systems to 
model non-linear systems in an MBPC 
structure. 

An additional difficulty is that the 
optimization problems to be solved on line 
are generally nonlinear programms without 
any redeeming features, which implies that 
converegence to global optimum cannot be 
assured[2]. Often the nonlinear optimization 
problem is solved by iterative methods such 
as sequential quadratic rogramming (SQP), 
which is computationally very expensive 
with no guarantee of convergence to a 
global optimum. Genetic Algorithms (GAs) 
[5] are potential methods as optimisation 
techniques for complex problems. The aim 
of this paper is to use fuzzy systems as 
models for the plant in an MBPC strategy 
and to  solve the non-linear constrained 
optimisation problem by genetic 
Algorithms. The paper is organized as 
follows. Section 2  provide elementary 
ground on MBPC. Section 3 describes the 
concept of non-linear system modelling by 
fuzzy systems. Section 4 deals with the use 
of genetic algorithms to solve  constrained 
optimisation problems in MBPC. Section 5, 
presents a simulation example to 
demonstrate the effectiveness of the 
proposed approach. Section 6 draws some 
conclusions  from the presented work. 
2. Basic elements of model based 
predictive control 
MBPC also known as receding horizon 
control (RHC) is a general methodology for 
solving control problems in the time 
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domain. It is based on three main concepts 
[3,9]: 
1. Explicit use of a model to predict the 
process output. 
2. Computation of a sequence of future 
control actions by minimizing a given 
objective function. 
3. The use of the receding horizon strategy: 
only the first control action in the sequence 
is applied, the horizons are moved one 
sample period towards the future, and 
optimization is repeated. 
Because of the optimization approach and 
the explicit use of the process model, 
MBPC can realize multivariable optimal 
control, deal with nonlinear processes and 
handle constraints efficiently. The three 
basic elements of  MBPC: (i) a model 
which describes the process, (ii) a goal, 
defined by an objective function and 
constraints (optional), and (iii) an 
optimization procedure. 
The future process outputs are predicted 
over the prediction horizon Hp using the 
model of the process : ŷ(k+i) for i=1,…,Hp. 
Theses values depend on the current 
process state, and the future control signal 
u(k+i) for i=0,…,Hc-1, where Hc≤ Hp is the 
control horizon. The control variable is 
manipulated only within the control horizon  
and remains constant afterwards.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1. Process model 
The model must describe the system well 
and it does not matter what type of model is 

used to this end: a black-box, a gray-box, or 
a white-box one[9,10]. The future process 
outputs ŷ(k+i) for i=1,. . . ,Hp, are predicted 
over the prediction horizon Hp using a 
model of the process.  
2.2. Objective function 
The objective function mathematically 
describes the control goal. In general, good 
tracking of the reference trajectory is 
required, with low control energy 
consumption. These requirements can be 
expressed by the general form [  ]: 
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Where r(k) is the reference, P, ∆P, Q and 
∆Q are positive definite weight matrices.  
Level and rate constraints of the control 
input and/or other process variables can be 
specified as a part of the optimization 
problem. 
In MBPC equation (1) is usually used in 
combination with input and output 
constraints: 

maxmin uuu ≤≤  
maxmin uuu ∆≤∆≤∆  

maxmin yyy ≤≤                     (2) 
maxmin yyy ∆≤∆≤∆  

 
Other constraints can be implemented in a 
straightforward way, e.g. state constraints 
for state space models [2].  
 
2.3 Optimisation  
Model predictive control requires an  
optimization procedure by which a 
sequence of optimal control signals can be 
found at each step.  
Linear MBPC problem with constraints 
form a convex optimization problem, that 
can be efficiently solved by numerical 
methods[2]. 
In the presence of nonlinearities and 
constraints, a non-convex optimization 
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Figure 1. The basic principle of model based 
predictive control 
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problem must be solved at each sampling 
period. This hampers the application of 
nonlinear MBPC to fast systems where 
iterative optimization techniques cannot be 
properly used, due to short sampling 
periods and extensive computation 
times[9]. 
Moreover, iterative optimization 
algorithms, such as the Nelder-Mead 
method, the multi-step Newton-type 
algorithm[11], or sequential quadratic 
programming(SQP)[12], usually converge 
to local minima, which results in poor 
solutions of the optimization problem. For 
efficiency many vendors use heuristic 
methods, for example, by using dynamic 
matrices[2]. 
In this paper, a genetic algorithm based 
approach is used to solve the MBPC 
constrained optimisation problem.  
3. Fuzzy modeling and identification 
3.1 Fuzzy modeling  
 Takagi-Sugeno fuzzy models are universal 
approximators[7], so  they are suitable to 
model a large class of non linear systems. 
A general TS fuzzy model can be 
represented by a set of fuzzy rules having 
the following form: 
Ri : if x1 is Ai1 and ….. xn is Ain then  
                                        ŷi = f(x1,x2,…,xn) 

i=1,…,R                                (3) 
Here x = [x1,x2,…,xn]T is the input vector, 
ŷi is the output  of the ith rule, and 
Ai1,…..,Ain are fuzzy sets defined in the 
antecedent space by membership functions 
μAij(xj) : R → [0,1], f is the rule consequent 
and R is the number of rules. The rule 
consequents are often taken to be linear 
functions of inputs : 
      f(x1,x2,…,xn) = Ci0 + Ci1x1 + … +Cinxn. 
Where the parameters Cij i=1,…,R and 
j=0,..,n are the consequent parameters. 
The total output of the model is computed 
by aggregating the individual contributions 
of the rules : 
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3.2 Identification  
 Given N input-output data pairs {xk,uk}, 
the typical identification of the TS model is 
done in two steps : first the fuzzy rule 
antecedents are determined and then least 
squares parameter estimation is applied to 
determine the consequents.  
 In this paper, the antecedents of the initial 
fuzzy rule bases are obtained by fuzzy 
clustering in the product space of the 
sampled input-output data. Each cluster 
represent a certain region in the systems 
input-output state space , and correspond to 
a rule in the rule base. The fuzzy sets in the 
rule antecedents are obtained by projecting 
the cluster into the domain of the various 
inputs. 
4. Optimisation 
Genetic Algorithms (GAs) as an 
optimization method have been lately 
applied as an alternative to classical 
optimization methods. Their ability to find 
the optimum of functions where classical 
methods have difficulties (e.g. non 
derivative functions), is one of the most 
properties of this technique. In this paper, a 
genetic algorithm is used to solve the 
MBPC optimization problem. The 
algorithm is derived from the steady-state 
GA and utilizes floating point encoding. A 
fitness function of the optimizer is defined 
by the objective function of the model 
predictive control formulation. 
4.1. Encoding 
Every individual {pi ;i =1,…,Npop} in the 
population of a genetic algorithm 
determines a control sequence: 

( ) ( ) ( ){ }1,...,1, −++= ciiii Hkukukup          (6) 
the elements of which are represented as 
floating point numbers. An individual pi is 
described by a set of Hc numbers which are 
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selected within the admissible interval [u 
min , umax ] with absolute differences {Δui 
(k+j); j =1,…,Hc-1 } not exceeding the 
prescribed value Δui max. 
4.2 Initialization 
In order to provide for faster convergence 
of the genetic algorithm, suitable 
initialization procedure should be specified. 
In this paper we combine random 
initialisation with the interevolution steady-
state principle  : 
 Randomly Initialization  : Random control 
trajectories are generated in accordance 
with the constraints presented in Eq.(2). 
Inter-evolution exchange : The best 
solutions of the last optimization cycle are 
used in the next period.  
4.2 Termination conditions 
The termination function is used to 
determine when the optimization loop 
should be finished. Selection of a fixed 
number of generations is not very suitable 
because evolution may converge earlier. 
Therefore we introduce a new convergence 
measure to determine the termination 
condition. Deviations of all signals of the 
best individual in the population are 
scanned for the last Nconv generations. The 
termination condition is fulfilled when 
either the relative maximum deviation 
becomes smaller than a prescribed value 
pconv or the maximum number of 
generations Ngen is exceeded. 
 
4.3 Constraints handling 
Manipulated variables (MVs) Constraints 
are directly handled in the AG reproduction 
procedure. Each individual pi is described 
by a set of Hc numbers which are selected 
within the admissible interval [u min , umax ] 
with absolute differences {Δui (k+j); j 
=1,…,Hc-1 } not exceeding the prescribed 
value Δui min and Δui max. 
Controlled variables (CVs) constraints  are 
handled by penalizing infeasible 
individuals[13]. The fitness function is 
modified and the violation of constraints is  
specified by penalties. The modified fitness 
function for an individual p is evaluated by 
:  

( ) ( ) ( )pQpfpeval +=              (7) 
where f(p) is the fitness function without 
constraints and Q(p) is a penalty function 
corresponding to constraints violation. The 
value of Q(p) is proportional to the 
amplitude and the time of  the constraint 
violation. 
 
5. Simulation 
Consider the non-linear discrete system 
described by the equation : 

( ) ( )
( ) ( )kuky

kyky ++=+ 211                  (8) 

A fuzzy model is obtained using 
input/output data sets generated by random 
values of ( ) [ ]0.1,0.1−∈ku . Fuzzy model 
membership functions are obtained by the 
Gustafson-Kessel[14] clustering algorithm  
and the consequent parameters are derived 
with a least squares algorithm. 
Figure 2 represent the obtained membership 
functions for u(k) and y(k). 

 
 

 
Figure 2. Membership functions for u(k) 

and y(k) 
 
The fuzzy model is described by four the 
following rules: 
1. If y(k) is Ω11 and u(k) is Ω21 then  
y(k+1)  = -0.1537 + 1.00y(k) - 0.6896u(k) 
2. If y(k) is Ω11 and u(k) is Ω22 then  
y(k+1)  = -0.1539 + 1.00y(k) - 0.6902u(k) 
3. If y(k) is Ω12 and u(k) is Ω21 then  
y(k+1)  = -0.1501 + 1.00y(k)  0.6857u(k) 
2. If y(k) is Ω12 and u(k) is Ω22 then  
y(k+1)  = -0.1501 + 1.001y(k) 0.6857u(k) 

                                                       (9) 
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The goal of the predictive control is to 
generate suitable sequence of actions 
( ) [ ]0.1,0.1−∈ku  so to minimize the objective 

function given by equation (1) where the 
reference signal is : r(k)=0.5 for k=1,…,50; 
r(k)=-0.5 for k=51,…,100 and r(k) = 0.2 for 
k=101,…,200. 
The constraints are : 

( ) 0.10.1 ≤≤− ku  
( ) 0.10.1 ≤≤− ky                   (10) 

The prediction horizon  Hp=5 and the 
control horizon is Hc = 3. The weight 
matrices in equation (1) are P = 1.0 , Q =1.0 
ΔP=0 and ΔQ =0. 
Figure 3 represents the system output and 
the reference, the corresponding control 
input is represented in figure 4. 

 
 
 

 
 
6. Conclusions  
A non-linear model based predictive 
control strategy based on fuzzy models and 
genetic algorithms had been presented. This 
strategy is a very efficient non-linear model 
based predictive control approach.   

Future work should be done to improve the 
computation time of the optimiser by 
choosing special operators to enhance the 
convergence of the genetic algorithm. A 
combination with iterative methods  may 
decrease the computational time and avoid 
the convergence to local minima. 
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