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Abstract : Nonlinear model based predictive control (MBPC) is one of the most powerful techniques in 
process control, however, two main problems need to be considered : obtaining a suitable nonlinear model 
and an efficient optimization procedure. In this paper, a neural network is used as a non-linear prediction 
model of the plant. The optimisation routine is based on genetic algorithms(GAs). First a neural model of 
the non-linear system is derived from input-output data. Next, the neural model is used in an MBPC 
structure where the critical element is the optimisation routine which is nonconvex and thus difficult to 
solve. A genetic algorithm based approach is proposed to deal with this problem. The efficiency of this 
approach had been  demonstrated with a simulation example. 

 
1. Introduction 
   Model based predictive control MBPC  
was developed in the process industries in 
the 1960's and 70's, based primarily on 
heuristic ideas and input-output step and 
impulse response models[1,2]. The basic 
principle is to solve an open-loop optimal 
control problem at each time step. The 
decision variables are a set of future 
manipulated variables and the objective 
function is to minimize deviations from a 
desired trajectory; constraints on 
manipulated, state and output variables are 
naturally handled in this formulation. 
Feedback is handled by providing a model 
update at each time, and performing the 
optimization again[3,4].  
 The classical MBPC algorithm use linear 
models of the process to predict the output 
of the process over the prediction horizon. 
When no model of the system is available, 
the classical system identification theory 
provides possible solutions to the problem, 
but when the process is non-linear and it is 
driven over a wide dynamic operating 
range, the use of linear models becomes 
impractical, and the use of non-linear 
models for control becomes  a necessity[5]. 
   The use of neural networks for non-linear 
system modelling has proved to be 
extremely successful[7,8]. In this paper we 
propose to use neural networks to model 
non-linear systems in an MBPC structure. 
Using such non-linear prediction models in 
the predictive control scheme results in a 

non-linear and nonconvex optimization 
problem which must be solved at each 
control sample. The optimization problems 
to be solved on line are generally nonlinear 
programms without any redeeming features, 
which implies that converegence to global 
optimum cannot be assured[2]. Often the 
nonlinear optimization problem is solved by 
iterative methods such as sequential 
quadratic programming (SQP), which is 
computationally very expensive with no 
guarantee of convergence to a global 
optimum. Genetic Algorithms (GAs) [5] are 
potential methods as optimisation 
techniques for complex problems. The aim 
of this paper is to use neural networks as 
models for the plant in an MBPC strategy 
and to  solve the non-linear constrained 
optimization problem by genetic 
algorithms. The paper is organized as 
follows. Section 2  provide elementary 
ground on MBPC. Section 3 describes the 
concept of non-linear system modelling by 
neural networks. Section 4 deals with the 
use of genetic algorithms to solve  
constrained optimization problems in 
MBPC. Section 5, presents a simulation 
example to demonstrate the effectiveness of 
the proposed approach. Section 6 draws 
some conclusions  from the presented work. 
2. Basic elements of model based 
predictive control 
MBPC also known as receding horizon 
control (RHC) is a general methodology for 
solving control problems in the time 
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domain. It is based on three main concepts 
[3,9]: 
1. Explicit use of a model to predict the 
process output. 
2. Computation of a sequence of future 
control actions by minimizing a given 
objective function. 
3. The use of the receding horizon strategy: 
only the first control action in the sequence 
is applied, the horizons are moved one 
sample period towards the future, and 
optimization is repeated. 
Because of the optimization approach and 
the explicit use of the process model, 
MBPC can realize multivariable optimal 
control, deal with nonlinear processes and 
handle constraints efficiently. The three 
basic elements of  MBPC: (i) a model 
which describes the process, (ii) a goal, 
defined by an objective function and 
constraints (optional), and (iii) an 
optimization procedure. 
The future process outputs are predicted 
over the prediction horizon Hp using the 
model of the process : ŷ(k+i) for i=1,…,Hp. 
These values depend on the current process 
state, and the future control signal u(k+i) 
for i=0,…,Hc-1, where Hc≤ Hp is the control 
horizon. The control variable is 
manipulated only within the control horizon  
and remains constant afterwards.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1. Process model 
The model must describe the system well 
and it does not matter what type of model is 

used to this end: a black-box, a gray-box, or 
a white-box[9,10]. The future process 
outputs ŷ(k+i) for i=1,. . . ,Hp, are predicted 
over the prediction horizon Hp using a 
model of the process.  
2.2. Objective function 
The objective function mathematically 
describes the control goal. In general, good 
tracking of the reference trajectory is 
required, with low control energy 
consumption. These requirements can be 
expressed by the general form [4]: 
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Where r(k) is the reference, P, ∆P, Q and 
∆Q are positive definite weight matrices.  
Level and rate constraints of the control 
input and/or other process variables can be 
specified as a part of the optimization 
problem. 
In MBPC equation (1) is usually used in 
combination with input and output 
constraints: 

maxmin uuu ≤≤  
maxmin uuu ∆≤∆≤∆  

maxmin yyy ≤≤                     (2) 
maxmin yyy ∆≤∆≤∆  

 
Other constraints can be implemented in a 
straightforward way, e.g. state constraints 
for state space models [2].  
 
2.3 Optimisation  
Model predictive control requires an  
optimization procedure by which a 
sequence of optimal control signals can be 
found at each step.  
Linear MBPC problem with constraints 
form a convex optimization problem, that 
can be efficiently solved by numerical 
methods[2]. 
In the presence of nonlinearities and 
constraints, a non-convex optimization 
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Figure 1. The basic principle of model based 
predictive control 
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problem must be solved at each sampling 
period. This hampers the application of 
nonlinear MBPC to fast systems where 
iterative optimization techniques cannot be 
properly used, due to short sampling 
periods and extensive computation 
times[9]. 
Moreover, iterative optimization 
algorithms, such as the Nelder-Mead 
method, the multi-step Newton-type 
algorithm[11], or sequential quadratic 
programming(SQP)[12], usually converge 
to local minima, which results in poor 
solutions of the optimization problem. For 
efficiency many vendors use heuristic 
methods, for example, by using dynamic 
matrices[2]. 
In this paper, a genetic algorithm based 
approach is used to solve the MBPC 
constrained optimisation problem.  
3. Non linear modelling using neural 
networks  
Because of their ability to approximate 
virtually any arbitrary mapping between 
two sets of data, neural networks have been 
extensively studied for their use in the 
identification of dynamical systems [7,8]. 
Multilayer feedforward neural networks are 
the most used neural structures in system 
modelling. A multilayer feedforward neural 
network with one hidden layer and linear 
activation function for the output nodes can 
be described  as [8]: 

( )θσ += VuWY                            (3) 
Here ∈u nℜ  is the input vector and ry ℜ∈ is 
the output vector and the nonlinear element 

().σ  is taken elementwise. The 
interconnection matrices are rxhW ℜ∈  for 
the output layer, hxnV ℜ∈   for the hidden 
layer, hℜ∈θ is the bias vector (thresholds of 
hidden neurons) with h the number of 
hidden neurons. Given a training set of 
input/output data, the original learning rule 
is the backpropagation algorithm. 
A non-linear dynamic system with sampled 
input and output data, can be expressed as : 

( ) ( ) ( ) ( ) ( )( )uy NkUkUNkYkYkY −−−−= ,,1,,,1φ
                     (4) 

where ( )kY  is the system output vector at 
time k, φ  is a nonlinear function, U  is the 
input vector,  yN  and uN are model orders. 
The basic idea of non linear modelling with 
neural networks is to approximate the 
function φ  by a neural network. 
The input/output measurements are used to 
determine the appropriate weight values. 
There are many variations of  the 
backpropagation algorithm. The simplest 
implementation of backpropagation 
learning updates the network weights and 
biases in the direction in which the 
performance function decreases most 
rapidly-the negative of the gradient. One 
iteration of this algorithm can be written  

( ) ( ) ( ) ( )kgkkWkW α−=+1           (5) 
where ( )kW is a vector of current weights 
and biases, ( )kg  is the current gradient, and 

( )kα  is the learning rate. Backpropagation 
is known by its slow convergence.  Several 
high performance algorithms which can 
converge faster were proposed. Fletcher-
Reeves, Polak-Ribiére, BFGS and 
Levenberg-Marquardt algorithms can 
converge from ten to one hundred times 
faster than the original 
backpropagation[13].  
4. Optimisation 
Genetic Algorithms (GAs) as an 
optimization method have been lately 
applied as an alternative to classical 
optimization methods. Their ability to find 
the optimum of functions where classical 
methods have difficulties (e.g. non 
derivative functions), is one of the most 
properties of this technique. In this paper, a 
genetic algorithm is used to solve the 
MBPC optimization problem. The 
algorithm is derived from the steady-state 
GA and utilizes floating point encoding. A 
fitness function of the optimizer is defined 
by the objective function of the model 
predictive control formulation. 
4.1. Encoding 
Every individual {pi ;i =1,…,Npop} in the 
population of a genetic algorithm 
determines a control sequence: 
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( ) ( ) ( ){ }1,...,1, −++= ciiii Hkukukup          (6) 
the elements of which are represented as 
floating point numbers. An individual pi is 
described by a set of Hc numbers which are 
selected within the admissible interval [umin 
, umax ] with absolute differences {Δui(k+j); 
j =1,…,Hc-1 } not exceeding the prescribed 
value Δumax. 
4.2 Initialization 
In order to provide for faster convergence 
of the genetic algorithm, suitable 
initialization procedure should be specified. 
In this paper we combine random 
initialisation with the interevolution steady-
state principle  : 
 Randomly Initialization  : Random control 
sequences are generated in accordance with 
the constraints presented in Eq.(2). 
Inter-evolution exchange : The best 
solutions of the last optimization cycle are 
used in the next period.  
4.2 Termination conditions 
The termination function is used to 
determine when the optimization loop 
should be finished. Selection of a fixed 
number of generations is not very suitable 
because evolution may converge earlier. 
Therefore we introduce a new convergence 
measure to determine the termination 
condition. Deviations of all signals of the 
best individual in the population are 
scanned for the last Nconv generations. The 
termination condition is fulfilled when 
either the relative maximum deviation 
becomes smaller than a prescribed value or 
the maximum number of generations Ngen is 
exceeded. 
 
4.3 Constraints handling 
Manipulated variables (MVs) Constraints 
are directly handled in the AG reproduction 
procedure. Each individual pi is described 
by a set of Hc numbers which are selected 
within the admissible interval [umin , umax ] 
with absolute differences {Δui (k+j); j 
=1,…,Hc-1 } not exceeding the prescribed 
value Δumin and Δumax. 
Controlled variables (CVs) constraints  are 
handled by penalizing infeasible 
individuals[14]. The fitness function is 

modified and the violation of constraints is  
specified by penalties. The modified fitness 
function for an individual p is evaluated by 
:  

( ) ( ) ( )pQpfpeval +=              (7) 
where f(p) is the fitness function without 
constraints and Q(p) is a penalty function 
corresponding to constraints violation. The 
value of Q(p) is proportional to the 
amplitude and the time of  the constraint 
violation. 
 
5. Simulation 
Consider the non-linear discrete system 
described by the equation : 

( ) ( )
( ) ( )kuky

kyky ++=+ 211                  (8) 

A neural model is obtained using 
input/output data sets generated by random 
values of ( ) [ ]0.1,0.1−∈ku . The model is a 
feedforward neural network with three 
layers : one input  layer, one hidden layer 
and one output layer. The activation 
function of the three hidden units is the 
sigmoid. The activation function of the 
output node  is linear. The model has two 
inputs ( )ky  and ( )ku  and one output 

( )1+ky . 
Levenberg-Marquardt algorithm is used to 
train the neural model using the input 
output data generated randomly. The 
structure of the neural model  is represented 
in Figure 2. 
  
 
 
 
 
 
 
 
 

Figure 2. The Neural Model 
 
The goal of the predictive control is to 
generate suitable sequence of actions 
( ) [ ]0.1,0.1−∈ku  so to minimize the objective 

function given by equation (1) where the 
reference signal is : r(k)=0.5 for k=1,…,50; 

u(k) 

y(k) 
y(k+1) 

1.0 
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r(k)=-0.2 for k=51,…,100 and r(k) = 0.2 for 
k=101,…,200. 
The constraints are : 

( ) 0.10.1 ≤≤− ku  
( ) 0.10.1 ≤≤− ky                   (8) 

The prediction horizon  Hp=4 and the 
control horizon is Hc = 2. The weight 
matrices in equation (1) are P = 1.0 , Q =1.0 
ΔP=0 and ΔQ =0. 
Figure 3 represents the system output and 
the reference, the corresponding control 
input is represented in figure 4. 
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6. Conclusions  
A non-linear model based predictive 
control strategy based on Neural models 
and genetic algorithms had been presented. 
This strategy is a very efficient non-linear 
model based predictive control approach.   
Future work should be done to improve the 
computation time of the optimiser by 
choosing special operators to enhance the 
convergence of the genetic algorithm. A 
combination with iterative methods  may 

decrease the computational time and avoid 
the convergence to local minima. 
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