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Abstract

We study the corrections induced by the theory of non-commutativity,
in both space-space and space-time versions, on the spectrum of hydrogen-
like atoms. For this, we use the relativistic theory of two-particle systems
to take into account the effects of the reduced mass, and we use per-
turbation methods to study the effects of non-commutativity.We apply
our study to the muon hydrogen with the aim to solve the puzzle of
proton radius [R. Pohl et al., Nature 466, 213 (2010) and A. Antognini
et al., Science 339, 417 (2013)]. The shifts in the spectrum are found
more noticeable in muon H (µH) than in electron H (eH) because the
corrections depend on the mass to the third power; This explains the dis-
crepancy between µH and eH results. In space-space non-commutativity,
the parameter required to resolve the puzzle θss ≈ (0.35GeV )−2, exceeds
the limit obtained for this parameter from various studies on eH Lamb
shift. For space-time non-commutativity, the value θst ≈ (14.3GeV )−2

has been obtained and it is in agreement with the limit determined by
Lamb shift spectroscopy in eH . We have also found that this value fills
the gap between theory and experiment in the case of µD and improves
the agreement between theoretical and experimental values in the case of
hydrogen-deuterium isotope shift.

KeyWords: Non-Commutativity; H-Like Atoms; Proton Radius
PACS: 02.40.Gh, 67.63.Gh, 31.30.jr

1 Introduction

Historically, experimental spectroscopy was the perfect test for any theory hav-
ing any connection with matter and it played the leading role in calibrating the
values of physical constants. But lately, it has reached such precision that it
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accessed the role of indicator of new theories; and last experience on the Lamb
shift in muonic hydrogen [1] is the perfect example.

The discrepancy between these experimental results rµH = 0.84169(66)fm
and those extracted from electronic hydrogen or elastic electron-proton scatter-
ing and recorded in CODATA reH = 0.8775(51)fm [2] (The values are at 7σ
variance with respect to each other) has had an impact in the whole scientific
community and this raised many questions about the cause of such disagree-
ment.

The experimental methods used to obtain the two results are very elaborated.
This is why many studies have investigated how to explain this difference and
to reconcile the two results by trying to rectify the theory. But the difference
between the two experiments remains a puzzle until now and especially after
being reinforced recently with a more accurate value rµH = 0.84087(39) [3].

Non-perturbative numerical computations of the Dirac equation confirmed
the validity of perturbation methods used to compute the radius [4]-[5]. No
significant QED correction has been found yet, which would explain the discrep-
ancy [6]-[7]. Using electron scattering experiments, [8] found that data rules out
values of the third Zemach moment large enough to explain the puzzle. Three-
body physics does not solve the problem as demonstrated in [9]. Constraints
from low energy data disfavor new spin-0, spin-1 and spin-2 particles as an ex-
planation [10]. There are some claims that proton polarizability contribution
in the Lamb shift may explain the discrepancy because it is proportional to
the lepton mass to the fourth power [11]-[12]. These effects could be probed
in scattering experiment planned to run at Paul Scherrer Institute (PSI). For
more information about the different approaches to the problem, see references
[6]-[13]-[14]-[15].

Because Pohl et al. used an indirect method to calculate rµH that involves
comparing the frequency measured experimentally with that given theoretically
according to the radius [1]:

∆(2P1/2 → 2S1/2)

meV
= 206.0573(45)− 5.2262

r2p
fm2

+ 0.0347
r3p
fm3

(1a)

∆(2P3/2 → 2S1/2)

meV
= 209.9779(49)− 5.2262

r2p
fm2

+ 0.0347
r3p
fm3

(1b)

we propose, in this work, to modify the precedent theoretical expressions of
the transition frequency by incorporating the corrections induced by the non-
commutative structure of space-time.

The idea of taking non-commutative space-time coordinates dates from the
thirties of last century. It had as objective to avoid infinities in Coulomb po-
tentials (gravitation & electricity) by introducing an lower bound for the mea-
surement of length. Despite the fact that the concept was suffering from some
problems with unitarity and causality, the theory evolved from the mathemat-
ical point of view, especially after the work of Connes in the eighties of last
century [16].

In 1999, the work of Seiberg and Witten on string theory [17] has aroused
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new interest in the theory. They showed that the dynamics of the endpoints of
an open string on a D-brane in the presence of a magnetic back-ground field is
described by a theory of Yang-Mills on a non-commutative space-time.

Today, we find non-commutativity in various fields of physics such as solid
state physics, where it was shown that is the framework in which Hall con-
ductivity is quantized [18] and that it is the proper tool replacing Bloch’s the-
ory whenever translation invariance is broken in aperiodic solids [19]. In fluid
mechanics, non-commutative fluids are introduced by studying the quantum
Hall effect [20] or bosonization of collective fermion states [21]. There is also
some connection with quantum statistical physics [22], and it is also an in-
terpretation of Ising-type models [23]. One can even find a manifestation of
the non-commutativity in the physiology of the brain, where non-commutative
computation in the vestibulo-ocular reflex was demonstrated in a way that is
unattainable by any commutative system [24]. [25] is an excellent reference for
the different manifestations and applications of non-commutative field theory.

The theory is a distortion of space-time where the coordinates xµ become
Hermitian operators and thus do not commute:

[xµnc, x
ν
nc] = iθµν ;µ, ν = 0, 1, 2, 3 (2)

The nc indices denote non-commutative coordinates. θµν is the parameter
of the deformation and it is an anti-symmetric real matrix. We distinguish two
types of non-commutativity; the first one is the space-space case, where the
deformation is introduced between the spatial coordinates only, and the second
is when the spatial coordinates commute with one another but not with time
coordinate and it is noted space-time case. For a review, one can see reference
[26].

In the literature, there are a lot of studies on hydrogen atom in non-commutativity.
For space-space non-commutativity, we cite [27] [28] [29] [30]. For the space-time
case, one can see [31] [32] [33].

We have found in [31] and [32], that the corrections induced by non-commutativity
on the spectrum of the hydrogen atom are proportional to the lepton mass to
the third power (the result is confirmed by [33]), and this is exactly the shape of
the corrections induced by the nuclear size as demonstrated in [34] [35]. We will
apply our result to the muonic hydrogen, and we will incorporate therein the ef-
fects of the finite mass of the nucleus. We start by computing the corrections to
the energies in both space-space and space-time cases of non-commutativity us-
ing perturbation methods in the Dirac theory of two particles systems. Then we
compare to the difference between theoretical and experimental results obtained
in µH experience. This allows us to obtain values of the non-commutative pa-
rameter that resolve the puzzle. Then we will discuss the possible effects of these
corrections on the Lamb shift of muonic deuterium µD and on the difference
between the radii of the proton and deuteron via the 2S − 1S transition.
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2 Coulomb Potential in Non-Commutative Space-

Time

We start by rewriting (2) for the two versions to consider of the non-commutativity:

[

xjst, x
0
st

]

= iθj0 (3a)
[

xjss, x
k
ss

]

= iθjk (3b)

st subscripts are for space-time case and ss ones are for space-space case. The
0 denotes time and Latin indices are used for space coordinates. To solve these
relations, we follow [27] [28] [31] [32] and choose the Bopp shift formulation of
the solutions [36]; we write:

xjst = xj − iθj0∂0 (4a)

xjss = xj − i

2~
θjk∂k (4b)

The usual coordinates of space xj satisfy the usual canonical permutation rela-
tions and time x0 is unchanged in both cases.

We are dealing with the stationary quantum equations, and this allows us
to consider the energy as a constant parameter. The kinetic energy does not
change since it depends on the momentum that remains unchanged, thus we take
the Coulomb potential and construct its non-commutative image. To achieve
this, we have to write the expression of r−1

nc , where nc denotes the two cases
considered here:

1

rnc
= (‖−→r +−→̺

nc‖)−1
=
(
∑

xjnc · xjnc
)−1/2

(5)

−→̺
nc is the non-commutative correction of position vector. We make the develop-

ment in series and because of the smallness of the non-commutative parameter,
as one can see from the bounds given in the literature [26], we restrict ourselves
to the 1st order in θ and neglect the higher order terms [27] [31]:

r−1
st =

(

1 + i
∂0
−→r · −→θ st

r3
+O(θ2)

)

(6a)

r−1
ss =



1 +
i

2

(−→r ×−→
∂
)

· −→θ ss

r3
+O(θ2)



 (6b)

We have used the vectorial notation:

−→
θ st ≡

(

θ1st, θ
2
st, θ

3
st

)

; θjst = θj0 (7a)

−→
θ ss ≡

(

θ1ss, θ
2
ss, θ

3
ss

)

; θjk =
1

2
εjklθlss (7b)

−→
∂ ≡ (∂1, ∂2, ∂3) (7c)
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Thus, one can write the non-commutative Coulomb potential (up to the 1st
order θ) as follows:

Vst(r) = −Ze
2

r
− Ze2E

~

−→r · −→θ st

r3
+O(θ2st) (8a)

Vss(r) = −Ze
2

r
− Ze2

4~

−→
L · −→θ ss

r3
+O(θ2ss) (8b)

where we have used the fact that i∂0ψ = Hψ = (E/~)ψ and −→r × i~
−→
∂ =

−→r ×−→p =
−→
L the orbital momentum.

An adequate choice of the parameters is
−→
θ nc = θr0−→r /r = θnc

−→r /r. The
writing is similar to that in [37] for space-space non-commutativity and in [31]
and [38] for space-time case. The choice made in this paper allows us to write
the non-commutative Coulomb potential as:

Vst(r) = −Ze
2

r
− Ze2Eθst

~

1

r2
+O(θ2st) (9a)

Vss(r) = −Ze
2

r
− Ze2(

−→
L · −→θ ss)

4~

1

r3
+O(θ2ss) (9b)

It was indicated in [31] that the effect of space-time noncommutativity (9a)
is similar to the effect of an electric field of a radial dipole centered on the
proton. Similarly, in [30], the effect of space-space noncommutativity (9b) was
presented as equivalent to the effects of magnetic field or spin.

Now we can compute the corrections induced by this additional term using
perturbative methods in both versions of non-commutativity.

3 Corrections of the Dirac Energies

We write the Dirac equation (αi = γ0γi and γµ are the Dirac matrices):

i~∂0 = Hψ = (−→α · −→p ) +mγ0 + eA0 (10)

After coordinates deformation, we employ the standard Dirac equation but

with the non-commutative Coulomb potential A
(nc)
0 = −Ze /rnc, so we get:

eA
(st)
0 = −Ze

2

rst
= −Ze

2

r
− Ze2Eθst

~

1

r2
+O(θ2st) (11a)

eA
(ss)
0 = −Ze

2

rss
= −Ze

2

r
− Ze2(

−→
L · −→θ ss)

4~

1

r3
+O(θ2ss) (11b)

As mentioned before, we restrict ourselves to the 1st order in θ. The Hamilto-
nian can now be expressed as:

H = H0 +Hnc = (−→α · −→p ) +mγ0 − Ze2/r +∆Hnc (12)
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∆Hnc is the non-commutative correction to the usual Dirac Hamiltonian H0:

∆Hst = −Ze2 (E/~) θstr−2 (13a)

∆Hss = −Ze2(−→L · −→θ ss/4~)r
−3 (13b)

The smallness of the parameter θ allows us to consider noncommutative
corrections with perturbation theory; to the 1st order in θ, the corrections of
the eigenvalues are:

∆Enc = 〈∆Hnc〉 = 〈Ψ(−→r ) |∆Hnc|Ψ(−→r )〉 (14)

where the Ψ(−→r ) are the eingenstates of the Dirac Hamiltonian for Coulomb
potential.

Because the space-time correction is central while space-space one is not

(this is due to the presence of the
−→
L operator in ∆Hss (13b)), we will treat the

two cases separately.

3.1 1st Order Corrections in Space-Time Non-Commutativity

To compute the corrections (14) with ∆Hnc given by (13a) and because all the
parameters are constants except the coordinate r, we have:

∆Est = 〈∆Hst〉 = −Ze2 (E/~) θst
〈

Ψ(−→r )
∣

∣r−2
∣

∣Ψ(−→r )
〉

(15)

We can use the expression of the Ψ(−→r ) from the literature as done in [30],
or employ the recurrence relations given in [39] as we have done in [31]. The
obtained mean value for r−2 is:

〈

1

r2

〉

=
2κ (2κε− 1)

(

1− ε2
)3/2

Zα
√
κ2 − Z2α2 [4 (κ2 − Z2α2)− 1]

(mc

~

)2

(16)

where a0 = ~
2/me2 is the 1st Bohr radius and ε = E/mc2; E is the Dirac

energy:

En,j = mc2

{

1 + Z2α2

[

(n− j − 1/2) +

√

(j + 1/2)2 − Z2α2

]−2
}−1/2

(17)

α = e2/~c is the fine structure constant and j = l± 1/2 is the quantum number

associated to the total angular momentum
−→
j =

−→
l + −→s . The number κ is

giving by the two relations κ = − (j + 1/2) if j = (l + 1/2) and κ = (j + 1/2)
if j = (l − 1/2).

We see that through κ in
〈

r−2
〉

, non-commutative corrections removes the
degeneracy j = l + 1/2 = (l + 1) − 1/2 and acts like the Lamb shift and the
energy depends now on (n, j, l), unlike the usual Dirac energies in (17). The
equivalence between the two levels of l for the same j in (17) is accidental and
is due to the Coulomb potential which is a special case. The additional term
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in r−2 coming from non-commutativity breaks the symmetry and induces the
differences found.

We consider in this study the effects of the finite mass of the nucleus, as
we will discuss electronic and muonic atoms, where the reduced mass varies by
a factor reaching 186 for hydrogen and 196 for the deuteron. To achieve this,
we use the solution for two particles Dirac theory [40] and write the corrected
Dirac energies as a shift of the usual ones:

En,j = mc2

{

1 +
1

1 + η

[

1

sqr
− 1

]

− η

2 (1 + η)
3

[

1

sqr
− 1

]2
}

(18)

Where η = m/MN is the ratio between the orbiting particle mass m and the
nucleus one MN and sqr is the square expression in usual Dirac energies (17):

sqr =

√

1 + Z2α2

[

(n− j − 1/2) +

√

(j + 1/2)
2 − Z2α2

]−2

(19)

One retrieves (17) by putting η = 0 in (18).
We use the shift (18) in the expression of

〈

r−2
〉

when computing the non-
commutative corrections to the energies and thereby we generalize the recur-
rence relations of [39] for the case of a relativistic two-particle system; the result
writes:

∆E
(st)
n,j± = f (st)(n, j±, Zα, η)

(

m3Ze2c4/~3
)

θst (20)

Here f (st)(n, j±, Zα, η) is a dimensionless coefficient dependent on the parame-
ters within the parentheses (j± means j = l± 1/2). To give an overview of this
dependence, we develop its expression according to Zα, and we limit ourselves
to the 4th order:

f
(st)
j+ = −Z2α2

(1+η)3/2jn3

[

1 +
(

6j2+6j+1
j(j+1)(2j+1)2

+ 3
(2j+1)n − 9η2j+26ηj+9η2+24η+20j+18

8(1+η)2(j+1)n2

)

Z2α2
]

(21a)

f
(st)
j− = −Z2α2

(1+η)3/2(j+1)n3~3

[

1 +
(

6j2+6j+1
j(j+1)(2j+1)2

+ 3
(2j+1)n − 9η2j+26ηj+2η+20j+2

8(1+η)2jn2

)

Z2α2
]

(21b)

When putting η = 0 and Z = 1 in (20), (21a) and (21b), we recover the results
of [31].

This concludes our study of the space-time case.

3.2 1st Order Corrections in Space-Space Non-Commutativity

For the space-space case and as mentioned before, the corrections are no longer
central (13b) and we must use the full expression of the spinors Ψ(−→r ) to perform
the computations (we cite for example [41] and [42]). The method is very time
consuming but the work has already been done in [28] and [30]. For the level
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in which we are interested in this study (n = 2), the corrections were found
proportional to m3c4Z4α4/~2; we write their values from [28] (Z = 1):

∆E
(ss)
2S1/2

= 0 (22a)

∆E
(ss)
2P1/2

= ±6.75× 1019θsseV/m
2 (22b)

∆E
(ss)
2P3/2

= ±
(

ml +
1
2

)

6.75× 1019θsseV/m
2 (22c)

where θss is in m2 and ml = 0, 1.
The sign± comes from the fact that ∆Hss removes the degeneracy according

to the azimuthal quantum number ml via the operator
−→
L , and the 1/2 arises

because the Ψ(−→r ) for Dirac equation, are eingenstates of the operator
−→
J =−→

L + 1
2diag(

−→σ ,−→σ ) instead of
−→
L .

We propose here to give another method to estimate the corrections in the
space-space case. We start as done in [28] and [30], by writing:

〈∆Hss〉 = −Ze
2

4~

〈

Ψ(r)
∣

∣r−3
∣

∣Ψ(r)
〉

〈

Ψ(ϑ, ϕ)
∣

∣

∣

−→
L · −→θ ss

∣

∣

∣Ψ(ϑ, ϕ)
〉

(23)

The term in angular coordinates is a matrix, when diagonalized gives a con-

tribution proportional to θss =
√

θjθ
j , and the proportion is a simple fraction

noted a, so we approximate this term to aθss. We justify this by noting that
when neglecting the fine-structure constant α compared to unity, the Ψ(−→r ) in
Dirac equation becomes precisely the normalized Schrödinger eigenfunction pro-
vided we express the parameter κ in terms of l in the relativistic functions [41]
and this gives the parameter ±

(

ml +
1
2

)

in ∆E(ss).
For the radial term, and as done in space-time case, we use recurrence rela-

tion from [39]:

〈

1

r3

〉

=
2
[

3κ2ε2 − 3κε−
(

κ2 − Z2α2
)

+ 1
] (

1− ε2
)3/2

√
κ2 − Z2α2 [(κ2 − Z2α2)− 1] [4 (κ2 − Z2α2)− 1]

(mc

~

)3

(24)

with the same notations as in (16).
In this case too, we consider the effects of the finite mass of the nucleon.

When using the shift (18) in the expression of
〈

r−3
〉

, the non-commutative
corrections to the energies are:

∆E
(ss)
n,j± = f (ss)(n, j±, Zα, η)

(

m3Ze2c3/~3
)

aθst (25)

with the same notations as in space-time case. The approximate solution of the
coefficient f is:

f
(ss)

j+ = (1+η)−3/2Z3α3

j(2j−1)(2j+1)n3

[

1 +

(

48j2+36j2−8j−3
j(2j−1)(2j+1)2(2j+3)

+ 3
(2j+1)n

−3 6η2j+20ηj+9η2+22η+16j+16
8(1+η)2(2j+3)n2

)

Z2α2

]

(26a)

f
(ss)
j− = (1+η)−3/2Z3α3

(j+1)(2j+1)(2j+3)n3

[

1 +

(

48j2+108j2+64j+7
(j+1)(2j−1)(2j+1)2(2j+3)

+ 3
(2j+1)n

−3 6η2j+20ηj−3η2
−2η+16j

8(1+η)2(2j−1)n2

)

Z2α2

]

(26b)
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To justify our approach, we apply it to the level n = 2 of the hydrogen and
we find (Z = 1):

∆E
(ss)
2S1/2

= ±9.11531× 10−4
(

m3e2c3/~3
)

aθss (27a)

∆E
(ss)
2P1/2

= ±5.05790× 10−9
(

m3e2c3/~3
)

aθss (27b)

∆E
(ss)
2P3/2

= ±4.04467× 10−9
(

m3e2c3/~3
)

aθss (27c)

For the 2S1/2 state, we put a = 0 because the
−→
L operator vanishes in this

state and we retrieve the result of [28] here. For the P -states, comparing our
results to those coming from [28] gives:

a
(

2P1/2

)

= 0.53& a
(

2P3/2

)

= 0.33− 1.00 (28)

These values show that our method gives results very close to the exact
values from [28] and [30] but it is much less tedious. It also has the advantage
of providing a general formulation of the results, which is not the case of the
pre-cited studies.

4 Non-Commutativity in H-Like Atoms

Now we apply the expressions of non-commutative corrections found in the pre-
vious section on hydrogen and deuterium whether electronic or muonic, with
the aim to find an explanation for the different results of aforementioned ex-
periments. We will start with the result that has generated the more debates
and that relates to the muonic hydrogen. Then we will discuss some aspects
concerning the radii of proton and deuteron and atomic spectroscopy through
muonic deuterium, electronic hydrogen and electronic deuterium.

4.1 Muon Hydrogen and Non-Commutativity

In this section, we will apply our study of both space-time and space-space cases
of non-commutativity to the muon hydrogen and especially to the transitions
used to compute the charge radius of the proton (1a) and (1b). Using the
value of the charge radius given by CODATA 2010 0.8775(51)fm [2], the results
obtained for the precedent transitions differ from those found in experiments on
muonic hydrogen [1], by an amount equal to 0.32meV . Although the difference
is very small, it is significant given the precision of the experiments used.

We compute the non-commutative corrections to these transitions for the
space-time case using (16) (17) (18) and (19); we find :

∆E
(st)
2P1/2

−∆E
(st)
2S1/2

= 6.51015× 1016
(

θsteV
2
)

eV (29a)

∆E
(st)
2P3/2

−∆E
(st)
2S1/2

= 6.51044× 1016
(

θsteV
2
)

eV (29b)
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For the space-space type, we use (19) (23) (24) and (25):

∆E
(ss)
2P1/2

−∆E
(ss)
2S1/2

= 3.93686× 1013
(

θsseV
2
)

eV (30a)

∆E
(ss)
2P3/2

−∆E
(ss)
2S1/2

= 2.96894× 1013
(

θsseV
2
)

eV (30b)

We have chosen a
(

2S1/2

)

= 0, a
(

2P1/2

)

= 0.5& a
(

2P3/2

)

= 1 to get back the
results of [28].

Comparing these results to the deviation 0.32 × 10−3eV , we compute the
values of the parameter of non-commutativity that is required to fill the gap:

∆E
(st)
2P1/2

−∆E
(st)
2S1/2

= 0.32meV =⇒ θst = (14.286GeV )
−2

(31a)

∆E
(st)
2P3/2

−∆E
(st)
2S1/2

= 0.32meV =⇒ θst = (14.286GeV )−2 (31b)

∆E
(ss)
2P1/2

−∆E
(ss)
2S1/2

= 0.32meV =⇒ θss = (0.305GeV )
−2

(31c)

∆E
(ss)
2P3/2

−∆E
(ss)
2S1/2

= 0.32meV =⇒ θss = (0.351GeV )
−2

(31d)

The value obtained in the case of space-space non-commutativity θss ≈
(0.3GeV )

−2
exceeds the limit obtained for this parameter from studies on eH

Lamb shift θss ≤ (0.6GeV )
−2

[33]. If we use this limit to compute the radius,
we find 0.86409fm which is outside the experimental limits for rµH [1] and [3];
So this effect is ruled out.

For the case of the space-time non-commutativity, the value θst ≈ (14.3GeV )
−2

is obtained and it is in agreement with the limit θst ≤ (6GeV )
−2

determined by
Lamb shift spectroscopy in eH [33]. It should also be noted that the corrections
are the same for both levels 2P1/2 and 2P3/2; this is in agreement with the two
relations (1a) and (1b), where the terms in r are equal for both transitions.

This ends our quantitative analysis of non-commutative effects on the spec-
trum of muonic hydrogen and on the charge radius of the proton.

4.2 Lamb Shift in Muon Deuterium

Now, we study the consequences of the noncommutative correction found for
µH on the muon deuterium µD. The 2P − 2S Lamb shift has been extensively
studied to see if the results obtained with µH are confirmed by this new muon
system. The theoretical value of this transition depends on the deuteron radius
and is given by the formula [43]:

∆(2P1/2 → 2S1/2)

meV
= 230.2972(400)− 6.10940

r2

fm2
+ 0.0448

r3

fm3
(32a)

The Mainz collaboration has studied the Lamb-shift of µD and found that
the experimental value differs from the theoretical one by 0.383meV [44] (and
references therein). Although the difference is only 3σ, there is scope for study
in this phenomenon. Several studies have looked at this problem and especially
on the possible correction to the two-photon exchange (proportional to r3) to
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find a solution, but without conclusive results until now [45] [46] (For a review
one can see [47]).

We propose to solve this problem by using the same procedure used to µH .
To do this, we calculate the non-commutative correction to the transition for
space-time case. From (20), (21a) and (21b), the non-commutative correction
to the Lamb shift in hydrogen-like atoms is given with the general expression:

∆E
(st)
n,j (Lamb shift) = ∆E

(st)
n,j=(l+1)−1/2 −∆E

(st)
n,j=l+1/2

= 1
(1+η)3/2

m3c4e2Z3α2θst
j(j+1)n3~3

[

1 +
(

6j2+6j+1
j(j+1)(2j+1)2

+ 3
(2j+1)n − 9η2+22η+16

8(1+η)2n2

)

Z2α2
]

(33)

For the 2P1/2 → 2S1/2 case in µD, we take η = mµ/MD, n = 2 and j = 1/2;
we find:

∆E
(st)
2,1/2(LS) = 7.03726× 1016

(

θsteV
2
)

eV (34)

The same value is obtained when using the exact expressions (20). Putting

the value θst ≈ (14.3eV )
−2

(31a) obtained from µH in (34), we get ∆E(st) =
0.348meV ; this value is approximately equal to the discrepancy between the-
oretical and experimental results 0.383meV . We see that the same parameter
corrects the two observed discrepancies in both µH and µD.

Be noted that the value 0.348meV in µD is very close the value 0.32meV
that counts for µH and this is easily explained by the fact that the difference

between the two systems comes from the factor m3 (1 + η)
−3/2

in (33) and the
ratio of the numerical quantities is 0.93 ≈ 1.

4.3 2S-1S Transition in Hydrogen and Deuterium

It should be noted that the difference between the radii of proton and deuteron
is a very well-defined parameter using the 2S − 1S transition which is one of
the most accurate measured quantities [48]. This transition is used because the
effects due to nuclear size (ns) are, to the first order, nonzero only for these
states [34]:

∆Ens =
2

3

µ3c4Z4α4

~2n3

〈

r2
〉

δl0 (35)

We see that knowing the reduced masses µ allows us to accurately evaluate radii
of nuclei from high precision spectroscopy.

The most recent measurement of the hydrogen-deuterium isotope shift is
[49]:

∆fex(H −D) = f1S−2S
H − f1S−2S

D = 670994334606(15)Hz (36)

and the most recent theoretical evaluation is [50]:

∆fth(H −D) = f1S−2S
H − f1S−2S

D = 670994346(23)kHz (37)

Both values agree well within the limits given.
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We will evaluate the contribution coming from space-time non-commutativity
to this shift. We use the relations from (15) to (20), to compute the non-
commutative corrections to the transition in both hydrogen and deuterium:

∆E
(st)
2S (H)−∆E

(st)
1S (H) = hf1S−2S

H = 9.06690× 1010
(

θsteV
2
)

eV (38a)

∆E
(st)
2S (D) −∆E

(st)
1S (D) = hf1S−2S

D = 9.07060× 1010
(

θsteV
2
)

eV (38b)

Inserting the value of the parameter θst found for µH (31a) in these ex-
pressions, we find the non-commutative correction to the hydrogen-deuterium
isotope shift:

∆f
(nc)
th (H −D) = f1S−2S

H − f1S−2S
D = 275.488Hz (39)

This contribution don’t fill the gap of 12kHz between ∆fth and ∆fex, but it
improves slightly the agreement between the two values. This confirms the fact
that there are no doubts about the results of experiments on eH spectroscopy
because they are so accurate and one has to look the side of muonic systems.

5 Conclusion

In this work, we studied the corrections induced by a non-commutative structure
of space-time, in its two versions space-space and space-time, on the spectrum
of hydrogen-like atoms. We have applied our study to the muonic hydrogen and
this with the aim to solve the puzzle of proton radius, because we think that
the experiments used to study this phenomenon are so developed that we can
not doubt of their results, and therefore one must look on the side of theory of
atomic spectroscopy used to compute the radius.

In this study, we considered the effects of the mass of the nucleus of the
non-commutative corrections and thus we have improved previous works in this
area. This allowed us to consider the difference caused by changing the nucleus
(from proton to deuteron) in addition to that which occurs when changing the
orbiting particle (from electron to muon).

It should be noted that the effects of the nucleus shape on the energy levels of
the atom are proportional to the third power of the mass of the orbiting particle;
this is easily understood by the fact that the Bohr radius (a0 = ~

2/me2) is
inversely proportional to the mass and thus the particle is that much nearer
the nucleus, that its mass is greater; and this makes it more sensitive to these
effects.

We have demonstrated that the effects of non-commutativity are also pro-
portional to the third power of the mass of the particle because it distorts the
Coulomb potential and adds a term proportional to r−2 in space-time case and
to r−3 in space-space case. It is for this reason also that the effects decreases
with increasing values of quantum numbers as can be seen in the different re-
lations of the spectrum corrections (because the term r−n with n > 1 is very
steep for small values of r). This is why we use this theory to explain the puzzle

12



because its effects are different depending on whether it is applied to muonic
hydrogen or electronic hydrogen. The shifts in the spectrum are more noticeable
in muon H than in ordinary ones, and this explains the fact that experiments
on µH spectroscopy give results that are different from those obtained with eH .

In the case of space-space non-commutativity, the parameter required to
resolve the puzzle is θss ≈ (0.35GeV )

−2
. This value exceeds the limit obtained

for this parameter from studies on eH Lamb shift θss ≤ (0.6GeV )−2 [33]. If we
use this limit to compute the radius, we find 0.86409fm which is outside the
experimental limits for rµH [1] and [3]. Another problem arises with in this case;
it is the ± sign in the corrections (due to the presence of the azimuthal quantum
number in their expressions). This sign means that the corrected value of the
radius ranges from 0.84169fm to 0.91192fm in violation of µH experiences.

In the case of the space-time non-commutativity, the value θst ≈ (14.3GeV )
−2

has been obtained and it is in agreement with the limit determined by Lamb
shift spectroscopy in eH θst ≤ (6GeV )−2 [33]. It was also found in this case,
that the corrections are the same for both levels 2P1/2 and 2P3/2 although we
found that corrections remove the degeneracy of the Dirac energies with respect
to the total angular momentum quantum number j = l + 1/2 = (l + 1) − 1/2
(non-commutativity acts like the Lamb Shift here). This is in agreement with
the two relations (27a) and (27b), where the terms in r are equal for both tran-
sitions. This is not true for the space-space case because the corrections of the
two levels differ from one another (29a) (29b). We say that this is a consequence
of the fact that the correction term to the Coulomb potential is proportional
to r−2 in the space-time case, and so as we have previously mentioned in [31],
we assimilate it to the field of a central dipole. In other words, the action of
space-time non-commutativity is equivalent to consider the extended charged
nature of the proton in the nucleus, which is the principal characteristic studied
in µH experiments.

When applying the result obtained from the study of µH in µD, we found a
correction of 0.348meV which is almost exactly equal to the difference between
theory and experiment for this system. The very close values of the corrections
in these two systems µH and µD are easily explained by the fact that the ratio
between the reduced masses, of the two is 0.95 ≈ 1 (The disagreements between
theory and experiment in both systems are almost equal).

Using the same result coming from µH for the eH-eD isotope shift, the
correction found improves the agreement between theoretical and experimental
results (which was already excellent). The same reasoning as above is used, and
we say that the corrections in electronic systems either eH or eD are infinitely
small compared to those of muonic systems; the ratio between the reduced
masses of the two is ≈ 10−7.

Eyes are now turned to the results of experimental on µp scattering and µHe
spectroscopy to see whether the phenomenon is spectroscopic or is it due to the
nature of the particles. On the side of electronic systems, there is practically no
doubt on their veracity; the radius of the proton was even calculated in a model
independent way from ep scattering [51] [52] and the results confirm CODATA
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value.
It was reported in our work [31], that the limit on the parameter θst ≈

(1TeV )
−2

, and so our result here is greater than the latter; however it was

pointed out to us that such a limit (θst ≈ (1TeV )
−2

) should not only be esti-
mated according to experimental precision calculations but rather on the dis-
agreement between experiment and theory, which requires a correction of the
limit of [31] and this is what is done in this work for the muon hydrogen.

We can also evoke that the proton raises other questions about its properties
in addition to the one discussed in this article and we can mention as an example
the origin of its spin or what is called ”spin crisis” in [53] or ”proton spin puzzle
”in [54].
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