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ABSTRACT

A simple rectangular element having 2d.o.f/node at each node is developed. This element is based on the strain approach. From
some numerical examples, by using the concept of static condensation it is concluded that the exact solutions can be obtained.
This element is nonconforming but satisfies the patch test and produces results which are acceptable within practical

engineering accuracy even when few elements are employed.

(2d.0.f/node)

(Patch Test)
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1 INTRODUCTION

The development of finite elements for general plane
elasticity problems occupied a prominent position in the
early work on the matrix displacement method of analysis.
Attention was therefore focused on the development of
more sophisticated elements based on the strain element
Sabir et al [1, 2, 3, and 4]. Several models such as
rectangular elements were developed, among them the
elements of Sabir et al [4] SBRIE and SBRIE2. The first
element is based on linear variation of direct strains and
constant shearing strain. The second is based on linear
variation of all three strain components. These elements
produce rapid convergence of deflections as well as
stresses. A Further progress into the development of plane
stress elements based on the strain approach is due to
Belarbi [5, 6, 7 and 8].

In This paper the shape function for a rectangular element
having two degrees of freedom at each of the four corner
nodes is developed using the strain approach. However any
singularity is eliminated by the use of local axes optimally
oriented. This element is nonconforming but satisfies the
patch test and produces results which are acceptable within
practical engineering accuracy even when few elements are
employed.

2 CONSTRUTING THE COMPONENT
STIFNESS MATRICES

The above consideration will lead to an element requiring
ten d.o.f, each of the four corner nodes has the two essential
d.o.f, in addition, an internal node is also used fig.1
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Figure 1: Co-ordinates and nodal points for the rectangular
R4SB2 element
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By integrating equations (1) and adding the condition of
rigid body movement (R4SB2) we obtain:
y

U=a, —a3y+a4x+a5xy—a7%(x2 +y2)+a85—a10%(ax2—y2)

v =a2+a3x—a5%(x2 +y2)+aéy+a7xy+a8g—ag%(ay2 —x%)

()
a coefficient of condensation, in our case a = 150

Where U and V are the displacements in X and Y direction
respectively, rigid body movement is represented by the
terms associated with the constants aj, a, and a; while the
straining of the element is represented by the remaining
constants. This element correctly represents the R4SB2 and
constant strain states.

The stiffness matrix is derived without using any tricks,
which implies that it is obtained using exact and not
reduced integration.

[K]=[A"]" [Ko] [A™] (3a)
= [[[QT [DIQlixdy (3b)
s
With
0 0 0 1 y 0O —-x 0 0 —aX
[Q]—OOOO—yIXO—ayO
0 0 0 1 X y
D11 D12 0
And [DlI=ID12 D22 0O the wusual constitutive
D33
matrix
Where:
pI1=D2=—— _; pr2="E , p33-_E .

() 2Ry

For [A] and [K,] see the appendix.

3 PATCH - TESTS

3.1 Study of a simple element: dilatation of the element
(R4SB2)

This element is subject to an imposed displacement (Fig.2).

Table 1: Dilatation of the element, results

R4SB2 Th:;)ry Plane | Elasticity
Node| U \4 U
2 0,01 0.121.10 0,01 0 0
3 0,01 -0.001 0,01 |-0.001 0
Stresses Stresses
Node| o, G, Tx Oy o, Ty
1 | 10000 | 0.843.10° [0.325.10°| 10000 0 0
4 | 10000 | 0.809.10° [0.325. 107 10000 0 0
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Figure 2: Dilatation of the element (R4SB2)
Data: E=210', v=0.2,t=1

The results given by the element are perfectly analogous to
the exact solution.

3.2 Dilatation of the element
3.2.1 Dilatation of the element in X direction

The objective of this test is to check the rigid body
movement and the dilation of the element in X direction

(Fig 3).
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Figure 3: Patch Test Dilatation in X direction.
Data : E=1500, v=0.2,t =1

The displacement of the corresponding force (translation or
dilation) is imposed on all nodes except the node n°5. By
comparing the displacement provided by the element with
that of the theory of plane elasticity, we can check easily if
the element passes this patch test.

Two loading cases were considered:

A: 1% loading case: the rigid body movement,
displacement U = 10; for all nodes except the node n°5.

the

B: 2™ loading case: U=0.01 displacement of nodes 3, 6 and
9; displacement

U=0.004 for nodes 2 and 8 (U = 0 for nodes 1, 4 and 7)
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Table 2: Patch-Test. Loading Case A

C.C R4SB2 Theory of | Plane elasticity
A node | U \Y U \Y
5 10 [ -0.4008.10° 10 0

Table 3: Patch-Test. Loading Case B

C.C R4SB2 Theory of | Plane elasticity
node U A\ U A\
B 5 10.004] -4.0.10" 0.004 -4.010"

3.2.2 Dilatation of the element Y direction (Fig. 4)

A: 1% loading case: The rigid body movement V=10
displacement for all nodes except the node n°5.

B: 2™ loading case: V=0.01 displacement of nodes 7, 8 and
9; displacement V=0.00333333 for nodes 4 and 6 (V=0 for
nodes 1, 2 and 3)
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Figure 4: Patch-Test. Dilatation in Y direction
Data : E=1500, v=10.2,t =1

Table 4: Patch-Test. Loading Case A

C.C R4SB2 Theory | Of plane elasticity
node U \Y U \Y
A 5 |-07738.10° ] 10 0 10

Table 5: Patch-Test. Loading Case B

C.C R4SB2 Theory |Of plane elasticity
node U \Y U )\
B | 5 [-0.0013333]0.0033333| -0.0013333 0.0033333

In these tests, element (R4SB2) show the same properties
as in test (3.1) like for dilations and the rigid body
movement. The node n°5 gives exactly the solution of the
plane elasticity theory. Hence; the element passes perfectly
the patch-test.

4 NUMERICAL EXAMPLES

The numerical results of several quadrilateral plane
elements is used and compared with those obtained from
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the present R4SB2 element and they are listed as follows:

= SBRIE: the
element [4].

strain based rectangular in-plane

= SBRIE2: the strain based rectangular in-plane
element with an internal node [4].

= (Q4: the standard four-node isoperimetric element.

= Most of the examples dealt with have been proposed
at various stages in open literature to validate
element performance. It will be seen that the SBRIE
and the SBRIE2 versions show the same results for
all cases.

4.1 An elongated thin cantilever beam subjected to end

shear

An elongated thin cantilever beam subjected to end shear is
a standard problem to test finite element accuracy. Young's
modulus and Poisson's ratio are denoted by E and v. These
parameters and the mesh division are shown in Fig.5, while
the results are presented in Table 6, it should be noted that
the R4SB2 element gives the most accurate results.
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Figure 5: An elongated thin cantilever beam subjected to end
shear

Table 6: Normalized deflection at point A, of a thin cantilever
beam under shear

Normalised tip deflection
Mesh 1x 6
SBRIE 0.903
Q4 0.093
R4SB2 1.000
SBRIE2 0.682
Analyt. 1.000 (0.1081)

4.2 An elongated thin cantilever beam subjected to end
pure bending

The tip deflection of an elongated thin cantilever beam
under pure bending is compared using the present element
R4SB2. The geometry, parameters and mesh discretesation
of the beam are shown in Fig.6. Using four different mesh
divisions, the normalised tip deflections of the R4SB2 are
computed and compared with those obtained by other
elements in Table 7. A pertinent point to note is that exact
solution can be obtained for the R4SB2 element. The
accuracy of the SBRIE and SBRIE2 is quite high.



M.T. Belarbi & al.

6.0

E=1.0x107 , v=0.3 , thickness=0.1

/
\ \ \ | \ |
1x6 elements
/
[ I |
1x8 elements
/)

1x12 elements

Figure 6: An elongated thin cantilever beam subjected to end
pure bending

Table 7: Normalised deflection at point A, of a thin cantilever
beam under pure bending

Normalised tip deflection
Mesh Ix 6 Ix 8 1x 10 Ix 12
SBRIE 0.91 0.91 0.91 0.91
Q4 0.093 0.153 0.219 0.285
R4SB2 0.993 0.997 0.9978 0.998
SBRIE2 0.678 0.713 0.75 0.75
Analyt. 1.000 (0.270)

4.3 Simply supported beam loaded at mid-span

The deep simply supported beam whose details are given in
fig.7 has been used in the finite element literature. It is also
used here to test the performance of the present element
R4SB2, and a comparison is made with the existing results
given by the use of elements sited above.
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Figure 7: simply supported beam loaded at mid-span
Data : E=2x10” kn/m, v=0.2,t =0.5 m, P=4.2 kn

Tables 8 and 9 show the results obtained for shearing stress
at C and the bending stress at B respectively. These tables
show that the R4SB2 element gives better results than all
the other elements. Even for the coarse mesh this element
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produces results which are acceptable within practical

engineering accuracy.

o Stresses oy, at point C:

Table 8: Simply supported beam, Shear stress at point C

E=2.107,v=0.2,t=0.5 |Mesh |SBRIE2| Q4 |R4SB2

ls 42 12x4 | 6.0160 | 5.2582 | 6.0344

o.s@gYL ™M 12x6 | 6.0745 | 5.4544 | 6.0810

¢ Tl 16x8 | 6.1606 | 5.8177 | 6.1645

le—2 2 57 [20x10] 62143 | 5.9922 | 62172
Exact Solution [2] 0,,(¢)=6.3

o Stresses oy, at point B:

Table 9: Simply supported beam, Normal Stress at point B
E=2.107,v=0.2,t=0.5 |Mesh| SBRIE2 | Q4 |R4SB2
sy 42 (| 12x4| 28.7085 | 30.6545 |28.7425

T B T 12x6 | 24.6435 |23.8300(24.8365

-nl 16x8 | 24.2135 |24.3630 |24.2730

2 251 |oox10] 24,5055 | 245860 245575

Exact Solution [2] 6,,(B) =25.2

5 CONCLUSION

From the previous examples, the developed element
appears to be more accurate and versatile than the standard
displacement based element. The robustness of the present
element R4SB2 via the patch test has also been shown. The
numerical tests demonstrate that satisfactory finite element
solutions can be obtained for beam bending without the use
of large number of elements.

APPENDIX
Matrices [A] and [ko] for element R4SB2: with o =150
[T O 0 o 0 0 0 0 0 ]
01 0 0 0 0 0 0 0 0
10 0 a 0 o = o 0 —oa
2 2
2 2
01 a 0 = o 0 3 a 0
2 2 2
—(a?+b? —(aa’-b
1 0 -b a ab 0 ( ) E 0 ( )
2 2 2
—(a®+b? —(o b*—a?
[Al=lo 1 a o ( ) b ab a ) 0
2 2 2
10 -b 0 0 o b 0 L
2 2 2
12 k2
o1 0 0 X 0 0 °‘2b 0
_ —(a? +b? —(aa’-b
1o 22 ab 0 (2" +07) b 0 (00 -b")
2 2 8 4 8
_(a2+b? (o b?—a’
T i Gl NS S W CLS) 0
L 2 8 2 4 8 ]
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0O 0 0 O 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 o0 0 0 0 0 0 0
H H, H H, 0 H; Hy
[KO] — H7 H8 H9 O H]O Hl]
HlZ H]3 0 H]4 H]S
H16 0 Hl7 ng
H19 H20 HZI
H22 H23
L H24_
— 5 azb2 Otaz 2
H = dl;[z)” H, = 4 (ZDIZ -D;, Dzz) H, = 4b ( n—D )
o =5 (Dy=Ds) H, =" (0, -D,) H,, = O“";b(D,, D,)
= abDss 3sz H b3D
H4:£(D\:7D11) e 4 (DI27D”) ’ bazl;3
: 2 H,, =abD,, Ha 2 =
H. = —aab'D,, ba’ 5
: 2 H; _L(Dzz’Du) H :ab D,
2 2 ! 2
H, =22 oD, —aab’D ab 2
g 2 H, = 2 H,, = —(txzb'Dn + aZDD)
b 2 3
H, = T(D11 -2D,,+D,,) - —0a’bD,, . ’ (asz . Dn)
ab’ » 3 ’
Hx:T(DH?Dn) Hm:bi(Dzz*ZDu*Dn) H24:ﬂ( 2"’2Du+b2Dn)
Where:
E v.E E
D11=D22= 5 D12 = 5 D33=——
=) * ) P E)
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