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1 Introduction

Over the past several years, fuzzy systems have attracted
considerable attention from scientists and engineers. Fuzzy
modelling is an efficient method to represent complex
non-linear systems by fuzzy sets and fuzzy reasoning. By
using a Takagi-Sugeno (T-S) fuzzy model, a non-linear
system can be expressed as a weighted sum of simple
subsystems. This model gives a fixed structure to some
non-linear systems and thus facilitates their analysis.
There are two ways to obtain the fuzzy model:

1 by applying identification methods with input–output
data from the plant

2 or directly from the mathematical model of the
non-linear plant (Cao et al., 1997; Sugeno and Kang,
1988; Takagi and Sugeno, 1985).

More recently, a number of systematic stability analysis
and controller design results have appeared in the fuzzy
control literature. Tanaka et al. (1998) discussed the stability
and the design of fuzzy control systems. They gave some
checking conditions for stability, which can be used to design
fuzzy control laws. Unfortunately, the stability conditions
require the existence of a common positive definite matrix
for all the local linear models. However, this is a difficult
problem to be solved in many cases, especially when the
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number of rules is large. Representation of fuzzy models
by a set of linear uncertain systems has been suggested by
Cao et al. (1996). Based on linear uncertain system theory
several control design approaches have been proposed. The
drawback of the preceding approaches is that the LMIs or
the algebraic Riccati equations used to check the stability
can be infeasible. Based on the representation of Cao et al.
(1996, 2001) and Feng (2001) we propose, in this work, a
switching control design approach. The proposed approach
is based on the resolution of a set of independent algebraic
Ricatti equation. To overcome the problem of infeasibility the
fulfilment degree of each rule is incorporated in the algebraic
Riccati equation and a minimization program is used to
determine the minimal degree for which the algebraic Riccati
equation has a solution. The rest of this paper is organised
as follows: Section 2 introduces the fuzzy dynamic model.
Section 3 presents the switching controller design approach
for fuzzy dynamic models based on the resolution of a set
of algebraic Ricatti equations. To demonstrate the efficiency
of the proposed approach, a simulation example is given in
Section 4. Finally, conclusions are given in Section 5.

2 T-S fuzzy model

Many physical systems are so complex in practice that
rigorous mathematical models can be very difficult to
obtain, if not impossible. However, many of these systems
can be expressed in some form of mathematical models.
T-S fuzzy models have been largely used to model complex
non-linear systems (Takagi and Sugeno, 1985). The
continuous-time T-S fuzzy dynamic model is a piecewise
interpolation of several linear models through membership
functions. The fuzzy model is described by a set of fuzzy
if-then rules. The ith rule of the fuzzy model take the form:
Rule i:

If z1(t) is F i
1, . . . , and zg(t) is F i

g

Then

{
ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t)
(1)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm the
control vector, y(t) ∈ Rp the output vector, F i

j is the j th
fuzzy set of the ith rule, Ai ∈ Rn×n, Bi ∈ Rn×m and
Ci ∈ Rp×n are the state matrix, the input matrix and the
output matrix for the ith local model, r is the number of
if-then rules and z1(t), z2(t), . . . , zg(t) are some measurable
system variables. The final output of the fuzzy model can be
expressed as:{

ẋ(t) = ∑r
i=1 αi(z(t)){Aix(t) + Biu(t)}

y(t) = ∑r
i=1 αi(z(t))Cix(t)

(2)

where

αi(z(t)) = ωi(z(t))∑r
i=1 ωi(z(t))

(3)

and

ωi(z(t)) =
g∏

j=1

F i
j (z(t)) (4)

F i
j is the grade of membership of zj (t) in F i

j .
The scalars αi(z(t)) are characterised by:

0 ≤ αi(z(t)) ≤ 1 and
r∑

i=1

αi(z(t)) = 1 (5)

The T-S fuzzy model (2) has strong non-linear interactions
among its fuzzy rules which complicates its analysis and
control. In order to overcome these difficulties the T-S fuzzy
model is represented as a set of uncertain linear systems
(Cao et al., 1996). The global state space � ⊆ Rn is
partitioned into r subspaces, each subspace is defined by:

�l = {�| αl(z(t)) > 0} (6)

Each subspace �l is the union of two subsets:

�l = �̄l ∪ ��l (7)

where

�̄l = {�| αl(z(t)) = 1} (8)

and

��l = {�| 0 < αl(z(t)) < 1} (9)

These subspaces are characterised by:

r⋃
i=1

�i = � (10)

If the rules i and j can be inferred in the same time then:

�i ∩ �j �= φ (11)

If the rules i and j cannot be inferred in the same time then:

�i ∩ �j = φ (12)

In each subspace the T-S fuzzy model (2) can be represented
as: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = {Al + ∑r
i=1
i �=l

αi(z(t))Ali}x(t)

+{Bl + ∑r
i=1
i �=l

αi(z(t))Bli}u(t)

y(t) = {Cl + ∑r
i=1
i �=l

αi(z(t))Cli}x(t)

(13)

where

Ali = Ai − Al , Bli = Bi − Bl , Cli = Ci − Cl (14)

Since

r∑
i=1
i �=l

αi(z(t)) = 1 − αl(z(t)) (15)

The T-S fuzzy model can be written as:⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = {Al + (1 − αl(z(t)))�Al(z(t))}x(t)

+{Bl + (1 − αl(z(t)))�Bl(z(t))}u(t)

y(t) = {Cl + (1 − αl(z(t)))�Cl(z(t))}x(t)

(16)
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where

�Al(z(t)) =
r∑

i=1
i �=l

α′
i (z(t))(Ai − Al) (17)

�Bl(z(t)) =
r∑

i=1
i �=l

α′
i (z(t))(Bi − Bl) (18)

�Cl(z(t)) =
r∑

i=1
i �=l

α′
i (z(t))(Ci − Cl) (19)

and

α′
i (z(t)) = αi(z(t))

1 − αl(z(t))
(20)

If αl(z(t)) = 1 then the fuzzy system can be represented
by the corresponding linear local model. In each subspace,
the fuzzy model consists of a dominant nominal system
(Al , Bl , Cl) and a set of interacting systems representing the
effect of other active rules. In this paper, we suppose that the
state vector is measurable and y(t) = x(t). The fuzzy system
can be simplified to:

ẋ(t) = Ãl(α
′(z(t)))x(t) + B̃l(α

′(z(t)))u(t) (21)

with

Ãl(α
′(z(t))) = Al + (1 − αl(z(t)))�Al(α

′(z(t))) (22)

B̃l(α
′(z(t))) = Bl + (1 − αl(z(t)))�Bl(α

′(z(t))) (23)

Suppose that the matrices Ai −Al and Bi −Bl can be written
as:

Ai − Al = MA
li NA

li , Bi − Bl = MB
li NB

li (24)

Then �Al(α
′(z(t))) and �Bl(α

′(z(t))) can be expressed as:

�Al(α
′(z(t))) = MAl

FAl
(α′(z(t))) NAl

(25)

�Bl(α
′(z(t))) = MBl

FBl
(α′(z(t))) NBl

(26)

where

MAl
= [

MA
l1 MA

l2 · · · MA
lr

]
MBl

= [
MB

l1 MB
l2 · · · MB

lr

] (27)

NAl
=

⎡⎢⎢⎢⎣
NA

l1

NA
l2
...

NA
lr

⎤⎥⎥⎥⎦ , NBl
=

⎡⎢⎢⎢⎣
NB

l1

NB
l2
...

NB
lr

⎤⎥⎥⎥⎦ (28)

FAl
(α′(z(t)))

=

⎡⎢⎢⎢⎣
α′

1(z(t))Iql
0 · · · 0

0 α′
2(z(t))Iq2 · · · 0

...
...

. . .
...

0 0 · · · α′
r (z(t))Iqr

⎤⎥⎥⎥⎦ (29)

FBl
(α′(z(t)))

=

⎡⎢⎢⎢⎣
α′

1(z(t))Ipl
0 · · · 0

0 α′
2(z(t))Ip2 · · · 0

...
...

. . .
...

0 0 · · · α′
r (z(t))Ipr

⎤⎥⎥⎥⎦ (30)

0 ≤ α′
i (z(t)) ≤ 1

=⇒
{

FAl
(α′(z(t)))FT

Al
(α′(z(t))) ≤ I

FBl
(α′(z(t)))FT

Bl
(α′(z(t))) ≤ I

(31)

3 Controller design

We assume that the fuzzy system (2) is locally controllable,
that is, the pairs (Al , Bl), l = 1, . . . , r , are controllable.
The basic idea is to design local feedback controllers that
maximise the stability region of each closed-loop local
model. The switching controller, represented in Figure 1
consists of r linear state feedback controllers that will be
switched from one to another to control the system. The
switching controller can be described by

u(t) =
r∑

l=1

ζl(z(t))ul(t) (32)

with

ul(t) = Klx(t), Kl = −R̃−1
l BT

l Pl (33)

and

r∑
l=1

ζl(z(t)) = 1, ζl(z(t)) ∈ {0, 1} (34)

Kl is the local state feedback gain in subspace �l to be
designed. It can be seen that (32) is a linear combination of
r linear state feedback controllers. At each moment, only one
of the linear state feedback controllers is chosen to generate
the control signal.

Figure 1 Structure of the switching controller

K1
u1(t)

K2
u2(t)

Kr
ur (t)

Plant x(t)

Controller Selection

arg max
l= 1, r

(αl − αl)

Theorem 1: If there exist positive definite matrices
Rl ∈ Rm×m, Ql ∈ Rn×n positive scalars µ1

l > 0, µ2
l > 0
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and 0 ≤ αl ≤ 1 such that the following algebraic Ricatti
equation

AT
l P l+P lAl−P lB lR̃

−1
l BT

l P l + Q̃l + P lH lP l = 0 (35)

has a solution Pl = PT
l > 0 where

Q̃l = Ql + 1

µ1
l

(1 − αl)N
T
Al

NAl
(36)

H l = (1 − αl)
(
µ1

l MAl
MT

Al
+ µ2

l MBl
MT

Bl

)
(37)

R̃l = Rl + 1

µ2
l

(1 − αl)N
T
Bl

NBl
(38)

then the state feedback control law (33) quadratically
stabilise the fuzzy system (21) in the subregion:

�s
l = {�|αl(z(t)) ≥ αl} (39)

Proof: Consider the following Lyapunouv function
candidate:

Vl(t) = xT (t)Plx(t) (40)

where Pl is a symmetric positive definite matrix. The time
derivative of Vl(t) along the trajectory of the fuzzy system is
given by

V̇l(t) = ẋT (t)Plx(t) + xT (t)Pl ẋ(t)

V̇l(t) = xT (t)
[
ÃT

l (α(z(t)))Pl + PlÃl(α(z(t)))
]

x(t)

+ uT (t)B̃T
l (α(z(t)))Plx(t) + xT (t)PlB̃l(α(z(t)))u(t)

For simplicity of notation α(z(t)) and t will be omitted from
matrix and function expressions.

V̇l(t) = xT [Al + (1 − αl)�Al]
T Plx

+ xT Pl [Al + (1 − αl)�Al] x

+ uT [Bl + (1 − αl)�Bl]
T Plx

+ xT Pl [Bl + (1 − αl)�Bl] u

= xT
[
AT

l Pl + PlAl + (1 − αl)(�AT
l Pl + Pl�Al)

]
x

+ xT
[
KT

l BT
l Pl + PlBlKl

+(1 − αl)(KT
l �BT

l Pl + Pl�BlKl)
]

x

= xT
[
AT

l Pl + PlAl + KT
l BT

l Pl + PlBlKl

]
x

+ (1 − αl)xT
[
�AT

l Pl + Pl�Al + KT
l �BT

l Pl

+Pl�BlKl] x

= xT
[
AT

l Pl + PlAl + KT
l BT

l Pl + PlBlKl

]
x

+ (1 − αl)xT
[
NT

Al
FT

Al
MT

Al
Pl + PlMAl

FAl
NAl

]
x

+(1 − αl)xT
[
KT

l NT
Bl

FT
Bl

MT
Bl

Pl + PlMBl
FBl

NBl
Kl

]
x

Since for any positive scalar µ > 0 and real matrices Y and
Z we have (Petersen, 1987):

ZYT + YZT ≤ µYYT + 1

µ
ZZT (41)

It follows that:

NT
Al

FT
Al

MT
Al

Pl + PlMAl
FAl

NAl

≤ µ1
l PlMAl

MT
Al

Pl + 1

µ1
l

NT
Al

NAl

KT
l NT

Bl
FT

Bl
MT

Bl
Pl + PlMBl

FBl
NBl

Kl

≤ µ2
l PlMBl

MT
Bl

Pl + 1

µ2
l

KT
l NT

Bl
NBl

Kl

V̇l(t) ≤ xT
[
AT

l Pl + PlAl + KT
l BT

l Pl + PlBlKl

]
x

+(1 − αl)xT

[
µ1

l PlMAl
MT

Al
Pl + 1

µ1
l

NT
Al

NAl

]
x

+(1 − αl)xT

[
µ2

l PlMBl
MT

Bl
Pl + 1

µ2
l

KT
l NT

Bl
NBl

Kl

]
x

Since

x(t) ∈ ���s
l ⇒ 1 − αl ≤ 1 − αl

then

V̇l(t) ≤ xT
[
AT

l Pl + PlAl + KT
l BT

l Pl + PlBlKl

]
x

+ (1 − αl)x
T Pl

[
µ1

l MAl
MT

Al
Pl + µ2

l PlMBl
MT

Bl

]
Plx

+ (1 − αl)x
T

[
1

µ1
l

NT
Al

NAl
+ 1

µ2
l

KT
l NT

Bl
NBl

Kl

]
x

V̇l(t) ≤ xT
(
AT

l Pl + PlAl − PlBlR̃−1
l BT

l Pl + Q̃l + PlHlPl

)
x

− xT
(
Ql + KT

l RlKl

)
x + xT KT

l

(
BT

l Pl + R̃lKl

)
x

Since

AT
l Pl + PlAl − PlBlR̃−1

l BT
l Pl + Q̃l + PT

l HlPl = 0

and

Kl = −R̃−1
l BT

l Pl ⇒ R̃lKl = −BT
l Pl ⇒ BT

l Pl + R̃lKl = 0

It yields

V̇l(t) ≤ −xT
(
Ql + KT

l RlKl

)
x < 0 (42)

V̇l(t) ≤ −λmin
(
Ql + KT

l RlKl

) ‖x(t)‖2 (43)

In each subspace, the command is given by

ul(t) = −R̃−1
l BT

l Plx(t) (44)

In order to maximise the region of stability of each subregion
�s

l , the minimal value that guarantee the stability is obtained
by solving the following minimization program:

minimize
Pl ,Ql ,Rl ,µ

1
l
,µ2

l

αl

s.t. Pl = PT
l > 0, Ql > 0, Rl > 0, µ1

l > 0, µ2
l > 0

AT
l Pl + PlAl − PlBlR̃−1

l BT
l Pl + Q̃l + PlHlPl = 0

(45)

Note that this minimization program has always a solution
αl < 1 since we assume that the local systems
are controllable.
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Let �c
l ⊆ �s

l be the state subspace associated with the
state feedback Kl and τi, i = 1, 2, . . . , N , the ith time
instant at which the state meets the boundary of a subregion
�c

j , j = 1, 2, . . . , r . We assume that the state x(t) does not
jump at the transition time τi , that is (Feng, 2001)

x(τ−
i ) = x(τi) = x(τ+

i ), i = 1, 2, . . . , N (46)

Lemma 1: The fuzzy system (21) is globally stable if N is
finite (N < ∞) and there exists, at each moment t , at least
one integer 1 ≤ k ≤ r so that:

αk(z(t)) ≥ α k (47)

or
r⋃

i=1

�s
i = � (48)

Proof: Consider the following piecewise quadratic
Lyapunouv function candidate:

V (t) =
r∑

l=1

ζl(x(t))xT (t)Plx(t) (49)

where

ζl(x(t)) =
{

1 x(t) ∈ �c
l

0 otherwise
(50)

if τi is the time instant at which the state leaves the subregion
�c

j and enters into the subregion �c
k then

V (τ−
i ) = xT (τ−

i )Pj x(τ−
i ) = xT (τ )Pj x(τ ) (51)

V (τ+
i ) = xT (τ+

i )Pkx(τ+
i ) = xT (τ )Pkx(τ ) (52)

The local symmetric positive matrices Pl , l = 1, 2, . . . , r ,
are determined so as to guarantee the local stability:

(42) ⇒ V̇ (t)

V (t)
≤ −xT (t)

(
Ql + KT

l RlKl

)
x(t)

xT (t)Plx(t)

≤ −σl, σl = λmin
(
Ql + KT

l RlKl

)
λmax (Pl)

x(t) ∈ �c
l ,

τ+
i < t < τ−

i+1, i = 1, 2, . . . , N

V (t) > 0, x(t) �= 0 ⇒ d(ln(V (t)))

dt
≤ −σl ⇒ V (t)

≤ V (τ+
i )e−σl (t−τ+

i
)τ+

i < t < τ−
i+1, i = 1, 2, . . . , N

since

λmin (Pl) ‖x(t)‖2 ≤ V (t) ≤ λmax (Pl) ‖x(t)‖2,

τ+
i < t < τ−

i+1, i = 1, 2, . . . , N

It follows that

‖x(t)‖ ≤ Cl‖x(τi)‖e− σl
2 (t−τ+

i
), Cl =

√
λmax (Pl)

λmin (Pl)

τ+
i < t < τ−

i+1, i = 1, 2, . . . , N

Since the number of transition is finite, N < ∞ then

‖x(t)‖ ≤ Cl0‖x(τN)‖e− σl0
2 (t−τ+

N
), t > τ+

N (53)

At the N th transition (t = τ+
N ) the state enters into the

subregion �c
l0

containing the origin and converges to the

origin at t → ∞.

x(t) ∈ �c
l0
, t > τ+

N and ‖x(t)‖
t→∞

→ 0 (54)

The fuzzy system is globally stable.

Remark: If the transition time instants are not finite, some
other conditions have to be imposed (Feng, 2001).

Since several rules may satisfy the condition (47), in this case
the control is inferred by selecting the control of the dominant
system whose membership degree is of maximum distance
from its guaranteed stability boundary:

u(t) = Klx(t), l = arg max
i=1,r

(αi(z(t)) − α i) (55)

The resolution of the r independent minimization programs
(45) leads to three possible cases as shown in Figure 2.

Figure 2 Possible cases

ω1(t) ω2(t)ω3(t)

ω(t)

z(t)

K3
K1

K2

(a)

K3
K1

K2

(b)

K3 K1 K2 (c)

K4 K5

Case 1: Several or all α l = 0, l = 1, 2, . . . , r , Figure 2(a),
a local controller can be used to stabilise the fuzzy system
in its own local subregion and in adjacent subregions and
the number of controllers can be reduced. The number of
controllers is inferior to the number of rules. In Figure 2(a),
the state feedback gain K1 is sufficient to control the
fuzzy system.

Case 2: If the number of controllers cannot be reduced and
the condition (48) is fulfilled then the number of controllers
is equal to the number of rules, Figure 2(b).

Case 3: If the condition (48) is not fulfilled, the global system
may be unstable. To solve this problem, we can add new rules
to the model since we know exactly in which region, in the
state space, we need new ones, or we can add new controllers,
K4 and K5 in Figure 2(c), without changing the model by using
new nominal local systems which is equivalent to the addition
of new rules to the model.

In Tanaka et al. (1998), the controller has the same number
of rules as the model, the design procedure is based on
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checking the existence of a common symmetric positive
definite matrix using LMIs. The solvability of the LMIs may
be impossible in many cases especially when the number of
rules is large. Using a simplified model with few rules is the
alternative proposed in such situations, but this reduction of
rules decreases the accuracy of the model. In our approach
the number of controllers can be less than the number of
rules. Adding new rules rather than simplifying the original
model, using more accurate model, is used when the stability
conditions are not fulfilled. Since we know exactly in which
regions in the state space we need new rules the addition of
new rules is straightforward. However, the global stability is
assured with the assumption that the transition time instants
are finite.

3.1 Design procedure

The design procedure of the switching controller can be
summarised in the following steps:

Step 1 Obtain the fuzzy plant model of the non-linear
plant by means of the methods in Takagi and
Sugeno (1985), Sugeno and Kang (1988) and Cao
et al. (1997), or other suitable ways.

Step 2 Determine the subsystems matrices Ai and Bi

i = 1, · · · , r .
Step 3 Choose the suitable matrices MAi

, NAi
, MBi

and
NBi

for each local model.
Step 4 For each subsystem, solve the corresponding

minimization program (45).
Step 5 Check if the stability condition (48) is satisfied,

otherwise, go to Step 2 and choose other values for
the free design parameters or add new controllers
until the stability condition (48) is fulfilled.

4 Simulation example

To show the effectiveness of the proposed method, we
simulate the control of the chaotic Lorenz system. The control
objective is to drive its chaotic trajectory to the origin. The
Lorenz equations are as follows (Lee et al., 2001):⎡⎣ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤⎦ =
⎡⎣ −σx1(t) + σx2(t)

rx1(t) − x2(t) − x1(t)x3(t)

x1(t)x2(t) − bx3(t)

⎤⎦ (56)

The nominal values of (σ, r, b) are (10,28,8/3) for chaos to
emerge. An exact fuzzy modelling is employed to construct
fuzzy model for the chaotic systems. It utilises the concept
of sector non-linearity (Takagi and Sugeno, 1985). Assume
that x1(t) ∈ [M1, M2], then we can have the following two
rules fuzzy model which exactly represents the non-linear
equation under x1(t) ∈ [M1, M2].
R1: if x1(t) is about M1 Then ẋ(t) = A1x(t)

R2: if x1(t) is about M2 Then ẋ(t) = A2x(t).

where

A1 =
⎡⎣−σ σ 0

r −1 −M1

0 M1 −b

⎤⎦ , A2 =
⎡⎣−σ σ 0

r −1 −M2

0 M2 −b

⎤⎦ (57)

and

M1 = −20, M2 = 30 (58)

The membership functions, shown in Figure 3, are chosen
as:

ω1(x(t)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−x1(t) + M2

M2 − M1
if − 20 ≤ x1(t) ≤ 30

1.0 if x1(t) < −20

0 if x1(t) > 30

(59)

ω2(x(t)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1(t) − M1

M2 − M1
if − 20 ≤ x1(t) ≤ 30

1.0 if x1(t) > 30

0 if x1(t) < −20

(60)

Figure 3 Possible cases
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The input matrices B1 and B2 are chosen as

B1 = B2 =
⎡⎣0 0

1 0
0 1

⎤⎦ (61)

The fuzzy model can be decomposed into two subsystems:

• Subsystem 1:

ẋ(t) = [A1 + (1 − α1)�A1] x(t)

+ [B1 + (1 − α1)�B1] u(t)

A1 =
⎡⎣−10 10 0

28 −1 20
0 −20 −2.6667

⎤⎦ , B1 =
⎡⎣0 0

1 0
0 1

⎤⎦

�A1 = α′
2(t) (A2 − A1) = α′

2(t)

⎡⎣0 0 0
0 0 50
0 −50 0

⎤⎦ ,

�B1 = 0

• Subsystem 2:

ẋ(t) = [A2 + (1 − α2)�A2] x(t)

+ [B2 + (1 − α2)�B2] u(t)

A2 =
⎡⎣−10 10 0

28 −1 −30
0 30 −2.6667

⎤⎦ , B2 =
⎡⎣0 0

1 0
0 1

⎤⎦
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�A2 = α′
1(t) (A1 − A2) = α′

1(t)

⎡⎣0 0 0
0 0 −50
0 50 0

⎤⎦ ,

�B2 = 0

�A1 and �A2 can be written as:

�A1 = MA1FA1(α
′
2(t))NA1

MA1 =
⎡⎣0 0

0 5
5 0

⎤⎦ , NA1 =
[

0 10 0
0 0 −10

]

FA1(α
′
2(t)) =

[
α′

2(t) 0

0 α′
2(t)

]

�A2 = MA2 FA2(α
′
1(t))NA2

MA2 =
⎡⎢⎣ 0 0

0 −5

−5 0

⎤⎥⎦ , NA2 =
[

0 10 0

0 0 −10

]

FA2(α
′
1(t)) =

[
α′

1(t) 0

0 α′
1(t)

]
The values obtained after the resolution of the minimization
program (45) with:

Q1 = Q2 = I3, µ1
1 = µ1

2 = 0.1, R1 = R2 = 0.1I2

• Subsystem 1:

α1 = 0

P1 =
⎡⎢⎣5.0595 3.6705 0.7583

3.6705 11.8115 0.1092

0.7583 0.1092 11.2293

⎤⎥⎦ ,

K1 =
[−36.7048 −118.1146 −1.0918

−7.5833 1.0918 −112.2734

]
• Subsystem 2:

α2 = 0

P2 =
⎡⎣ 4.8170 3.4679 −1.0947

3.4679 11.7632 −0.1478
−1.0947 −0.1478 11.2528

⎤⎦ ,

K2 =
[−34.6792 −117.6321 1.4783

10.7489 1.4783 −112.5280

]
The boundary of the two subspaces are determined by
α1 = α2 = 0, Figure 3, which means that the chaotic
system can be controlled using only one state feedback
u(t) = K1x(t) or u(t) = K2x(t). The initial states are x(0) =
[10, 10, 10]T and the simulation time is 40 sec. The control
input is activated at t = 10 sec using the linear state feedback
u(t) = K1x(t). Before the activation of the control the phase
trajectory of the Lorenz system was chaotic. However, after
the activation of the control the phase trajectory is quickly
directed to the origin as shown in Figures 4 and 5.

Figure 4 The phase trajectory of the controlled Lorenz
chaotic system

−20
−10

0
10

20

−40

−20

0

20

40
−10

0

10

20

30

40

50

x
1

x
2

x 3

Figure 5 States of the Lorenz chaotic system
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5 Conclusion

In this paper a Lyapunov-based method has been proposed
to design a fuzzy model based switching controller for
non-linear systems. The fuzzy model is represented as a set of
uncertain linear systems. A local controller is designed so that
the stability region of the corresponding local subsystem is
maximised. Under some conditions this switching controller
has the ability to stabilise the non-linear system. The control
of the chaotic Lorenz system has been used to demonstrate
the effectiveness of this approach.
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