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Abstract 

This paper introduces the application of the hybrid approach Adaptive Neuro-Fuzzy Inference System 
(ANFIS) for fault classification and diagnosis in industrial actuator. The ANFIS can be viewed either 
as a fuzzy inference system, a neural network or fuzzy neural network (FNN). This paper integrates 
the learning capabilities of neural network to the robustness of fuzzy systems in the sense that fuzzy 
logic concepts are embedded in the network structure. It also provides a natural framework for 
combining both numerical information in the form of input/output pairs and linguistic information in 
the form of if-then rules in a uniform fashion. The proposed algorithm is achieved by the intelligent 
scheme ANFIS. This intelligent system is used to model the valve actuator and classify the fault types. 
Computer simulation results are shown in this paper to demonstrate the effectiveness of this approach 
for modeling the actuator and for classification of faults for different fault conditions. 

I. Introduction  

Artificial intelligent techniques, such as artificial neural networks (ANN) fuzzy logic (FL) have been 
successfully applied to automated detection and fault diagnosis in different conditions [1][2]. They 
largely increase the reliability of fault detection and diagnosis systems. The adaptive neuro-fuzzy 
inference system (ANFIS) [3] is a hybrid model which combines the ANNs adaptive capability and 
the fuzzy logic qualitative approach (Jang, 1993). By using the mathematical properties of ANNs in 
tuning rule-based fuzzy systems that approximate the way human process information, ANFIS 
harnesses the power of the two paradigms: ANNs and fuzzy logic, and overcomes their own 
shortcomings simultaneously [4][5]. 

Fuzzy system is tolerant to noise and error in the information coming from the sensory system, and 
most importantly; it is a factual reflection of the behavior of human expertise. A fuzzy controller is 
commonly defined as a system that emulates a human expert. The knowledge of the operator would be 
presenting in the form of a set of fuzzy linguistic rules [5]. These rules produce an approximate 
decision in the same manner as an expert would do. Ever since the fuzzy systems were applied in 
industrial applications, developers know that the construction of a well performing fuzzy system is not 
always easy. 
 
The problem of finding appropriate membership functions and fuzzy rules is often a tiring process of 
trial and error. However, the design of fuzzy logic rules is often reliant on heuristic experience and it 
lacks systematic methodology, therefore these rules might not be correct and consistent, do not possess 
a complete domain knowledge, and/or could have a proportion of redundant rules. Furthermore, these 
fuzzy logic rules cannot be adjusted or tuned on real-time operation, and the off-line adjustment of 
their parameters is a time consuming process. Another problem could be raised when better precision 
is needed which is the huge expansion in the fuzzy rule-based system [5].  
 



Techniques based on the use of Artificial Neural Networks (ANN) have a great interest in control and 
engineering. The fastness of treatment and their capacity of approximating complex nonlinear 
functions motivate their use for fault diagnosis [1][6][7]. The learning parameters of neural networks 
made them a prime target for a given task. This kind of behavior learning methods can be used to 
solve control and diagnosis problems. Artificial neural networks are considered to be simplified 
mathematical models of brain-like systems. A neural network is a processor of information which can 
be represented in its simplest form by a set of connected and layered processing elements (PEs). Each 
PE is able of receiving an n-dimensional input vector from either external sources or PEs at previous 
layers, and processing the data to deliver a scalar output, which is the function of a present input. They 
are generally trained by means of training-data, and due their property of generalization, they can learn 
new associations, new functional dependencies and new patterns. Due to these properties, they have 
been widely used for control. The learning parameters of neural networks made them a prime target 
for a combination with a fuzzy system in order to automate or support the process of developing a 
fuzzy system for a given task. Recently the role of neural networks has been found to be very useful 
and effective when integrated with fuzzy control systems to produce what is called neuro-fuzzy 
systems [4]. These hybrid systems provide an urgent synergy can be found between the two 
paradigms, specifically the capability to mimic human experts in fuzzy logic, and learning from 
previous experience capability in neural networks. Generally, neuro-fuzzy systems can be classified 
into two categories, adaptive neuro-fuzzy inference system (ANFIS) [3] and hybrid neuro-fuzzy 
systems [4]. The first category is the most widely used, and they are designed to combine the learning 
capabilities of neural networks and reasoning properties of fuzzy logic. The main function of neural 
network is to learn about the fuzzy inference system (FIS) behavior and uses this knowledge to 
adaptively modify its parameters. The adaptability of the fuzzy inference system can be achieved by 
either rule base modification and/or membership functions modifications. Rules can be generated, 
modified, and/or eliminated, while membership functions of the input variables can adjusted and tuned 
by scaling mechanism [3]. 

In this paper, an approach to design neuro-fuzzy systems type ANFIS is described for an intelligent 
fault diagnosis task. The supervision system can detect and classify the infected fault in the industrial 
actuator. This paper is organized as follows: section 2 gives the necessary background of ANFIS 
model. In section 3, we will describe the DAMADICS benchmark. The designed ANFIS models are 
introduced and explained in section 4. Section 5 shows simulation results for the three steps in this 
application (modelling, generation of residuals and fault classification). The section 6 concludes this 
paper. 

II.  Adaptive Neuro-Fuzzy Inference System (ANFIS) 

II.1 ANFIS architecture 

In this section we introduce the basic of ANFIS network architecture and its hybrid learning rule. 
Inspired by the idea of basing the fuzzy inference procedure on a feed forward network structure, Jang 
[3] proposed a fuzzy neural network model (Adaptive Neural-based Fuzzy Inference System) whose 
architecture is shown in Fig.1. He reported that the ANFIS architecture can be employed to model 
nonlinear functions, identify nonlinear components on-line in a control system, and predict a chaotic 
time series. It is a hybrid neuro-fuzzy technique that brings learning capabilities of neural networks to 
fuzzy inference system. The learning algorithm tunes the membership functions of a sugeno-type 
fuzzy inference system using the training input-output data. ANFIS consists of five layers; the 
adaptive nodes of the neural network are the nodes in layers 1 and 4. The depicted model defines a 
controller with two inputs and one output. Each input has two membership functions. We assume that 
the rule base contains two fuzzy if-then rules of a Takagi and Sugeno's type:   
 



 
Fig.1: ANFIS structure for TS system with 2 inputs-one output 
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The output of the nodes in layer 1 is the membership values of the premise part: 
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Every node in layer 2 is a fixed node labeled M, which multiplies the incoming signals: 
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Every node in layer 3 is fixed node labeled N for normalization. it calculates the ration of the i-th 
rule`s firing strength to the sum of all rules firing strengths: 
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In layer 4, every node is an adaptive node while the node function is: 

� 
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Where 
iw  is the output of layer 3 and pi, qi, ri are the parameters for the first order Sugeno rule.  

The overall output of the network can be defined as: 
� 
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II.2   Hybrid learning techniques 
Using a given input-output data set, constructs a fuzzy inference system whose membership function 
parameters are tuned (adjusted) using either a back-propagation algorithm alone or in combination 
with a least squares method [3]. This adjustment allows the fuzzy systems to learn from the data they 
are modeling. Jang proposed that the learning task is done in two passes using a hybrid learning 
algorithm as shown at table 1.  In the forward pass the first set is fixed and S2 is optimized by the least 
square   estimate (LSE).   In the backward   pass S1 is tuning by the  back-propagation algorithm [3]. 

 

Table I:  Two passes in the hybrid learning 
 Forward Pass Backward  Pass 

Premise Parameters Fixed Back-propagation 
Consequent Parameters Least Squares Estimate fixed 

 

 



III.  The Damadics Benchmerk 

In order to evaluate the proposed schemes, we apply it to fault diagnosis in DAMADICS benchmark. 
The DAMADICS benchmark (Development and Applications of Methods for Actuator Diagnosis in 
Industrial Control Systems) is an engineering research case study that can be used to evaluate 
detection and isolation methods [8]. The industrial actuator data set is collected under various 
operating loads, and different conditions including different fault categories. It is possible to simulate 
19 abnormal events from three actuators, and a fault scenario is characterized by the fault type in 
conjunction with the failure mode, which can be abrupt (A) or incipient (I). The detailed description of 
the fault types is shown in Table 2. The actuator consists of a control valve, a pneumatic servomotor, 
and a positioner as depicted in Figure 2. PC is the positioned processing unit, E/P is the electro-
pneumatic transducer, V1, V2, V3 are bypass valves, PP stands for displacement, P1,P2 are pressures, F 
is the flow value of transducer and T1 for temperature. The output variables of the actuator model (F 
and X) are employed to construct the observation sequences (O = {o1,o2,…,ot,…,oT}. Were o1 = [Ft=1 
Xt=1] [8][9]. Different approaches and papers are presented to study the fault diagnosis in 
DAMADICS benchmark likes [8-11]. 

 

Fig. 2 : DAMADICS actuator 
 

 

Fig. 3 : The general scheme for the actuator 

In the DAMADICS actuator, faults can appear in control valve, servomotor, electro pneumatic 
transducer, piston rod travel transducer, pressure transmitter or in control unit. Nineteen types of faults 
are considered as shown in table 2. The faults are emulated under carefully monitored conditions, 
keeping the process operation within acceptable quality limits. Five available measurements and 1 
control value signal have been considered for benchmarking purposes: process control external signal 
CV, values of liquid pressure on the valve inlet P1 and outlet P2, liquid flow rate F, liquid temperature 
T1, and displacement of the rod X. Table 3 summarizes the parameters of input and outputs variables. 
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Table II:  Faults to be detected and isolated  

Fault Description 
Control valve faults 

F1 Valve clogging 

F2 Valve plug or valve seat sedimentation 

F3 Valve plug or valve seat erosion 

F4 Increased of valve or bushing friction 

F5 External leakage (leaky bushing, covers) 

F6 Internal leakage (valve tightness) 

F7 Medium evaporation or critical flow 
Pneumatic servo-motor faults 

F8 Twisted servo-motor's piston rod 
F9 Servo-motor's housing tightness 
F10 Servo-motor's diaphragm perforation 
F11 Servo-motor's spring fault 

Positioner faults 
F12 Electro-pneumatic transducer fault 
F13 Rod displacement sensor fault 
F14 Pressure sensor fault 
F15 Positioner feedback fault 

General faults / external faults 
F16 Positioner supply pressure drop 
F17 Unexpected pressure change across the v 
F18 Fully or partly opened bypass valves 
F19 Flow rate sensor fault 

 
Table III:  Input and outputs variables 

Input                 Range              Unit                Description 

CV 0 − 100 % 
control signal from external 

PI controller 
P1 0 −100  kPa Inlet liquid pressure 

P2 0 − 1000 kPa Outlet liquid pressure 

T1 50 − 150 °C Liquid temperature 
Output              Range                Unit                Description 

X 0 − 100 % Position of the rod 
F 0 − 500 m3/h Average flow 

 
IV.  Designing of ANFIS Models 

IV.1 Structure of the trained Models 

In our work, we used hybrid approaches based on ANFIS models for modelling and fault diagnosis 
tasks in DAMADICS actuator. The positioner and the control valve are modelled with two hybrid 
models: ANFIS1 and ANFIS2. Each model has 4 inputs and one output as presented with the two 
following equations: 

X = ANFIS1 (CV, P1, P2, T)                                                               (8)         

  F = ANFIS2 (X, P1, P2, T)                                                                  (9) 

 



VI.2 The training task 

This task consists to adjust the fuzzy models parameters (premise part and conclusion part) using the 
training data. This data-base contains 4 vectors of the inputs variables and their appropriate actions (X 
and F). The training and the testing data sets for elaborating the models are generated by simulation 
using the valve model [12]. The training data set has about 3600 samples extracted from measured 
data without faults. Figure 4 shows the scheme of the data based model used for modeling the valve 
(training the two neuro-fuzzy systems ANFIS1 for the output X and ANFIS2 for the output F). The 
structures of the trained neuro-fuzzy systems are depicted in figure 5. The obtained network structures 
are similar to that of a neural network, which maps inputs through output membership functions and 
associated parameters, and then through output membership functions and associated parameters to 
outputs, can be used to interpret the input/output map. 

 
Fig. 4:  Data-based model 

 
Fig. 5: The structures of the ANFIS models 

V. Simulation results 
In this section, we present the obtained simulation results for the application of this hybrid approach 
for modeling and fault diagnosis in the valve actuator.  

V.1 Generation of residuals 

Residuals are the basic factors for fault detection during monitoring the actuator. The difference 
between the system outputs yk(t) and fault-free model outputs y´k(t) leads to n values named  residuals 
Rk0(t) (eq.10). These residuals Rk0(t) provide a source of information about faults for further 
processing. Fault detection is based on the evaluation of residuals magnitude. It is assumed that each 
residual rk0(t), where: k = 1,...,n should normally be close to zeros in the fault-free case, and it should 
be far from zeros in the case of a fault. Figure 6 shows the method for generating the two types of 
residuals (Rx, Rf) as shown in figure.5. Where:  

            Rk0(t) = yk(t) − y´k(t),  k = 1, . . ., n                                                     (10)  

RXfi(t) = Xreal – Xref                                                                                (11) 

RFfi(t) = Freal – Fref                                                                               (12) 



Figures 7 and 8 (up) present the results obtained as comparison between the output of the valve model 
and the measured data of the real actuator (Figure 7 for the output X of ANFIS1 and Figure 7 the 
output F of ANFIS2). As depicted, we observe a big similarity between the two responses. Figures 7-8 
(down) show calculated error for the two responses.   

 

Fig. 6:  Comparison of results between the system and the ANFIS model 

 

Fig. 7: (up) Actual output X with the estimated X´. (down) Residual RX(t) 

 

Fig. 8: (up) Actual output F with the estimated F´. (down) Residual RF(t) 
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V.2 Fault diagnosis using ANFIS models 
 

The DAMADICS valve is infected with 19 faults as mentioned above (table.3) and each fault can be 
either abrupt or incipient fault. In our study, we choose 4 faults to demonstrate the effectiveness of the 
studied approach: F1, F10, F13 and F19. The parameters of these faults are summarized in table 4. For 
each fault, we calculate the residual using the equation 8 based on the structure depicted in Fig 6 when 
we replace the actuator bloc by the bloc presented in figure 9 infected by the 4 studied faults.   

 

 

 

 

Fig. 9: The symbol of infected valve by faults 

Table IV:  Parameters of faults for Detection and Isolation 
Faults Fs tform tt0 Fd Type 

F1 1 1000 2000 1 Incipient long 
F10 1 1000 1500 1 Abrupt big 
F13 1 2700 3600 1 Abrupt big 
F19 0.5 0 1200 1 Abrupt medium 

V.3 Generation of residuals (with faults) 

We generated the faults based on the measurements of the system and the model. The figures 10 to 13 
(a-b) present the generated residuals of the two outputs (position of the rod and average flow) for each 
fault. 

1. Fault F1 (Valve clogging): this fault is simulated within time interval [1000s, 2000s]. 

 
Fig. 10: Residuals RXf1 , RFf1 

2. Fault F10 (Servomotor’s diaphragm perforation): this fault is simulated within time interval 
[1000s,1500s]. 

 
Fig.11: Residuals RXf10 , RFf10 
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3. Fault F13 (Rod Displacement): this fault is simulated within time interval [2700s, 3600s]. 

 
Fig. 12 : Residuals RXf13 , RFf13 

4. Fault F19 (Flow rate sensor fault): This fault is simulated within time interval [0 s, 1200s]. 

 

Fig. 13 : Residuals RXf19 , RFf19 

V.5 Evaluation of residuals (Faults classification) 

After generating the residuals of each fault; the next step is the evaluation of these computed values in 
order to classify the detected fault. We used neuro-fuzzy classifiers type ANFIS based on training 
procedures. Each ANFIS classifier has two inputs which are the residual of X and F for calculating one 
output of detected. The structure is shown in figure 14. The overall diagnosis system has as inputs the 
residuals (RXf1, RFf1, RXf10, RFf10, RXf13, RFf13, RXf19 and RFf19) and the outputs are the faults (F1, F10, F19 
F13). The bloc diagram of the faults diagnosis system is defined in figure 15. Figures 16 to 19 present 
the detected fault (F1, F10, F19 and  F13). 

       

    Fig. 14 : The structure of fault classifier          Fig.15 :  Diagram bloc of the faults diagnosis system     
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Fig. 16 : The detected fault F1 using hybrid approach           Fig. 17 : The detected fault F10 

 
                 Fig. 18 : The detected fault F13                               Fig. 19 : The detected fault F19 

VI.  Conclusion 
 

In this paper, a hybrid approach based on ANFIS models is presented for intelligent fault diagnosis. 
The proposed diagnosis system is used for detecting faults in DAMADICS actuator. We used these 
models for three steps (modeling the valve actuator, generation of residuals and fault classification). 
ANFIS system is well suited for designing intelligent controllers because it is capable of making 
inference ever uncertainty with a learning capacity of neural networks. The simulation results show the 
efficiency of the proposed scheme for automatic fault diagnosis. The advantage of the proposed 
approach is the simplicity and the efficiency for industrial applications.  
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