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ABSTRACT 

A simple rectangular element having 2d.o.f/node at each node is developed. This element is based on the strain approach. From 
some numerical examples, by using the concept of static condensation it is concluded that the exact solutions can be obtained. 
This element is nonconforming but satisfies the patch test and produces results which are acceptable within practical 
engineering accuracy even when few elements are employed.  

 ملخص
من خلال . همبدأ التشوعلى تم تطويره اعتمادا  ،في كل عقدة ) (2d.o.f/node ذو درجتي حريةمحدودا مستطيلا اعنصرنعرض في هذا البحث 

 شروط ىهذا العنصر لا يتوفر علن إ . وباستعمال مبدأ التكثيف الستاتيكي توصلنا إلى إمكانية الحصول على نتائج دقيقة،بعض الأمثلة العددية
 .يعطي نتائج جد مقبولة في الهندسة التطبيقية باستعمال عدد محدود من العناصرأنه  كما ، بنجاحPatch Test)(لكنه يجتاز اختبار التطابق 
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1 INTRODUCTION 
The development of finite elements for general plane 
elasticity problems occupied a prominent position in the 
early work on the matrix displacement method of analysis. 
Attention was therefore focused on the development of 
more sophisticated elements based on the strain element 
Sabir et al [1, 2, 3, and 4]. Several models such as 
rectangular elements were developed, among them the 
elements of Sabir et al [4] SBRIE and SBRIE2. The first 
element is based on linear variation of direct strains and 
constant shearing strain. The second is based on linear 
variation of all three strain components. These elements 
produce rapid convergence of deflections as well as 
stresses. A Further progress into the development of plane 
stress elements based on the strain approach is due to 
Belarbi [5, 6, 7 and 8].    

In This paper the shape function for a rectangular element 
having two degrees of freedom at each of the four corner 
nodes is developed using the strain approach. However any 
singularity is eliminated by the use of local axes optimally 
oriented. This element is nonconforming but satisfies the 
patch test and produces results which are acceptable within 
practical engineering accuracy even when few elements are 
employed.  

 

2 CONSTRUTING THE COMPONENT 
STIFNESS MATRICES  

The above consideration will lead to an element requiring 
ten d.o.f, each of the four corner nodes has the two essential 
d.o.f, in addition, an internal node is also used fig.1 

The assumed strains are: 
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Figure 1: Co-ordinates and nodal points for the rectangular 

R4SB2 element 
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By integrating equations (1) and adding the condition of 
rigid body movement (R4SB2) we obtain: 
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α coefficient of condensation, in our case α = 150 

Where U and V are the displacements in X and Y direction 
respectively, rigid body movement is represented by the 
terms associated with the constants a1, a2 and a3 while the 
straining of the element is represented by the remaining 
constants. This element correctly represents the R4SB2 and 
constant strain states. 

The stiffness matrix is derived without using any tricks, 
which implies that it is obtained using exact and not 
reduced integration. 

[Ke] = [A-1 ]T [K0 ] [A-1 ] (3a) 

[K0] = [ ] [ ][ ] dydxQDQ
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For [A] and [K0] see the appendix.  

 

3 PATCH - TESTS 
3.1 Study of a simple element: dilatation of the element 

(R4SB2)   

This element is subject to an imposed displacement (Fig.2). 
 

Table 1: Dilatation of the element, results 

  R4SB2  Theory 
of Plane Elasticity 

Node U V  U   
2 0,01 0.121.10-8  0,01 0 0 
3 0,01 -0.001  0,01 -0.001 0 
  Stresses   Stresses  

Node σx σy τxy σx σy τxy 
1 10000 0.843.10-3 0.325. 10-3 10000 0 0 
4 10000 0.809. 10-3 0.325. 10-3 10000 0 0 
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Figure 2: Dilatation of the element (R4SB2) 

Data: E=2107, ν = 0.2, t = 1 

 

The results given by the element are perfectly analogous to 
the exact solution.   

 

3.2 Dilatation of the element 

3.2.1 Dilatation of the element in X direction 

The objective of this test is to check the rigid body 
movement and the dilation of the element in X direction 
(Fig 3).   
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Figure 3: Patch Test Dilatation in X direction. 

Data : E=1500, ν = 0.2, t =1 

 

The displacement of the corresponding force (translation or 
dilation) is imposed on all nodes except the node n°5. By 
comparing the displacement provided by the element with 
that of the theory of plane elasticity, we can check easily if 
the element passes this patch test.   

Two loading cases were considered:   

A: 1st loading case: the rigid body movement, the 
displacement U = 10; for all nodes except the node n°5.   

B: 2nd loading case: U=0.01 displacement of nodes 3, 6 and 
9; displacement  

U=0.004 for nodes 2 and 8 (U = 0 for nodes 1, 4 and 7)  
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Table 2: Patch-Test. Loading Case A 

C.C   R4SB2 Theory of Plane elasticity
node U V U V A 5 10 -0.4008.10-6 10 0 

 
Table 3: Patch-Test.  Loading Case B 
C.C   R4SB2 Theory of Plane elasticity

node U V U V  
B 5 0.004 -4.0.10-4 0.004 -4.010-4 

 

3.2.2 Dilatation of the element Y direction (Fig. 4)   

A: 1st loading case: The rigid body movement V=10 
displacement for all nodes except the node n°5.   

B: 2nd loading case: V=0.01 displacement of nodes 7, 8 and 
9; displacement V=0.00333333 for nodes 4 and 6 (V=0 for 
nodes 1, 2 and 3)  
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Figure 4: Patch-Test. Dilatation in Y direction  

Data : E=1500, ν = 0.2, t =1 

 
Table 4:  Patch-Test.  Loading Case A 

C.C  R4SB2  Theory Of plane elasticity 
node U V U V  

A 5 -0.7738.10-6 10 0 10 
 
Table 5: Patch-Test.  Loading Case B 

C.C  R4SB2  Theory Of plane elasticity
node U V U V  

B 5 -0.0013333 0.0033333 -0.0013333 0.0033333 
 

In these tests, element (R4SB2) show the same properties 
as in test (3.1) like for dilations and the rigid body 
movement.  The node n°5 gives exactly the solution of the 
plane elasticity theory. Hence; the element passes perfectly 
the patch-test.   

 

4 NUMERICAL EXAMPLES  
The numerical results of several quadrilateral plane 
elements is used and compared with those obtained from 

the present R4SB2 element and they are listed as follows: 

 SBRIE: the strain based rectangular in-plane 
element [4]. 

 SBRIE2: the strain based rectangular in-plane 
element with an internal node [4]. 

 Q4: the standard four-node isoperimetric element. 

 Most of the examples dealt with have been proposed 
at various stages in open literature to validate 
element performance. It will be seen that the SBRIE 
and the SBRIE2 versions show the same results for 
all cases.   

 

4.1 An elongated thin cantilever beam subjected to end 
shear  

An elongated thin cantilever beam subjected to end shear is 
a standard problem to test finite element accuracy. Young's 
modulus and Poisson's ratio are denoted by E and ν. These 
parameters and the mesh division are shown in Fig.5, while 
the results are presented in Table 6, it should be noted that 
the R4SB2 element gives the most accurate results. 
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Figure 5: An elongated thin cantilever beam subjected to end 

shear 

 
Table 6: Normalized deflection at point A, of a thin cantilever 

beam under shear 

 Normalised tip deflection 
Mesh 1x 6 

SBRIE 0.903 
Q4 0.093 

R4SB2 1.000 
SBRIE2 0.682 
Analyt. 1.000 (0.1081) 

 
4.2 An elongated thin cantilever beam subjected to end 

pure bending  

The tip deflection of an elongated thin cantilever beam 
under pure bending is compared using the present element 
R4SB2. The geometry, parameters and mesh discretesation 
of the beam are shown in Fig.6. Using four different mesh 
divisions, the normalised tip deflections of the R4SB2 are 
computed and compared with those obtained by other 
elements in Table 7. A pertinent point to note is that exact 
solution can be obtained for the R4SB2 element. The 
accuracy of the SBRIE and SBRIE2 is quite high. 
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Figure 6: An elongated thin cantilever beam subjected to end 

pure bending 

 
Table 7: Normalised deflection at point A, of a thin cantilever 

beam under pure bending 

 Normalised tip deflection 
Mesh 1x 6 1x 8 1x 10 1x 12 

SBRIE 0.91 0.91 0.91 0.91 
Q4 0.093 0.153 0.219 0.285 

R4SB2 0.993 0.997 0.9978 0.998 
SBRIE2 0.678 0.713 0.75 0.75 
Analyt. 1.000 (0.270) 

 
4.3 Simply supported beam loaded at mid-span  

The deep simply supported beam whose details are given in 
fig.7 has been used in the finite element literature. It is also 
used here to test the performance of the present element 
R4SB2, and a comparison is made with the existing results 
given by the use of elements sited above. 
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Figure 7: simply supported beam loaded at mid-span 

Data : E=2x107 kn/m, ν = 0.2, t =0.5 m, P= 4.2 kn 

 

Tables 8 and 9 show the results obtained for shearing stress 
at C and the bending stress at B respectively. These tables 
show that the R4SB2 element gives better results than all 
the other elements. Even for the coarse mesh this element 

produces results which are acceptable within practical 
engineering accuracy.  

 

◘ Stresses σxy at point C: 
 

Table 8: Simply supported beam, Shear stress at point C 

E=2.107, v=0.2 , t=0.5 Mesh SBRIE 2 Q4 R4SB2

12x4 6.0160 5.2582 6.0344 

12x6 6.0745 5.4544 6.0810 

16x8 6.1606 5.8177 6.1645 
1

0.5

2

4.2

2

C

1

20x10 6.2143 5.9922 6.2172 

Exact Solution [2] σxy(c)=6.3 
 

◘ Stresses σxx at point B: 
 

Table 9: Simply supported beam, Normal Stress at point B 

E=2.107 , v=0.2 , t=0.5 Mesh SBRIE 2 Q4 R4SB2

12x4 28.7085 30.6545 28.7425

12x6 24.6435 23.8300 24.8365

16x8 24.2135 24.3630 24.2730
1

B
1

22

4.2

20x10 24.5055 24.5860 24.5575

Exact Solution [2] σxx(B) = 25.2 
                  

5 CONCLUSION 
From the previous examples, the developed element 
appears to be more accurate and versatile than the standard 
displacement based element. The robustness of the present 
element R4SB2 via the patch test has also been shown. The 
numerical tests demonstrate that satisfactory finite element 
solutions can be obtained for beam bending without the use 
of large number of elements.  

 

APPENDIX  

Matrices [A] and [k0] for element   R4SB2: with α =150 
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