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Abstract. In this paper a new stability condition is derived for discrete
T-S fuzzy systems. The discrete T–S fuzzy system is represented by a
hybrid system, each hybrid system state corresponds to a group of rules
that can be fired in the same time. The discrete T-S fuzzy system stability
test consists to find a set of symmetric positive definite matrices that
ensure stability in local regions and verify the global stability during
transition between subregions. This idea is used to stabilize discrete T-S
fuzzy systems by the use of a local linear state feedback or a local PDC
controller in each subregion.
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Résumé. Dans ce papier, une nouvelle condition de stabilité des systèmes
flous discrets de type Takagi–Sugeno est proposée. Le système flou dis-
cret de Takagi–Sugeno est représenté par un système hybride, chaque
état du système hybride correspond à un groupe de règles qui peuvent
etre actives en meme temps. La verification de la stabilite consiste a trou-
ver un ensemble de matrices symetriques definies positives qui assurent
la stabilite locale et verifient la stabilite globale pendant les transitions
entre les differentes regions. Cette idee est ensuite utilisee pour la stabil-
isation des systmes flous discrets par l’utilisation de lois de commande
lineaires locales ou des lois de commandes locales de type PDC.

Mots-clés: Modèle flou T–S discret,, stabilité, PDC,LMI

1 Introduction

During the last few years, the analysis and design of fuzzy logic controllers
based on the Takagi-Sugeno fuzzy model have been a popular research topic
in control community . Tanaka et al. discussed the stability and the design of
fuzzy control systems in [1, 2]. They gave some checking conditions for stability,
which can be used to design fuzzy control laws. Unfortunately, the stability
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conditions require the existence of a common positive definite matrix for all
the local linear models. Linear matrix inequalities (LMI) tools have been used
to find the common matrix. However, this is a difficult problem to be solved
in many cases, especially when the number of rules is large. Several methods
have been proposed to relax the stability conditions. The existence of a common
matrix means that the stability is independent of the rules that can be active
simultaneously. However, at each time, only few rules are fired and the unfired
rules are not necessary to be considered in local regions. Instead of analyzing the
stability of the whole polyhedron composed by system matrices we can analyze
the stability by considering the global polyhedron as a union of small polyhedrons
composed by rules that may be inferred in the same time. The fuzzy system rule
set can be decomposed into several subsets, each subset contains a group of
rules that may be inferred in the same time. This is equivalent to a state space
partition into several subregions, each subregion corresponds to a rule subset
and the discrete fuzzy system can be modeled by a hybrid system. Each hybrid
system state corresponds to a group of rules. Local common matrices are used
to guarantee the local stability of each rule subset. Additional relations between
different local matrices are used to ensure the global stability of the fuzzy system.
Based on this approach, two fuzzy regulator design methods are proposed. The
rest of the paper is organized as follows. Section 2 introduces the T-S discrete
time fuzzy model and reviews the existing stability conditions. Section 3 presents
the proposed relaxed method. In section 4, based on this relaxation method two
types of fuzzy regulators are proposed. Finally, conclusions are given in section
4.

2 Takagi-Sugeno fuzzy model

The Takagi-Sugeno fuzzy dynamic model is a piecewise interpolation of several
linear models through membership functions. The discrete T-S fuzzy model is a
set of fuzzy if-then rules. The ith rule of a discrete time fuzzy model take the
form:
Rule i:

If z1(k) is F i
1, · · · , and zg(k) is F i

g Then
{

x(k + 1) = Aix(k) + Biu(k)
y(k) = Cix(k) (1)

where x(k) ∈ R
n denotes the state vector, u(k) ∈ R

m the control vector, y(k) ∈
R

p the output vector, F i
j , j = 1, 2, . . . , g are fuzzy sets, Ai ∈ R

n×n,Bi ∈ R
n×m

and Ci ∈ R
p×n are the state matrix, the input matrix and the output matrix

for the ith local model, r is the number of if-then rules, and z1(t), z2(t) · · · , zg(t)
are some measurable system variables; the premise variable. It is assumed that
premise variables do not depend on control variables. By using a center-average
defuzzifer, product inference and singleton fuzzifier, the discrete time fuzzy sys-
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tem can be expressed by:⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) =
r∑

i=1

αi(z(k)){Aix(k) + Biu(k)}

y(k) =
r∑

i=1

αi(z(k))Cix(k)
(2)

Where

αi(z(k)) =
ωi(z(k))

r∑
i=1

ωi(z(k))
(3)

The scalars αi(z(t)) are characterized by:

0 ≤ αi(z(k)) ≤ 1 and
r∑

i=1

αi(z(k)) = 1 (4)

3 Stability analysis

The discrete fuzzy system (2) without input can be written as :

x(k + 1) =
r∑

i=1

αi(z(k))Aix(k) (5)

The stability condition of the unforced discrete fuzzy system (2) can be formu-
lated by the following theorems

Theorem 1. [3] The equilibrium of the discrete fuzzy system (5) is globally
asymptotically stable if there exists a common symmetric positive definite matrix
P such that:

AT
i PAi − P < 0, i = 1, 2, . . . , r (6)

Theorem 2. If there exist symmetric positive definite matrices Pi, i = 1, ..., r
such that:

AT
k PiAk − Pj < 0, i, j, k = 1, ..., r (7)

then the discrete time fuzzy system (5) is globally asymptotically stable.

To guarantee the stability of the unforced discrete fuzzy system(5) the most
used approach is to find a common matrix P that satisfy r inequalities (6). LMI
methods are always used to find the common matrix. The existence of a common
matrix means that the stability of the discrete fuzzy system is independent of
the fired rules at each time, so we can add any combination of the initial rules
to the fuzzy system without affecting its stability, and this is the origin of the
conservativeness of this method. The first theorem is obtained by considering
the stability of the convex hull of all subsystem matrices Ai, i = 1, . . . , r, this is
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true if all rules may be inferred in the same time. However, in general, only few
rules are fired in the same time, particularly when the number of rules is large.
The stability condition can be relaxed by considering the stability of the union
of smaller convex hulls. The original convex hull can be partitioned into several
subregions, each subregion corresponds to a combination of rules that may be
fired in the same time. The discrete fuzzy system rules Ri, i = 1, · · · , r can be
divided into several subsets containing rules that may be inferred in the same
time. Let R = {R1, R2, · · · , Rr} the T-S fuzzy system rule set. It can be divided
into N subsets:

R =
N∪

i=1
Ri (8)

where Ri is a rule subset containing rules that may be active simultaneously. The
fuzzy system can be modeled by a hybrid system in which each state corresponds
to a rule subset.

Example 1. Consider the fuzzy system composed by four rules R = {R1, R2, R3, R4},
the membership functions are shown in figure 1. Rules R1 and R3 can not be
fired in the same time. The rule set can be divided into 3 subsets; R1 = {R1, R2}
, R2 = {R1, R3} and R3 = {R3, R4}

z(t)

ω1(t) ω2(t) ω3(t) ω4(t)

X1 X2 X3

Fig. 1. Membership functions

The discrete fuzzy system can be modeled by a three states hybrid system
as shown in figure 2.

The partition of the rule set can be seen as a partition of the state space X ⊆ R
n

into N subspaces and the fuzzy system can be modeled by a hybrid system with
N states.
The T–S fuzzy fuzzy model (2) can be written as:{

x(k + 1) = ARl
x(k) + BRl

u(k)
y(k) = CRl

x(k) l = 1, ..., N x(k) ∈ Xl (9)

with :

ARl
=

∑
Ri∈Rl

αi(z(k))Ai, BRl
=

∑
Ri∈Rl

αi(z(k))Bi, CRl
=

∑
Ri∈Rl

αi(z(k))Ci

(10)
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R1

R2

R3

Fig. 2. Hybrid system corresponding to the T-S fuzzy model

and ∑
Ri∈Rl

αi(z(k)) = 1 (11)

The autonomous discrete fuzzy system (5) can be written as:

x(k + 1) =
∑

Ri∈Rl

αi(z(k))Aix(k), x(k) ∈ Xl (12)

The following lemma will be used in the proof of relaxed stability theorem.

Lemma 1. If symmetric positive definite matrices Pi, Pj and matrices A and
B of appropriate dimension are such that:

AT PiA− Pj < 0 and BTPiB− Pj < 0 (13)

then
AT PiB + BTPiA − 2Pj < 0 (14)

Theorem 3. If there exists symmetric positive definite matrices Pi, i = 1, 2, . . . , N
such that the following LMIs are satisfied:

Pi = PT
i > 0

AT
k PjAk − Pi < 0

i, j = 1, . . . , N, Rk ∈ Ri (15)

then the discrete time fuzzy system (5) is globally asymptotically stable.

Proof. Let the discrete time Lyapunov function candidate be defined as:

V (k) = xT (k)Pix(k), x(k) ∈ Xi, i = 1, 2, . . . , N (16)

At time k, x(k) ∈ Xi, only the rules of the subset Ri are fired. At time k + 1
the state moves from subregion Xi to subregion Xj , It is possible that the state
stays in the same subregion. To guarantee the stability we must have:

ΔV (k) = V (k + 1) − V (k) < 0 (17)
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ΔV (k) =V (k + 1) − V (k)

=xT (k + 1)Pjx(k + 1) − xT (k)Pix(k)

=
∑

Rl∈Ri

α2
l (·)xT (k)AT

l PjAlx(k)

+
∑

Rl∈Ri

∑
Rm∈Ri

l �=m

αl(·)αm(·)xT (k)AT
l PjAmx(k) − xT (k)Pix(k)

=
∑

Rl∈Ri

α2
l (·)xT (k)(AT

l PjAl − Pi)x(k)

+
∑

Rl∈Ri

∑
Rm∈Ri

l �=m

αl(·)αm(·)xT (k)
(
AT

l PjAm − Pi

)
x(k)

=
∑
l∈Ri

α2
l (·)xT (k)(AT

l PjAl − Pi)x(k)

+
1
2

∑
Rl∈Ri

∑
Rm∈Ri

l<m

αl(·)αm(·)xT (k)
(
AT

l PjAm + AT
mPjAl − 2Pi

)
x(k)

ΔV (k) ≤
∑

Rl∈Ri

α2
l (·)xT (k)(AT

l PjAl − Pi)x(k)

AT
l PjAl − Pi < 0 ⇒ ΔV (k) < 0

Remark 1. The number of LMIs NLMI depends on the number of subsets N
and the number of elements in each rule subset card(Ri):

NLMI = N
N∑

i=1

card(Ri) (18)

– If N = 1, the number of LMIs is equal to r, and this theorem is the same as
theorem 1.

– If N = r, the number of subsets is the same as the number of rules, each
rule subset contains only a single rule, the number of LMIs is equal to r2

and this theorem is the same as theorem 2.

Remark 2. The number of inequalities can be reduced by the elimination LMIs
corresponding to impossible transitions.

3.1 LMIs reduction

We define xmin
i and xmax

i as the minimal norm value and the maximal norm
value of states belonging to the subspace Xi:

xmin
i = min

x(k)∈Xi

‖x(k)‖, xmax
i = max

x(k)∈Xi

‖x(k)‖, (19)

and dij as the distance between the subregions Xi and Xj given by:

dij = min
xi(k)∈Xi,xj(k)∈Xj

‖xj(k) − xi(k)‖ (20)
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Lemma 2. If
xmin

j > max
Ri∈Rl

‖Ai‖xmax
i (21)

then the state can’t move from the subregion Xi to the subregion Xj.

Proof. We have:
x(k + 1) =

∑
Ri∈Rl

αi(z(k))Aix(k) (22)

x(k) ∈ Ωi ⇒ ‖x(k + 1)‖ ≤ max
Rl∈Ri

‖Al‖‖x(k)‖ (23)

The state can reach the subregion Xj from the subregion Xi if :

x(k) ∈ Xi and xmin
j ≤ ‖x(k + 1)‖ ≤ xmax

j (24)

x(k) ∈ Xi ⇒ xmin
i ≤ ‖x(k)‖ ≤ xmax

i ⇒
‖x(k + 1)‖ ≤ max

Ri∈Rl

‖Ai‖xmax
i (25)

then the transition from subregion Xi to subregion Xj is possible if:

xmin
j ≤ max

Ri∈Rl

‖Ai‖xmax
i (26)

Lemma 3. If
max
Ri∈Rl

‖Ai − I‖xmax
i < dij (27)

then the state can’t move from the subregion Xi to the subregion Xj.

Proof. The state can move from subregion Xi to subregion Xj if:

‖Δx(k)‖ = ‖x(k + 1) − x(k)‖ ≥ dij

‖Δx(k)‖ ≤
∥∥∥∥∥

∑
Ri∈Rl

αi(z(k))Ai − I

∥∥∥∥∥ ‖x(k)‖ ⇒ ‖Δx(k)‖ ≤ max
Ri∈Rl

‖Ai − I‖‖x(k)‖

‖Δx(k)‖ ≥ dij ⇒ max
Ri∈Rl

‖Ai − I‖‖x(k)‖ ≥ dij

max
Ri∈Rl

‖Ai − I‖‖x(k)‖ ≥ dij ⇒ max
Ri∈Rl

‖Ai − I‖xmax
i ≥ dij

A transition from Xi to Xj is possible if:

max
Ri∈Rl

‖Ai − I‖xmax
i ≥ dij

Example 2. consider the following free fuzzy system:

Ri : If x1(k) is F i
1 and x2(k) is F i

2 Then x(k + 1) = A1x(k), i = 1, ..., 16
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where

A1 =
[
0.80 0.25
0.10 0.76

]
, A2 =

[
0.79 0.25
0.10 0.78

]
, A3 =

[
0.81 0.25
0.10 0.77

]
,

A4 =
[
0.79 0.24
0.1 0.76

]
, A5 =

[
0.78 0.10
0.20 0.77

]
, A6 =

[
0.82 0.30
0.08 0.77

]
,

A7 =
[
0.80 0.25
0.10 0.81

]
, A8 =

[
0.9 −0.15
0.10 0.65

]
, A9 =

[
0.9 0.52

−0.10 0.66

]
,

A10 =
[
0.81 0.10
0.10 0.80

]
, A11 =

[
0.82 0.11
0.09 0.83

]
, A12 =

[
0.77 0.05
0.23 0.60

]

A13 =
[
0.78 0.10
0.13 0.60

]
, A14 =

[
0.75 0.16
0.25 0.78

]
, A15 =

[
0.78 0.12
0.28 0.76

]
,

A16 =
[

0.76 0.14
0.30 0.76

]

The membership functions are shown in figure 3. The system is stable as shown
by its phase portrait in figure 5, but a common symmetric positive definite
matrix can’t be found.

ω(t)

0 1 3−1−3

PS PBNSNB

Fig. 3. Membership functions

The fuzzy system rule set R = {Ri, i = 1, ..., 16} can be divided into nine
subsets : R1 = {R1, R2, R5, R6}, R2 = {R2, R3, R6, R7}, R3 = {R3, R4, R7, R8}, R4 =
{R5, R6, R9, R10}, R5 = {R6, R7, R10, R11}, R6 = {R7, R8, R11, R12}, R7 =
{R9, R10, R13, R14}, R8 = {R10, R11, R14, R15}, and R4 = {R11, R12, R15, R16}.
By using MATLAB LMI toolbox we found the nine local matrices:

P1 =
[

6.641 1.4032
1.4032 9.2465

]
, P2 =

[
6.5884 1.4839
1.4839 9.2418

]
, P3 =

[
6.8266 1.1464
1.1464 9.4444

]
,

P4 =
[

6.5652 1.7825
1.7825 8.9617

]
, P5 =

[
6.6568 1.3671
1.3671 9.3240

]
, P6 =

[
6.8599 1.0682
1.0682 9.4586

]
,

P7 =
[

6.5635 1.7886
1.7886 8.9501

]
, P8 =

[
6.6243 1.7826
1.7826 8.8084

]
, P9 =

[
6.1343 2.7877
2.7877 7.2537

]

By applying lemma 2 and lemma 3 the number of LMIs can be reduced from
81 ∗ 4 = 324 to 64 ∗ 4 = 256. Possible transitions are shown in table 1.
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x1(t)

x2(t)

R1 R2

R5 R6

R2 R3

R6 R7

R3 R4

R7 R8

R5 R6

R9 R10

R6 R7

R10 R11

R7 R8

R11 R12

R9 R10

R13 R14

R10 R11

R14 R15

R11 R12

R15 R16

−3

−1

0

1

3

−3 −1 0 1 3

Fig. 4. State space partition

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 5. Phase portrait
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X1 X2 X3 X4 X5 X6 X7 X8 X9

X1 1 1 1 1 1 1 1 1 0

X2 1 1 1 1 1 1 0 0 0

X3 1 1 1 1 1 1 0 1 1

X4 1 1 1 1 1 1 1 1 1

X5 0 0 0 0 1 0 0 0 0

X6 1 1 1 1 1 1 1 1 1

X7 1 1 1 1 1 1 1 1 1

X8 0 0 0 1 1 1 1 1 1

X9 0 1 1 1 1 1 1 1 1

Table 1. Possible transitions (0 : impossible, 1 : possible)

4 Stabilization by state feedback

4.1 Stabilisation using local linear state feedback

We assume that the discrete fuzzy system (2) is locally controllable, that is, the
pairs (Al,Bl), l = 1, . . . , r, are controllable. The basic idea is to design a local
feedback controller for each subregion in the state space and the control law is
given by:

u(k) = Fix(k), x(k) ∈ Xi, i = 1, 2, . . . , N (28)

Theorem 4. If there exists symmetric positive definite matrices Pi and gain
matrices Fi, i = 1, 2, . . . , N such that the following inequalities hold:

Pi = PT
i > 0

(Ak + BkFi)
T Pj (Ak + BkFi) − Pi < 0

for i, j = 1, . . . , N, k ∈ Ri (29)

Then the closed loop fuzzy system is globally asymptotically stable.

Proof. It follows directly from Theorem 1

The design problem to determine the feedback gains can be reformulated as an
LMI problem:
Find Xi > 0 and Mi (i = 1, ..., N) satisfying:[

Xi XiAT
k + MT

i BT
k

AkXi + BkMi Xj

]
> 0

for j = 1, ..., N ; k ∈ Ri

where Xi = P−1
i , Mi = KiXi (30)

Example 3. consider the following fuzzy system:

R1 : If x1(k) is F 1
i and x2(k) is F 2

i Then x(k + 1) = A1x(k) + B1u(k)
i = 1, ..., 9
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where

A1 =
[

1.0 0.2
−0.7 1.5

]
, A2 =

[
1.2 0.3
−0.1 1.0

]
, A3 =

[
1.0 0.5
1.8 0.8

]
,

A4 =
[
1.25 0.35
−0.3 1.0

]
, A5 =

[
0.9 0.2
0.1 0.6

]
, A6 =

[
1.2 0.6
2.0 1.0

]
,

A7 =
[

1.2 0.1
−2.2 0.9

]
, A8 =

[
0.9 0.3
−0.2 1.1

]
, A9 =

[
0.8 0.4
1.5 0.6

]

B1 =
[
0.0
1.0

]
, B2 =

[
0.0
0.6

]
, B3 =

[
0

1.3

]
, B4 =

[
0.3
0.9

]
, B5 =

[−0.2
0.8

]
,

B6 =
[
0.2
1.5

]
, B7 =

[−0.2
1.19

]
, B8 =

[
0.2
1.0

]
, B9 =

[
0.1
0.7

]

The membership functions are shown in figure 6.

ω(t)

0 2−2

ZER POSNEG

Fig. 6. Membership functions

The fuzzy system rule set R = {Ri, i = 1, ..., 9} can be divided into four
subsets : R1 = {R1, R2, R4, R5},R2 = {R2, R3, R5, R6},R3 = {R4, R5, R7, R8}
and R4 = {R5, R6, R8, R9}. By using MATLAB LMI toolbox we found the four
local matrices:

P1 =
[
0.5842 0.1662
0.1662 0.0822

]
, P2 =

[
0.5715 0.1842
0.1842 0.0883

]
, P3 =

[
0.5744 0.1593
0.1593 0.0788

]
,

P4 =
[
0.5538 0.1749
0.1749 0.0853

]

and the local state feedbacks

K1 =
[
1.5487 1.3649

]
, K2 =

[
2.2211 1.3323

]
, K3 =

[
0.7264 0.9715

]
,

K4 =
[
1.7784 1.1528

]
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x1(t)

x2(t)

R1 R2

R4 R5

R2 R3

R5 R6

R4 R5

R7 R8

R5 R6

R8 R9 −2

0

2

−2 0 2

Fig. 7. State space partition

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

Time

x 1

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

Time

x 2

Fig. 8. States evolution for initial condition x(t) = [3, 3]T
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4.2 Stabilisation using local PDC controller

In the precedent section a local linear state feedback is used in each subregion.
However, the design LMIs may be infeasible particularly if the number of rules
in a subspace is large. The PDC(Parallel Distributed Compensation) controller
can be used to overcome this problem. The control law is then given by:

u(k) =
∑

Rl∈Ri

αl(z(k))Filx(k), x(k) ∈l, Rl ∈ Ri, i = 1, 2, . . . , N (31)

Each rule subset is considered as a fuzzy system with its own PDC control law
and each rule has as many feedbacks as the number of rule subsets containing
it.

Theorem 5. If there exists symmetric positive definite matrices Pi and gain
matrices Fil, i = 1, 2, . . . , N Rl ∈ Ri so that the following inequalities are satis-
fied:

Pi = PT
i > 0,Qi = QT

i > 0 (32)

GT
illPjGill − Pi + (ni − 1)Qi < 0 (33)(
Gikl + Gilk

2

)T

Pj

(
Gikl + Gilk

2

)
− Pi − Qi ≤ 0 (34)

for Rl ∈ Ri, Rk ∈ Ri, k < l

and ni = card(Ri), Gilk = Al − BlFik

then the closed loop fuzzy system is globally asymptotically stable.

Proof. Let the discrete time Lyapunouv function candidate be defined as:

V (k) = xT (k)Pix(k), x(k) ∈ Xi, i = 1, 2, . . . , N (35)

Gilk = Al − BlFik (36)

ΔV (k) =

{ ∑
Rl∈Ri

∑
Rk∈Ri

αl(·)αk(·)Gilkx(k)

}T

· Pj ·
{ ∑

Rl∈Ri

∑
Rk∈Ri

αl(·)αk(·)Gilkx(k)

}
− xT (k)Pix(k)
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ΔV (k) =
∑

Rl∈Ri

∑
Rk∈Ri

∑
Rm∈Ri

∑
Rn∈Ri

αl(·)αk(·)αm(·)αn(·)

xT (k)GT
ilkPjGimnx(k) − xT (k)Pix(k)

=
∑

Rl∈Ri

∑
Rk∈Ri

∑
Rm∈Ri

∑
Rn∈Ri

αl(·)αk(·)αm(·)αn·)

xT (k)
{
GT

ilkPjGimn − Pi

}
x(k)

=
1
4

∑
Rl∈Ri

∑
Rk∈Ri

∑
Rm∈Ri

∑
Rn∈Ri

αl(·)αk(·)αm(·)αn(·)

xT (k)
{
(Gikl + Gilk)T Pj (Gimn + Ginm) − 4Pi

}
x(k)

≤ 1
4

∑
Rl∈Ri

∑
Rk∈Ri

αl(·)αk(·)xT (k)
{
(Gikl + Gilk)T

Pj (Gikl + Gilk) − 4Pi}x(k)

≤
∑

Rl∈Ri

∑
Rk∈Ri

αl(·)αk(·)xT (k)

{(
Gikl + Gilk

2

)T

Pj

(
Gikl + Gilk

2

)
− Pi

}
x(k)

≤
∑

Rl∈Ri

α2
l (·)xT (k)

{
GT

illPjGill − Pi

}
x(k)

+ 2
∑

Rl,Rk∈Ri
l<k

αl(·)αk(·)xT (k)

{(
Gikl + Gilk

2

)T

Pj

(
Gikl + Gilk

2

)
− Pi

}
x(k)

By using the property [2];

∑
Rl∈Ri

α2
l −

1
ni − 1

∑
Rl,Rk∈Ri

l<k

2αlαk ≥ 0 ⇒ 2
∑

Rl,Rk∈Ri
l<k

αlαk ≤ (ni − 1)
∑

Rl∈Ri

α2
l

ΔV (k) ≤
∑

Rl∈Ri

α2
l (·)xT (k)

{
GT

illPjGill − Pi

}
x(k)

+ (ni − 1)
∑

Rl∈Ri

α2
l (·)xT (k)

{(
Gikl + Gilk

2

)T

Pj

(
Gikl + Gilk

2

)
− Pi

}
x(k)
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If condition (34) holds then

ΔV (k) ≤
∑

Rl∈Ri

α2
l (·)xT (k)

{
GT

illPjGill − Pi

}
x(k)

+ (ni − 1)
∑

Rl∈Ri

α2
l x

T (k)Qix(k)

≤
∑

Rl∈Ri

α2
l (·)xT (k)

{
GT

illPjGill − Pi

+(ni − 1)Qi}x(k)

If the condition (33) holds then ΔV (k) < 0

The design problem to determine the feedback gains can be reformulated as a
LMI problem.
By right and left multiplying by Xi = P−1

i

XiGT
illPjGillXi − Xi + (ni − 1)Yi < 0

Xi

(
GT

ilk + Gikl

2

)T

Pj

(
Gilk + Gikl

2

)
Xi − Xi ≤ 0

for Rl ∈ Ri, Rk ∈ Ri, k < l

and ni = card(Ri), Gilk = Al − BlFik (37)

And by using Schur Complement we get:
Find Xi > 0 and Mil (i = 1, ..., N, Rl ∈ Ri) satisfying:[

Xj − (ni − 1)Yi XiAT
k − MT

ilB
T
l

AlXi − BlMil Xi

]
< 0[

Xj + Yi ∗
1
2

{
AlXi + AkXi − BkMil − BlMik

}
Xi

]
≤ 0

(38)

for j = 1, ..., N and Rk ∈ Ri, Rl ∈ Ri k < l
where
Xi = P−1

i , Mil = KilXi

Example 4. To illustrate the controller synthesis approach, we consider the fol-
lowing discrete T-S fuzzy system:
R1 : if x1(k) is NEG Then x(k + 1) = A1x(k) + B1u(k)
R2 : if x1(k) is ZER Then x(k + 1) = A2x(k) + B2u(k)
R3 : if x1(k) is POS Then x(k + 1) = A3x(k) + B3u(k)
Where

A1 =
[

1.2 0.2
−2.0 0.8

]
, A2 =

[
1.0 0.2
−0.1 0.7

]
, A3 =

[
1.2 0.2
−2 0.8

]
,

B1 =
[

0
0.14

]
, B2 =

[
0

1.0

]
, B3 =

[
0

1.86

]



16 M. Boumehraz and K. Benmahamed

The membership functions NEG, ZER and POS are shown in Fig. 2. The fuzzy
system is composed of three rules, R = {R1, R2, R3}, but R1 and R3 can not be
inferred in the same time. The rule set can be decomposed into:
R1 = {R1, R2} and R2 = {R2, R3}
By using the method proposed in[2] we can not find stabilizing feedback gains,
by using the local PDC approach the gains obtained are:

P1 =
[
0.9541 0.2119
0.2119 0.1113

]
, P2 =

[
0.9605 0.2856
0.2856 0.1403227

]
K1 =

[
1.5877 3.5270

]
, K12 =

[
2.8630 0.7789

]
,

K22 =
[
2.1467 1.1877

]
, K3 =

[
2.0180 0.9426

]
and as is shown in Fig.9, the fuzzy TS system is stabilized by the local PDC
controllers.
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−10

−5

0

5

10

Time

x 2

Fig. 9. Evolution of the states for initial condition x(t) = [3, 4]T

5 Conclusion

In this paper we studied the global stability of discrete T-S fuzzy system by the
decomposition of the fuzzy rule subset. Each subset contains a group of rules
that can be inferred in the same time. To check the stability we have to find a
set of symmetric positif definite matrices, each local matrix guarantee the local
stability and the global stability can be ensured by additional relations between
different local matrices. An LMI approach has been used to find the set of local
matrices. The number of LMIs can be reduced by the elimination of matrix
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inequalities corresponding to impossible transition between different subregions.
This approach has been used to stabilize discrete T-S fuzzy systems by state
feedback. Two types of regulators have been studied. In the first type, a linear
state feedback is used in each subregion corresponding to a rule subset. While
in the second, a local PDC controller is used. The use of local PDC controller
outperform the famous PDC control law.
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