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Abstract : Model based predictive control (MBPC) is one of the most powerful techniques in process 
control, however, two main problems need to be considered : obtaining a suitable nonlinear model and an 
efficient optimization procedure. In this paper, non-linear models are used to predict the plant future 
response. A genetic algorithm based approach is then used in an MBPC structure to deal with the 
problem of optimisation which is non convex and thus difficult to solve. The efficiency of this approach 
had been  demonstrated with  simulation examples. 

 
1. Introduction 
   Model based predictive control MBPC  
was developed in the process industries in 
the 1960's and 70's, based primarily on 
heuristic ideas and input-output step and 
impulse response models[1,2]. The basic 
principle is to solve an open-loop optimal 
control problem at each time step. The 
decision variables are a set of future 
manipulated variables and the objective 
function is to minimize deviations from a 
desired trajectory; constraints on 
manipulated, state and output variables are 
naturally handled in this formulation. 
Feedback is handled by providing a model 
update at each time, and performing the 
optimization again[3,4].  
 The classical MBPC algorithm use linear 
models of the process to predict the output 
of the process over the prediction horizon. 
When no model of the system is available, 
the classical system identification theory 
provides possible solutions to the problem, 
but when the process is non-linear and it is 
driven over a wide dynamic operating 
range, the use of linear models becomes 
impractical, and the use of non-linear 
models for control becomes  a necessity[5]. 
The success of MBPC is highly dependent 
on a reliable process model. Since  most of 
the industrial processes exhibit a complex 
and often non linear behaviour, modelling 
can take a major part of the design time and 
costs of a predictive controller. In most of 
the cases deriving white-box process model 
based on first principles is a difficult, 
expensive and time consuming task and so 

MBPC must rely on suitable grey-box 
models or black-box model descriptions of 
the process. 
   Various model forms ( Wiener models, 
neural networks, fuzzy models, Voltera 
models, piece-wise linear models, etc.) have 
been proposed.  
The use of non-linear prediction models in 
the predictive control scheme results in a 
non-linear and non convex optimisation 
problem which must be solved at each 
control sample. The optimisation problems 
to be solved on line are generally nonlinear 
programms without any redeeming features, 
which implies that converegence to global 
optimum cannot be assured[2]. Often the 
nonlinear optimisation problem is solved by 
iterative methods such as sequential 
quadratic programming (SQP), which is 
computationally very expensive with no 
guarantee of convergence to a global 
optimum. Genetic Algorithms (GAs) [5] are 
potential methods as optimisation 
techniques for complex problems. The aim 
of this paper is to use non linear models of 
the plant in an MBPC strategy and to  solve 
the non-linear constrained optimisation 
problem by genetic algorithms. The paper is 
organized as follows. Section 2  provide 
elementary ground on MBPC. Section 3 
describes the concept of non-linear system 
modelling . Section 4 deals with the use of 
genetic algorithms to solve  constrained 
optimisation problems in MBPC. Section 5, 
presents simulation examples to 
demonstrate the effectiveness of the 
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proposed approach. Section 6 draws some 
conclusions  from the presented work. 
 
2. Basic elements of model based 
predictive control 
MBPC also known as receding horizon 
control (RHC) is a general methodology for 
solving control problems in the time 
domain. It is based on three main concepts 
[3,9]: 
1. Explicit use of a model to predict the 
process output. 
2. Computation of a sequence of future 
control actions by minimizing a given 
objective function. 
3. The use of the receding horizon strategy: 
only the first control action in the sequence 
is applied, the horizons are moved one 
sample period towards the future, and 
optimization is repeated. 
Because of the optimization approach and 
the explicit use of the process model, 
MBPC can realize multivariable optimal 
control, deal with nonlinear processes and 
handle constraints efficiently. The three 
basic elements of  MBPC: (i) a model 
which describes the process, (ii) a goal, 
defined by an objective function and 
constraints (optional), and (iii) an 
optimization procedure. 
The future process outputs are predicted 
over the prediction horizon Hp using the 
model of the process : ŷ(k+i) for i=1,…,Hp. 
These values depend on the current process 
state, and the future control signal u(k+i) 
for i=0,…,Hc-1, where Hc≤ Hp is the control 
horizon. The control variable is 
manipulated only within the control horizon  
and remains constant afterwards.  
 
 
 
 
 
 
 
 
 
 
 

 
2.1. Process model 
The model must describe the system well 
and it does not matter what type of model is 
used to this end: a black-box, a gray-box, or 
a white-box[9,10]. The future process 
outputs ŷ(k+i) for i=1,. . . ,Hp, are predicted 
over the prediction horizon Hp using a 
model of the process.  
2.2. Objective function 
The objective function mathematically 
describes the control goal. In general, good 
tracking of the reference trajectory is 
required, with low control energy 
consumption. These requirements can be 
expressed by the general form [4]: 
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Where r(k) is the reference, P, ∆P, Q and 
∆Q are positive definite weight matrices.  
Level and rate constraints of the control 
input and/or other process variables can be 
specified as a part of the optimization 
problem. 
In MBPC equation (1) is usually used in 
combination with input and output 
constraints: 

maxmin uuu ≤≤  
maxmin uuu ∆≤∆≤∆  

maxmin yyy ≤≤                     (2) 
maxmin yyy ∆≤∆≤∆  

 
Other constraints can be implemented in a 
straightforward way, e.g. state constraints 
for state space models [2].  
 
2.3 Optimisation  
Model predictive control requires an  
optimization procedure by which a 
sequence of optimal control signals can be 
found at each step.  
Linear MBPC problem with constraints 
form a convex optimization problem, that 
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Figure 1. The basic principle of model based 
predictive control 
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can be efficiently solved by numerical 
methods[2]. 
In the presence of nonlinearities and 
constraints, a non-convex optimization 
problem must be solved at each sampling 
period. This hampers the application of 
nonlinear MBPC to fast systems where 
iterative optimization techniques cannot be 
properly used, due to short sampling 
periods and extensive computation 
times[9]. 
Moreover, iterative optimization 
algorithms, such as the Nelder-Mead 
method, the multi-step Newton-type 
algorithm[11], or sequential quadratic 
programming(SQP)[12], usually converge 
to local minima, which results in poor 
solutions of the optimization problem. For 
efficiency many vendors use heuristic 
methods, for example, by using dynamic 
matrices[2]. 
In this paper, a genetic algorithm based 
approach is used to solve the MBPC 
constrained optimisation problem.  
 
3. Non linear modelling   
Unlike the linear case, there is no 
established method to construct a non linear 
model through a plant tests. Recognition of 
the need has made empirical modelling of 
non-linear systems a focal research topic 
within the process control community. 
Most non-linear empirical models studied 
in the literature fit into the following form: 

)()),(()( kkFky εθφ +=  
φ  and y  are all real vectors of 
dimensions φn  and yn  respectively. F is a 
function that maps φ  to the output vector 
y . The transformation is usually estimated 
in a parameterised form ( in terms of the 
vector denoted by θ ).  )(kε  is the residual 
error sequence. 
Before the application of  a parameter 
estimation method the user must first make 
the following choices: 
Input Vector : One has to decide which 
variables to include in φ  as well as how 
many. This is critical as different choices 

lead to models with fundamentally different 
characteristics. 
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gives a Non-linear Auto Regressive model 
with eXogenous input (NARX).  
Once the model is decided the number of 
lagged inputs/outputs ),( uy mm  should be 
determined. Available methods for 
determining these parameters include: the 
False Nearest Neighbourhood (FNN) 
method, Akaike Information Criteria (AIC) 
and its related concepts and cross-
validation. The FNN method has the 
advantage over the others that the order 
selection can be carried out independently 
of finding the non linear operator. 
F may be parameterised as a series sum a of 
a priori chosen basis functions : 
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Basis functions can be classified into global 
functions ( e.g. polynomials) and local 
functions ( e.g. radial basis and fuzzy 
systems). 
 
4. Optimisation 
Genetic Algorithms (GAs) as an 
optimization method have been lately 
applied as an alternative to classical 
optimization methods. Their ability to find 
the optimum of functions where classical 
methods have difficulties (e.g. non 
derivative functions), is one of the most 
properties of this technique. In this paper, a 
genetic algorithm is used to solve the 
MBPC optimization problem. The 
algorithm is derived from the steady-state 
GA and utilizes floating point encoding. A 
fitness function of the optimizer is defined 
by the objective function of the model 
predictive control formulation. 
4.1. Encoding 
Every individual {pi ;i =1,…,Npop} in the 
population of a genetic algorithm 
determines a control sequence: 

( ) ( ) ( ){ }1,...,1, −++= ciiii Hkukukup          (6) 
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the elements of which are represented as 
floating point numbers. An individual pi is 
described by a set of Hc numbers which are 
selected within the admissible interval [umin 
, umax ] with absolute differences {∆ui(k+j); 
j =1,…,Hc-1 } not exceeding the prescribed 
value ∆umax. 
4.2 Initialization 
In order to provide for faster convergence 
of the genetic algorithm, suitable 
initialization procedure should be specified. 
In this paper we combine random 
initialisation with the interevolution steady-
state principle  : 
 Randomly Initialization  : Random control 
sequences are generated in accordance with 
the constraints presented in Eq.(2). 
Inter-evolution exchange : The best 
solutions of the last optimization cycle are 
used in the next period.  
4.2 Termination conditions 
The termination function is used to 
determine when the optimization loop 
should be finished. Selection of a fixed 
number of generations is not very suitable 
because evolution may converge earlier. 
Therefore we introduce a new convergence 
measure to determine the termination 
condition. Deviations of all signals of the 
best individual in the population are 
scanned for the last Nconv generations. The 
termination condition is fulfilled when 
either the relative maximum deviation 
becomes smaller than a prescribed value or 
the maximum number of generations Ngen is 
exceeded. 
 
4.3 Constraints handling 
Manipulated variables (MVs) Constraints 
are directly handled in the AG reproduction 
procedure. Each individual pi is described 
by a set of Hc numbers which are selected 
within the admissible interval [u min , umax ] 
with absolute differences {∆ui (k+j); j 
=1,…,Hc-1 } not exceeding the prescribed 
value ∆ui min and ∆ui max. 
Controlled variables (CVs) constraints  are 
handled by penalizing infeasible 
individuals[14]. The fitness function is 
modified and the violation of constraints is  

specified by penalties. The modified fitness 
function for an individual p is evaluated by 
:  

( ) ( ) ( )pQpfpeval +=              (7) 
where f(p) is the fitness function without 
constraints and Q(p) is a penalty function 
corresponding to constraints violation. The 
value of Q(p) is proportional to the 
amplitude and the time of  the constraint 
violation. 
 
5. Simulation 
Example 1 : Consider the non-linear 
discrete system described by the equation : 

( ) ( )
( ) ( )kuky
kyky ++=+ 211                  (8) 

A neural model is obtained using 
input/output data sets generated by random 
values of ( ) [ ]0.1,0.1−∈ku . The model is a 
feedforward neural network with three 
layers : one input  layer, one hidden layer 
and one output layer. The activation 
function of the three hidden units is the 
sigmoid. The activation function of the 
output node  is linear. The model has two 
inputs ( )ky  and ( )ku  and one output 
( )1+ky . 

Levenberg-Marquardt algorithm is used to 
train the neural model using the input 
output data generated randomly. The 
structure of the neural model  is represented 
in Figure 2. 
  
 
 
 
 
 
 
 
 

Figure 2. The Neural Model 
 
The goal of the predictive control is to 
generate suitable sequence of actions 
( ) [ ]0.1,0.1−∈ku  so to minimize the objective 

function given by equation (1) where the 
reference signal is : r(k)=0.5 for k=1,…,50; 

u(k) 

y(k) 
y(k+1) 

1.0 
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r(k)=-0.2 for k=51,…,100 and r(k) = 0.2 for 
k=101,…,200. 
The constraints are : 

( ) 0.10.1 ≤≤− ku  
( ) 0.10.1 ≤≤− ky                   (8) 

The prediction horizon  Hp=4 and the 
control horizon is Hc = 2. The weight 
matrices in equation (1) are P = 1.0 , Q =1.0 
∆P=0 and ∆Q =0. 
Figure 3 represents the system output and 
the reference, the corresponding control 
input is represented in figure 4. 
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Example 2 :  
let us consider an exothermic continuous 
stirred tank reactor (CSTR)  described by 
the following differential equations [15]: 
 
 
 
 
 
 
 

Where x1 and x2 represent dimensionless 
reactant conversion and temperature, u is 
the coolant temperature which is used as a 
manipulated variable. The parameters in the 
process are :B=8, Da=0.072, φ=20,  β=0.3 
and τ=0.4. The sampling time is 0.1. The 
process output is the reactor temperature x2. 
The purpose of the control is to keep the 
temperature to track the reference setpoint. 
A sequence of random steps with amplitude 
between [-1,1] is used to excite the process. 
Then the produced data are employed for 
identification. A fuzzy model with four  
inputs ( y(k-1),y(k-2),u(k-5),u(k-6)) and one 
output y(k) is constructed to model the 
process. Fuzzy model membership 
functions are obtained by the Gustafson-
Kessel[16] clustering algorithm  and the 
consequent parameters are derived with a 
least squares algorithm. The obtained model 
is a collection of seven rules of the form:  
If y(t-1) est W1i  et y(t-2) W1i est et u(t-5) 
W1i est  et u(t-6) est W1i  alors y(t)= Ci0 + 
Ci1y(t-1)  + Ci2 y(t-2) + Ci3u(t-5)+ Ci4 u(t-6) 
The plant response is represented in figure 
and the control sequence in figure 
.

 

6. Conclusions  
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Figure 3. System output (dashed line) 
and the desired response (solid line) 

Figure 4. Control  sequence 
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A non-linear model based predictive 
control strategy based on algorithms had 
been presented. This strategy is a very 
efficient non-linear model based predictive 
control approach.   
Future work should be done to improve the 
computation time of the optimiser by 
choosing special operators to enhance the 
convergence of the genetic algorithm. A 
combination with iterative methods  may 
decrease the computational time and avoid 
the convergence to local minima. 
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