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Abstract— A design approach is proposed for the stabilization ~ design approach for fuzzy dynamic models based on the
of non linear systems using fuzzy Takagi-Sugeno models. The maximisation of the stability region of each local model.
fuzzy model is represented as a set of uncertain linear systes To demonstrate the efficiency of the proposed approach, a

where the local system uncertainty depends on the fulfillmen . lati leis qi . tion 4. Einall .
degree of the corresponding rule. An optimization procedue simulation example is given in section 4. Finally, conobusi

is used to design the local controller such as to maximize are given in section 5.

the stability region of each closed loop local system. The

local controller design is based on the resolution of a set II. TAKAGI-SUGENO FUZZY MODEL
of independent LMIs. The global control law is obtained by
switching between local controllers. A simulation exampleis
given to illustrate the efficiency of the proposed method.

The continuous-time Takagi-Sugeno fuzzy dynamic model
is a piecewise interpolation of several linear models thiou
membership functions . The fuzzy model is described by a
I. INTRODUCTION set of fuzzy if-then rules. Thé'" rule of the fuzzy model

Over the past several years, fuzzy systems have attractgge the form:

considerable attention from scientists and engineerszyFuz

modeling is an efficient method to represent complex non- ¢ (t)is Fi,--.  andz,(t) is F
linear systems by fuzzy sets and fuzzy reasoning. By using b g g

a Takagi-Sugeno fuzzy model, a non linear system can be Then { (1) = Aix(t) + Biu(t) (1)
expressed as a weighted sum of simple subsystems[1]-[3]. y(t) = Cix(t)

Recently, there have been appeared a number of systefherex(t) € R™ denotes the state vectar(t) ¢ R™ the
atic stability analysis and controller design results iaziy  control vector,y(¢t) € R? the output vectorF! is the jth
control literature. Tanaka et al. discussed the stability a fuzzy set of the ith ruleA; € R"™" B, € Rnxm and
the design of fuzzy control systems in [4]. They gave some;, ¢ RP*" are the state matrix, the input matrix and the
checking conditions for stability, which can be used togesi output matrix for the ith local modet; is the number of if-
fuzzy control laws, several methods have been proposedden rules, and:; (t), z(t) - - - , z,(t) are some measurable

relax the stability conditions[5]-[6]. Unfortunately.atstabil-  system variables. The final output of the fuzzy model can be
ity conditions require the existence of a common positiie deexpressed as:

inite matrix for all the local linear models. However, thesa

difficult problem to be solved in many cases, especially when x(t) = ZT: i (z(t){A;x(t) + Biu(t)}

the number of rules is large. Representation of fuzzy models i=1

by a set of linear uncertain systems has been suggested by y(t) = 3 a;(z(t)Cix(t)

Kim et al.[7], based on linear uncertain system theory sdver i=1

control design approaches has been proposed [71,[8],[18/here

The drawback of the precedent approaches is that the LMIs wi(z(t)

or the algebraic Riccati equations used to check the diabili ai(z(t)) = ———>— (2)
may be infeasible. Based on the representation of Cao et > wi(z(t))

al. [8]-[10] we propose, in this work, a switching control
design approach. The proposed approach is based on thge scalarsy;(z(t)) are characterized by:
resolution of a set of LMIs. The uncertainty of each local ,
model is represented in function of its fullfillement degree 0 < ay(z(t)) < 1 and Zo‘i(
To overcome the problem of infeasibility the fullfilment - h

degree is incorporated in the LMIs. The rest of the pap
is organized as follows. Section 2 introduces the fuzz
dynamic model. Section 3 presents the switching controll%ﬁ;

z(t)) =1 3)

eI[he T-S fuzzy model (2) has strong nonlinear interactions
ong its fuzzy rules which complicates the analysis and
control. In order to overcome these difficulties, the TS
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These subspaces are characterized by: the fuzzy model consists of a dominant nominal system
r (A;,B;,C;) and a set of interacting systems representing
U 0, =0 (5) the effect of other active rules. In this paper we suppose
; that the state vector is measurable and the stabilization is

If the rulesi andj can be inferred in the same time then ; @ccomplished via a full state feedback.yift) = x(t) the
fuzzy system can be simplified to:

LNQ;#9 (6) . - ~
N , : . x(t) = Au(a(2(1)))x(t) + Bi(a'(z(t))u(t)  (17)
If the rulesi andj can't be inferred in the same time then :
with
QN =9 @)
! =A+(1- t)AA; (o (z(t
In each subspace the TS fuzzy model (2) can be represented~ (a (=(1))) c+ (1 - a(z(t) l(a/ (=(£)))
as: By(d/(2(t))) = By + (1 — au(2(1))) ABy (o (2(1)))  (18)
Suppose that the matrice&; — A; and B, — B; can be
={Ar+ Z ai(z(t)) (As — Ay }x(?) written as :
R;ER,
= A — A = Dlz Eﬁ’ B,-B; = DZB; EZB; (29)
+1B + Z ai(z(t)) (B: — By)bu(t) Then AA;(d/(z(t))) and AB;(c/(z(t))) can be expressed
Rlifl as:
(Gt Y wle) (G- G ® AR/ (2(t)) = D, - Fa (o (1)) - Ea,
e ABy(o'(2(t))) = D, - Fp,(o/(2(t))) - Es, (20)
R; is a rule subset containing rules that can be inferred iWhere
the same time as rule
DALZ[Dﬁ Dﬁ ]’ DBL:[Dﬁ Dﬁ]
Ry = {Ri, 3, cu(a(t) e (2(1)) # 0} (©) o o
Since Eq=| 0], Eg =] !
- E/ E?
a;i(z(t) =1 — ai(z(t)) (10) S r
RZ; ay(z(t)ly, 0 - 0
i#l .
The TS fuzzy model can be written as: F 4, (! (2(t))) = 0 o 0
{ X(t) i él(z(t))x(t) + Bl(z(t))u(t) (11) I 0 . 0 O/T(Z(t))lqr
y(t) = Ci(z(t))x(t) [ o (z(t))I 0o .- 0
Where ! P
. 0 0
A(z(t) = A+ (1 — aq(z(t)AA (o' (2(t) (12) Fr(d(z(t) = _ :
By(z(t)) = Bi + (1 — cu(z() ABi(o/ (2(1))  (13) 00 - el
~ L T Pr
Ci(z(t)) = Ci + (1 — au(2(1))ACi (o' (2(1)))  (14) (21)
a IET |
AL (2(1) = D al(a(t)(Ai - Ay 0<al(e(t) <1 = { PatFLOST o
Ri€Ry FBZ(')FBL(') <I
1¢L
r [1l. CONTROLLERDESIGN
ABy(o(2(t))) = Z a;(2(1))(B; — By) We assume that the fuzzy system (2) is locally con-
et trollable, that is, the pair§A;, B;), I = 1,...,r, are
r controllable. The basic idea is to design local feedback
AC|(d/(z(t)) = > (z(t))(C;—Ci)  (15) controllers that maximize the stability region of each etbs
i€ loop local model. The switching controller consists sof
d linear state feedback controllers that will be switchedrfro
an (1)) one to another to control the system. The switching comroll
/ _ o oa(z(t can be described by:
Oél(Z(t)) - 1 _ al(Z(t)) (16) ,
If a;(z(t)) = 1 then the fuzzy system can be represented u(t) = ZQ(X(t))uz(t) (23)

by the corresponding linear local model. In each subspace,



with:
w (t) = Kix(t) (24)
and:
ax(®) ={ o Nrrmise @5)

Q}f C Q, is the subregion in which the command is generated

using the local state feedbadkK; to be designed. It can
be seen that (23) is a linear combinationrgflinear state
feedback controllers, the number of controllegsmay be

It follows that:

La(P) < LaP)), LpP) < Lp(Py)

where

_ 1
ﬁA(PZ) = ElAPlDAnglPl + E—AEEZEAL
l

. 1
Lp(P)) =P, Dp DL P, + E—BKfEEZEBZKl
l

Vl(t) SXT(t) {ﬁl (Pl) + (1 — Oél) [EA(PI) + EB(PZ)] } e

different of the number of rules At each moment, only one Since

of the linear state feedback controllers is chosen to gémera

the control signal.

Theorem 1:If there exist symmetric positive definite ma-
trix P; and positive scalars;;;4 > O,alB >0,0<¢g; <1
such that the following LMI holds:

i \I/l ElBDBl Ef‘DAl Y?Egl XZEEL ]
BDL L1 0 0
l B l—gl .
e\ DY 0 e 0 0 <0
B
EgY; 0 0 e 0
E,X, 0 0 0 1
(26)
where :
U, = XA + AX, + YIB! +B)Y, (27)
and
X, =P/, Y, =KP;! (28)

g<aqg=>1-g<l-gqg (32)
it yields

(1—a) [La()+Lp()] < (1 —ay) [La() +LB()]
Vi(t) <" () {£1(Py) + (1 — ) [La(Py) + Lp(P1)] } x(D)
L1(P)+(1—q) [EA(Pl) + AC_B(Pl)} <0
= Vt)<0
LetX; = P; ' andY; = K;X;,by right and left multiplying
by X;:
L1(P)+ (1 —q) [La(P)) + Lp(P)] <0<
X, AT + AX; + YIB! + B)Y;
+(1-a) (¢'Da, D}, + D5, Dj,)

1 1
+(1—q) <E—AXZE£lEAZXl + E—BYITEQEBZYZ> <0
l l

then the fuzzy subsystem (17) is quadratically stable fer tH'Sing Schur complement [12] we get:

values ofa;(z(t)) such that :

ar(z(t) > a (29)
Proof: Consider the following Lyapunouv function

candidate:

Vi(t) = xT ()P x(t) (30)

whereP; is a symmetric positive definite matrix. The time
derivative ofV;(t) along the trajectory of the fuzzy system

is given by:
Vi(t) =xT () Pyx(t) + xT (t)Pyx(t)
=xT (AT (o Pix(t) + xT ()P A () )x(t)
+ul (t)BF (o )Px(t) + xT (t)P;B;(a’)u(t)
=xT{L1(P)) + (1 — ) [La(P)) + L(P))]} x.
where :
L1(P)) =ATP, + P/A; + K/ B/ P, + P;B/K,
LA(P)) =E} F} D) P, + P\ D4, F4,E4,
L5(P)) =K{EL F; DL P, + PD] FEp K,
Since for any positive scalar > 0 and real matriceY and
Z we have [11]:

ZYT +YZ" < pYYT + Lzg7 (31)
p

[ W Dy D Y/E XER ]

S A S S 0 0
&#DE, 0 LT o 0 | <o
EpY, O R

E.X;, 0 0 0 —f‘gll_

with ¥; = X;AT + A/ X; + YIB! + B)Y;

which is an LIM where the variables areX; = Pl‘l,Yl =
K,P; ', ef ande. [ |

In order to maximize the region of stability of each subregio
27, the minimal value that guarantee the stability is obtained
by solving the following minimization program:

Minimize ¢,

X, Y et ef

Subject to0 < oy < 1,X; = X7 > 0,6 > 0,67 >0
[, 613231 ef'Da, Y[/EL XEY T
DL L1 o 0 0
D% 0 L1 o 0 |<o
EsY, O e

E.X, 0 0 0 -]

U, = XAl + AX, + Y/ Bl + B/Y, (33)



Note that this minimization program has always a solution w(t)
a; < 1, since we assume that the local systems are control-
lable.

Remark 1: ¢, is the Ith rule minimal degree that garanties ws(t) wi (t) wa(t)
the quadratic stability of the fuzzy system (2) using theloc
model (A;, B;) as nominal model an&; as state feedback
gain. Another rule will be used as nominal model to generate
the control signal fory; < o;.

Definition 1: We say that the state feedback gais,! = z(t)
1,2,...,r satisfy thestability coveringcondition [13] if:

’ Ks : (a)
Uar=a (34) K,
=1 K2
Lemma 1:If there exists, at each momentat least one |
integerk € {1,2,...,r} so that : K3 : ™ | (b)
1 '
ar(z() = a (35) - | K,
then stability covering condition (34) is satisfied. Ks K1 K> (¢)
Proof: —_— —_
K, K;

vt 3k, an(z(t) > a, < V¢, Tk, x(t) € Q. (36)

Fig. 1. Possible cases

vt, 3k x(t) € O = | 0 =0 (37)
k=1

m changing the model by using new nominal local systems,
Since several rules may satisfy the condition (35) in commonhich is equivalent to the addition of new rules to the model.
subregions, in this case the control can inferred by selgcti  Let 7;,i = 1,2,..., N the i'" time instant at which the
the control of the dominant system whose membershitate meets the boundary of a subreditinj = 1,2, ..., 7.
degree is of maximum distance from its guaranteed stabilitfye assume that the statét) does not jump at the transition
boundary: time 7;, that is [10]

u(t) =Kix(t), l=arg mazx (ai(z(t)) — ;) (38) x(r;) =x(r) =x(r]"), i=12,...,N  (40)
o _ o Lemma 2:The fuzzy system (2) is globally stable if the
Each state feedbacK;,” = 1,2,...,r. is applied in the ansition time instant are finittV' < oo) and the stability

local regionQ2; € €} defined as: covering condition (35) is verified.
c_ 108 _ Proof: Consider the following piecewise quadratic
Qf ={Q l= i(z(t) — o 39 . .
=1 “wg Z'Zafg (ci(z(t)) - )} (39) Lyapunouv function candidate:

Let of the rule degree corresponding to boundary of the e T
subregion(2;. V(t) =Y Glx()x" (H)Pix(1) (41)
The resolution of the: independent minimization programs = o y
(33) leads to three possible cases as shown in figure 1: Since the stability covering condition is verified:
Case 1:Several or all; =0, 1 =1, 2.,_. ..,r, figure l.a, vt >0, 3,x(t)x(t) €
a local controller can be used to stabilize the fuzzy system . . i )
in its own local subregion and in adjacent subregions anlfj7i is the time instant at wh|ch_the state leaves the subregion
the number of controllers can be reduced. The number &tj @nd enters into the subregiély; then:
controllers is inferior to the number of rulds. < r). In V() =xT (7 )Px(r;) = xT (1)P,x(7) (42)

figure 1.a, the state feedback gafh is sufficient to control 1 I T
the fuzzy system. V(") =x (i )Pwx(r;7) = x* (1)Pix(r)  (43)

K2

Case 2: If the number of controllers can't be reduced andrhe local symmetric positive matricd3;,l = 1,2,...,r,
the condition (37) is fulfilled then the number of contrafler are determined so as to guarantee the local stability:
is equal to the numbe_r_ of rule{$c_ =), flgl_Jre 1.b. (26) = 361, L1(P1) + (1 — ) [La(P) + L5(P)] < —61

Case 3:If the condition (37) is not fulfilled, the global
system may be instable. To solve this problem, we can add V(t) 5,
new rules to the model since we know exactly in which V(¢) >0, x(t)#0, = V) < -0y, 07 = e P

region, in the state space, we need new ones. Or we can add . N 3 )
new controllergr, > ), K4 andKj in figure 1.c, without X(t) €, 7 <t<Ty,, i=12...,N



Proof: Let the Lyapounuv function candidate given by
t<t<ri,, i=12...,N (41). Since each matri®; assures thaVl/'(¢) is decreasing
’ o inside each sub-regiof?? then:

Since :
V() =V;(t) < V(T]:il),T]:il <t< T, (51)

Amin (P1) Hx(t)H2 < V(t) < Amaz (P1) Hx(t)H2

. “ . It yields
T <t<Tg, 1=12...N V() <V(ri),k=1,...,N (52)
It follows that: At t = 7, the state leaves the subregif and enters into
3 = the subregiorf);. Since we assume there is no jump in the
Ix()|| < Cyllx(r:)||le” 2 ¢, ¢y = Amaz (P1) state

i=1,2,...,N (44) (50) = Vi(r,") < Vi(mg) = V(7)) < V(r)  (83)

T;r<t<7'f

1+1»
and
Since the number of transition is finit&] < oo then : V() < V(meo1) < -+ < V(0) (54)
%o (4t
Ix(®)]| < Ciollx(rw)lle™ =), ¢ > 7 ()| < [Ix(r-n)ll < - < IO (55)
At the N'* transition{ = 7) the state enters into the |f condition (50) holds then the fuzzy system (2) is asymp-
subregionQ)§ containing the origin and converges to thewotically stable. m
origin att — oo.
g - . IV. SIMULATION EXAMPLE
x(t) € &, t>7y [x(@)[] — 0 To show the effectiveness of the proposed method, we

t—o0

consider the following problem of balancing an inverted

The fuzzy s.ystem Is globally _stable. . u pendulum on a cart. The motion of the pendulum can be
Lemma 3:If the state stays in each regiéf for a period described by the following equations[16]:
of time A7 such that : '

In (Amaz(Pl)) @1 (t) = £C2.(L‘) ) L
Ar > Amin (P1) (45) (Eg(t) _ gsin(z1(t)) zam%llmfjlcr;(im(;(lt()t)) acos(z(t))u(t)
o! ‘ (56)
then the fuzzy system (2) is globally stable. where:
Proof: From 44 it follows that when the state leaves a= 1 (57)
the region(; : M+m

wherex; denotes the angle of the pendulum from the vertical
Amae (P;)  @ndas is the angular velocityg = 9.8 m/s? is the gravity
m constantm = 0.8 kg is the mass of the pendulunly =
, 2.0 kg is the mass of the cart,= 0.5 m is the half length
i=1,2...,N (46) of the pendulum, and is the force applied to the cart. The

— — (7 —7'.+
(7 )l < Cillx(m)lle™= ™70, G =

since there is no jump in the state: inverted pendulum can be described by the following TS
fuzzy model:
1x(7is1)]| _oAr Amaz (P?) Ry 1 if z1(t) is close to0 Thenx(t) = A;x(t) + Byu(t)
T S Ce™277,0 = Noin (B1) Ry : if x1(t) is close to+T Thenk(t) = Aax(t) + Bou(t)
where
i=1,2,...,N (47)
0 1 0
If A7 verify the condition (45) then: Ay = 0| B; = -
Ix(rir)ll < lIx(z)] < -+ < [Ix(0)]| (48) 0 1 0 .
and A2 = e O B2 = S ey 8)
i 0 49 ) , ,
H?_(I.QH - (49) andb = cos(80°). The membership functions are given by:
and the fuzzy system (2) is globally stable. ] 2 2
Theorem Zy:lf)'ihe the( geta? | = 1y r. are such that wi () =1~ ;'xl(t”’ w1 (1)) = ;|€C1(f)| (59)
the stability covering condition (34) is verified and the sefrhe TS fuzzy model can be decomposed into two subsys-
of matricesP,;,l =1,...,r. are such that: tems:

P; <P; forall statesx(r; ) € 2 andx(r;") € QF » Sub-system 1:

k=1,....N (50) %() = (A1 + (1 — a1 (t)) AAL)x(?)
then the fuzzy system is globally asymptotically stable. + (B1+ (1 —ax(t))AB1)u(t)



AAl = OLIQ(t)(AQ — Al), ABl = O[/Q(t)(BQ — Bl)

0 1 0
A= {18.7282 o} » Bi= [—0.6818]
_ / O O _ / O
Al = a(t) {—9.2994 0}  ABL=a(l) [0.5882}

e Sub-system 2:
x(t) = (A2 + (1 — aa(t)) AA2)x(t)
+ (B2 + (1 — az(t))AB2)u(t)

AAQ = Oé/l (t)(Al — AQ), ABQ = O/l(t)(Bl — BQ)

0 1 0
Az = [9.4288 0} ) Bz = [—0.0936]
_ 0 0 -, 0
Ads = ay(f) [9.2994 0} » ABy = aq(t) [—0.5882}

_ ]T _

ForD4, = D, =Dy, = Dp, [O 1.0000|" ,E4,
—Es, = [-92994 0] and Eg, = —Ep, = 0.5882
the values obtained after the resolution of the minimizatio
program (33) :

a, =0, £1 = 26.7968, Py — [18.78523 5.3854}

5.3854  1.7371

162.6934 57.7613
97.7613  20.5073

Fig.
ay, = 0.85, g2 = 23.8166, Py = [

K, = [290.7869 88.9461]

[5]
K, = [2476.4698 873.5949]

Since the minimal value obtained arg = 0.0 anda, =  [6]
0.85 the linear state feedbacdk(t) = K;x(t) is sufficient

to stabilize the inverted pendulum as shown in figure 2. I[7]
is possible to drive the inverted pendulum to its equilibriu
position for initial angle®(0) € [—75°, 75°] using the linear

(8]
state feedbackK;.

V. CONCLUSION El

In this paper an LMI approach has been proposed to design
a fuzzy model based switching controller for non lineatl0]
systems. The fuzzy model is represented as a set of uncertain
linear systems. A local controller is designed such thaiy)
the stability region of the corresponding local subsystem i
maximized. Under some conditions this switching controlle*?!
has the ability to stabilize the non linear system. The iteckr
pendulum stabilization problem has been used to demoestréi3]
the effectiveness of this approach.

14

REFERENCES o4l

[1] T. Takagi and M. Sugeno, 'Fuzzy identification of systearsd its (15]
application to modeling and controllEEE Transactions on Systems,

Man and Cybernetigs\Vol.15, 1985, pp.116-132. [16]

(2]
(3]

M. Sugeno and G. T. Kang, 'Structure identification ofZyanodels’,
Fuzzy Sets and Systenvel. 28,1988, pp 15-33.

S. G. Cao, N. W. Rees, and G. Feng, 'Analysis and desigrm fdass
of complex control systems, Part I: Fuzzy modeling and ifieation’,
Automatica Vol. 33, 1997, pp. 1017-1028.

K. Tanaka, T. lkeda and H. Wang, 'Fuzzy regulators andzyuz
observers: Relaxed stability conditions and LMI basedgieésiEEE
Transactions on Fuzzy systenvel. 6, 1998, pp. 250-265.

(4]

T v

]

- i i i i i i i i
o 05 1 15 2 25 3 35 4 a5 5
timels]

2. The pendulum angle and angular velocity fé¢0)

{=75,—45,45,75}

E. Kim, H. Lee, 'New approaches to relaxed quadratic ifitghof
fuzzy control systems’|EEE Transactions on Fuzzy Systerk@l. 8,
2000, pp. 523-534.

M. C. M. Teixeira and E.Assuncao and R. G. Avellar, "Onl&ed
LMI-Based Designs For Fuzzy Regulators And Fuzzy obsetyvers
IEEE Transactions on Fuzzy Systeriel. 11, 2003, pp. 613-623.
W. C. Kim, S. C. Ahn and W. H. Kwon, ’Stability analysis and
stabilization of fuzzy state space modelfuzzy Sets and Systems
Vol. 71, 1995, pp. 131-142.

S. G. Cao, N. W. Rees and G. Feng, 'Stability analysis aesigh
for a class of continuous-time fuzzy control systematernational
Journal of Contro] Vol.64, 1996, pp.1069-1089.

S. G. Cao, N. W. Rees, and G. Fend{~, Control of uncertain dy-
namical fuzzy discrete-time system$EEE Transactions on Systems
Man and Cybernetigs\Vol.31, 2001, pp.802-812.

G. Feng, 'Approaches to quadratic stabilization of em&in fuzzy
dynamic systems’|EEE Transactions on Circuits and Systems - I
Fundamental Theory and Applications/ol. 48, 2001, pp. 760-769.
I. R. Petersen, 'A stabilization algorithm for a claguacertain linear
systems’,System Control Letters/ol. 8, 1987, pp. 351-357.

S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnaiinear Matrix
Inequalities in Systems and Control TheoBhiladelphia, PA: SIAM,
1994.

D. J. Stilwell and W. G. Rugh, Interpolation of obserg¢ate feedback
controllers for gain scheduling, IEEE Transactions on Austic
Control, Vol. 44, 1999, 1225-1229.

P. Gahinet, A. Nemirovski, A. Laub, and M. Chilalthe LMI Control
Toolbox Natick, MA: The Mathworks, Inc., 1995.

H. J. Lee, J. B. Park, and G. Chen, 'Robust fuzzy contfaianlinear
systems with parametric uncertaintie$EEE Transactions on fuzzy
systems\ol. 9, 2001, pp. 369-380.

H. O. Wang, K. Tanaka, M. Griffin, "An approach to fuzzyntml

of nonlinear systems : stability and design issu#SEE Transactions
on Fuzzy System¥ol. 4, 1996, pp. 14-23.



