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Abstract We present an exact solution of the one-dimensional modified Klein Gordon
and Duffin Kemmer Petiau (for spins 0 and 1) equations with a step potential in the
presence of minimal length in the uncertainty relation, where the expressions of the new
transmission and reflection coefficients are determined for all cases. As an application,
the Klein paradox in the presence of minimal length is discussed for all equations.
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1 Introduction

Recently in quantum mechanics, there has been increasing interest in studying prob-
lems characterized by deformed commutation relations, including those concerning
the minimal length uncertainty relation. The idea behind this deformation of the mini-
mal length is to take into account the effects of quantum fluctuations of the gravitational
field to integrate the theory of gravitation in quantum mechanics. One implication of
this unification is the fact of introducing a minimum observable length, of the order of
the Planck distance, in order to absorb the infinities vitiating the standard quantum the-
ory. This minimal length uncertainty is seen as a distortion of the standard Heisenberg
algebra by adding small corrections to the canonical commutation relations. This was
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motivated by string theory [1–6], quantum gravity [7], non-commutative geometry [8]
and black hole physics [9,10].

If we look at the level of the nonrelativistic quantum mechanics, there has been sev-
eral success in solving such problems. In this level, we cite for example the following
potentials: the harmonic oscillator was solved exactly [11–19] and perturbatively [20],
the Coulomb potential [21–25], the inverse square potential [26], the one-dimensional
box [27], the Pauli-Hamiltonian [28] and finally the time-dependent linear potential
[29].

But if we look to the relativistic domain, there was only few attempts to study
the deformed theory by the presence of a minimal length. these works were on the
generalized Dirac equation [30], the Dirac oscillator [31–33], the (1 + 1)-dimensional
Klein–Gordon (KG) equation with mixed vector-scalar linear potentials [34] and the
Duffin–Kemmer–Petiau (DKP) equation of the harmonic oscillator [35,36].

On the other hand, it is well known that the treatment of the diffused particle problem
by a potential step or a barrier in the relativistic quantum mechanics leads us, when
the potential is strong, to a paradoxical situation, called the Klein Paradox. This latter
was first discussed by Oskar Klein in 1929 [37], when applying the Dirac equation to
the electrons incident on a large potential step. At this stage, we note that, the study
of this kind of problem for the other relativistic equations, by considering potentials
with sharp boundaries, is very required since it enables us to cognize the existence of
antiparticle and the qualitative explaining of phenomenons of particle pair creation.
As the solution of the Dirac equation for high square barrier [38], Klein paradox of
two-dimensional Dirac electrons in circular well potential in [39], KG equation with
a step potential in minimal coupling [40], Klein paradox for bosons [41] and DKP
equation with a square step potential [42] where the authors have shown that the Klein
paradox does exist in the DKP theory.

The purpose of the present work is to solve exactly the one dimensional modified
KG and DKP equations for spins 0 and 1 with a step potential, in order to study the
Klein paradox in the bosonic theory with the presence of minimal length. We note
that this problem was already discussed by Ghosh [43] in the case of the modified
Dirac equation with a new kind of generalized uncertainty principle (GUP), where the
energy band structures were determined to explain the nature of the Klein paradox.

The outline of this paper is as follows: In Sect. 2, we give some reviews of a
minimal length relation. In Sect. 3, we expose an explicit calculation relative to the
one-dimensional KG equation with a step potential in the context of minimal length, in
the position space representation, where the α-dependent transmission and reflection
coefficients are calculated. Then, the Klein paradox for spinless particles is resolved
and its application shows that the strength of the potential can have a great effect on
the existence of antiparticle and the explaining of phenomenon of pair production.
Following the same study we determine in Sect. 4 the exact solutions of the modified
DKP equation with the presence of the step potential in one-dimension relatively to
particles of spin 1 and spin 0. In both cases, the exact solutions are obtained. Then,
the Klein paradox which exists also for the deformed DKP theory is resolved. Some
concluding remarks are given in the last section.
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2 Review of a Minimal Length Relation

In the context of the deformed quantum mechanics on the basis of modified com-
mutation relations between position and momentum operators, the usual Heisenberg
algebra in one-dimensional case is renewed and changed to the so-called Generalized
Uncertainty Principle (GUP) which obeys the following canonical commutation rules
[44–47]

[X, P] = i h̄
(

1 + αp2
)

(1)

where α is a very small positive deforming parameter, which is generally expected to

be of the order of the Planck length in quantum gravity l p ∼
√

Gh̄
c3 = 10−33cm.

According to algebra (1) which implements the minimal length, we have the
deformed uncertainty relation which appears in perturbative string theory:

�X�P ≥ h̄

2

[
1 + α (�P)2

]
(2)

The relation (2) implies the appearance of a nonzero minimal length in positions
�Xmin = h̄

√
α.

From (1), the X and P are realized in momentum space as:

X = i
(

1 + αp2
)

∂p, P = p (3)

and in the position space, they act as:

X = x, P = −i∂x

(
1 − 1

3α∂2
x

)
(4)

Over the rest of paper we adopt natural units such that h̄ = c = 1.

3 Klein Paradox for the KG Equation

In this section we consider a one dimensional KG equation with a step potential V (x):

(
P2 + m2

)
� = (i∂t − V (x))2 � (5)

In order to treat the scattering of a KG particle of mass m and momentum P on the step
potential V (x) in the context of minimal length and in position space representation,
we use (4) and we propose that the quantum fluctuations effects of the gravitational
field are at order 1 in α.

(
2
3α∂4

x − ∂2
x + m2

)
� = (i∂t − V (x))2 � (6)

from these equations, we have the following continuity equation:

∂tρK G + ∂x JK G = 0 (7)
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The charge and the 1D current densities of the particle are defined as follows:

ρK G = i

2m

[
�∗ (∂t + iV (x))� − � (∂t − iV (x)) �∗] , JK G = J0K G + α J1K G

(8)
The current density JK G is characterized by an usual quantum mechanical expression
J0K G and an additional α-dependent term correction, which is due to the influence of
the space deformation:

J0K G = −i

2m

[
�∗∂x� − �∂x�

∗] (9a)

J1K G = i

3m

[(
�∗∂3

x � − �∂3
x �∗)−

(
∂x�

∗∂2
x � − ∂x�∂2

x �∗)] (9b)

At this stage, the modified time-independent KG equation in the presence of the step
potential V (x) becomes in the regions x < 0 and x > 0 respectively as follows:

(
− 2

3α∂4
x + ∂2

x + k2
1,2

)
ϕ1,2 = 0 (10)

with (the anzats � (x, t) = ϕ (x) exp (−i Et) has been used):

V (x) =
{

0 f or x < 0
V0 f or x > 0

and k1 =
√

E2 − m2, k2 =
√

(E − V0)
2 − m2 (11)

By a direct calculation, it is easy to obtain the following general solutions:

ϕ1 = Ci e
iki x + Cr e−iki x + Cl1ekl1 x + C �

l1 e−kl1 x (12a)

ϕ2 = C+
t eikt x + C−

t e−ikt x + Cl2 e−kl2 x + C �
l2 ekl2 x (12b)

with Ci,r , C±
t , Cl1,l2 and C �

l1,l2
are constant coefficients.

It is remarkable to note that the terms e−kl1 x and ekl2 x in (12a), (12b) becomes
infinite respectively at x → ∓∞. Except for C �

l1,l2
= 0 ( where the wave functions

C �
l1,l2

e∓kl1,l2 x → 0 are bounded). Consequently. Such a wave function which doesn’t
represent the scattering of a particle and none physical meaning doesn’t belong to the
solution (12a),(12b), the general solution becomes as follows

ϕ1 = Ci e
iki x + Cr e−iki x + Cl1ekl1 x (12c)

ϕ2 = C+
t eikt x + C−

t e−ikt x + Cl2 e−kl2 x (12d)

Expressions of wave vectors contain, as it should be, α-corrections:

ki,t =
√√√√ 3

4α

(√
1 + 8

3
αk2

1,2 − 1

)
, kl1,l2 =

√√√√ 3

4α

(√
1 + 8

3
αk2

1,2 + 1

)
(13a)
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and can be simplified by a Taylor expansion to the leading order in α:

ki,t = k1,2

(
1 − α

3
k2

1,2

)
, kl1 = kl2 =

√
3

2α
(13b)

However, the shape of the wave function can be tested; using the limit α → 0
in the Eq. (12c),(12d), we obtain the following wave function of the scattering KG
particle on the step potential V (x) of ordinary quantum mechanics in position space
representation

ϕ1 = Ci e
ik1x + Cr e−ik1x (14a)

ϕ2 = C+
t eik2x + C−

t e−ik2x (14b)

In order to show the energetic bands allowing the propagative or non-propagative
waves for this problem, we must know the nature of ki with respect to energy E , based
essentially on the study of the sign of values k2

i

(
or k2

t

)
in the expression (13b) which

can be divide the entire energy spectrum in five different regions as follows:

– For k2
i = 0

(
k2

t = 0
)

the particle encounters the standard forbidden band energy
within the range ±m (V0 ± m) and satisfies a new α-dependent limit values

E = ±
√

m2 + 3
2α

(
E = V0 ±

√
m2 + 3

2α

)
(the maximum positive and mini-

mum negative energy).
– For k2

i < 0
(
k2

t < 0
)

suggests a imaginary ki ( or kt )(damped mode) which cor-
responding a forbidden band according to the following three regions of the

energy spectrum: E < −
√

m2 + 3
2α

(
E < V0 −

√
m2 + 3

2α

)
, −m < E < m

(V0 − m < E < V0 + m) and
√

m2 + 3
2α

< E

(
V0 −

√
m2 + 3

2α
< E

)
.

– For k2
i > 0

(
k2

t > 0
)

suggests a real ki ( or kt )(propagative mode) which corre-
sponding a allowed band according to the following two regions of spectrum:

−
√

m2 + 3
2α

< E < −m

(
V0 −

√
m2 + 3

2α
< E < V0 − m

)
and m < E <

√
m2 + 3

2α

(
V0 + m < E < V0 +

√
m2 + 3

2α

)
.

In these bands energetic, one notes that apart from the standard forbidden band
within the range ±m, there are an additional forbidden bands which depends on defor-
mation parameter α, that does not allow the scalar particles to penetrate the strong step
potential region, we also note that this result is entirely similar to the result obtained
by Ghosh in the study of the Klein paradox for Dirac particle with the presence of
generalized uncertainty principle GUP which imply a minimum length and maximum
energy[43].

Now, for the first region x < 0. When we choose the incoming particles with E > 0
(k2

i > 0), the solution ϕ1contains an incoming plane wave Ci eiki x moving to the right

with a positive group velocity vg = d E/dki = ki

E
[
1− 4α

3 (E2−m2)
] which plays a crucial
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role in the classic description of the wave packet propagation, or energy (unlike to
the case of the phase velocity), a reflected wave Cr e−iki x that goes to the left with
a negative group velocity and an additional α-dependent term Cl1ekl1 x describing a
damping mode; the latter is entirely due to the modification of the standard Heisenberg
algebra.

In this region, the charge and current densities are calculated as follows:

ρ(i,r)K G = E

m

∣∣Ci,r
∣∣2 , J〈K G = JiK G + JrK G = ki

m

(
1 + 4

3
αk2

i

)(
|Ci |2 − |Cr |2

)

(15)
For the second region x > 0, we assume that there is no reflected wave since the
group velocity is the one of the moving wave packet (i.e. vg � 0). Therefore the ϕ2
solution must be an evanescent or a progressive wave according to the potential value
V0. Thence, one may distinguish four cases:

(a) for m < V0 < E − m: kt is real. If we choose kt > 0, the group velocity is
given by vg = d E/dkt = kt

(E−V0)
[
1− 4α

3

(
(E−V0)2−m2

)] and has the same direction

as the wave vector kt in this region. Thus the plane wave solution ϕ2 has a positive
direction (transmitted wave) only if C−

t = 0. Charge and current densities take
the forms:

ρ+
tK G

= (E − V0)

m

∣∣C+
t

∣∣2 , J+
tK G

= kt

m

(
1 + 4α

3
k2

t

) ∣∣C+
t

∣∣2 (16)

(b) for E − m < V0 < E + m: The wave number becomes purely imaginary kt =
±i |kt |. Then, according to ϕ2, there are exponentially decreasing solutions for the
waves C+

t e−|kt |x and C−
t e−|kt |x along x corresponding to a damping mode. At this

point, the conditions C±
t = 0 are necessary to avoid divergences in the current

densities J±
t of the transmitted particle when x → ∞.

ρ±
tK G

= (E − V0)

m

∣∣C±
t

∣∣2 e−2|kt |x , J±
tK G

= 0 (17)

(c) for E +m < V0 < E +
√

m2 + 3
4α

: kt assumes again real values. In this case, if we

choose kt < 0 the group velocity vg = kt

(V0−E)
[
1− 4α

3

(
(E−V0)

2−m2
)] has a positive

sign and the solution ϕ2 is a transmitted wave only if C+
t = 0. Charge and current

densities takes the following negative values:

ρ−
tK G

= (E − V0)

m

∣∣C−
t

∣∣2 , J−
tK G

= −kt

m

(
1 + 4α

3
k2

t

) ∣∣C−
t

∣∣2 (18)

(d) for E +
√

m2 + 3
4α

< V0 <

√
m2 + 3

2α
, we have the same results as the case a.

In the case c, we note that the solution C−
t e−ikt x describes a propagate wave of a

particle with a negative charge ρ−
t in the positive direction, which is equivalent to the
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motion of a particle having an negative energy subjected to the action of a potential
−V0. Consequently, the solution can be interpreted as a propagation of an antiparticle
that generates a negative charged current moving to the right of the x-axis.

At this stage, it is easy to calculate the transmission T ±
K G and reflection RK G

coefficients by using the definition of the current densities:

T ±
K G =

∣∣∣∣
J±

t

Ji

∣∣∣∣ = kt

ki

(
1 + 4α

3 k2
t

1 + 4α
3 k2

i

) ∣∣∣∣
C±

t

Ci

∣∣∣∣
2

, RK G =
∣∣∣∣

Jr

Ji

∣∣∣∣ =
∣∣∣∣
Cr

Ci

∣∣∣∣
2

(19)

On the other hand, the boundary conditions at x = 0 consist of four equations:

dnϕ1 |0= dnϕ2 |0, n = 0, 1, 2, 3 (20)

whose solutions are given for all previous cases as:

(a,d)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cr
Ci

= ki −kt
ki +kt

C+
t

Ci
= 2ki

ki +kt

(
1+ 2

3 αk2
i

1+ 2
3 αk2

t

)

C−
t

Ci
=0

, (b)

⎧
⎪⎪⎨
⎪⎪⎩

Cr
Ci

= (ki −i |kt |)2

k2
i +k2

t
C+

t
Ci

=0
C−

t
Ci

=0

, (c)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cr
Ci

= ki +kt
ki −kt

C+
t

Ci
= 0

C−
t

Ci
= 2ki

ki −kt

(
1+ 2

3 αk2
i

1+ 2
3 αk2

t

)

(21)
Transmission and reflection coefficients of the step potential can be easily reduced to:

(a,d)

⎧⎪⎪⎨
⎪⎪⎩

RK G =
∣∣∣ ki −kt

ki +kt

∣∣∣
2 =

(
k1−k2
k1+k2

)2 (
1 − 4α

3 k1k2
)

T −
K G =0

T +
K G = 4ki kt

|ki+kt |2 = 4k1k2
(k1+k2)

2

(
1+ α

3 (k1 − k2)
2)

, (b)

⎧⎪⎪⎨
⎪⎪⎩

RK G =
∣∣∣∣ (ki −i |kt |)2

k2
i+k2

t

∣∣∣∣
2

=1

T −
K G =0

T +
K G =0

,

(c)

⎧⎪⎪⎨
⎪⎪⎩

RK G =
∣∣∣ ki +kt

ki −kt

∣∣∣
2 =

(
k1+k2
k1−k2

)2 (
1 + 4α

3 k1k2
)

T −
K G = 4ki kt

|ki −kt |2 = 4k1k2
(k1−k2)

2

(
1+ α

3 (k1 + k2)
2)

T +
K G =0

(22)

In a, b andd, we have RK G + T +
K G = 1, while we get RK G − T −

K G = 1 in c. The
unitarity of this last case is still conserved, but only at the cost of a reflection coefficient
exceeding unity (RK G > 1). This shows that the number of reflected particles from
the potential barrier is greater than that of the incident ones. Accordingly, we can
conclude that the strong potential raises the GUP Klein paradox, by the existence of
the phenomenon of pair production, from the threshold potential V0 = 2m at x = 0.

4 Klein Paradox for the DKP Equation

Before starting the study of the deformed DKP equation, let us expose some useful
formulas. The one dimension DKP equation describing a scalar or a vector boson with
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a nonzero mass m in a step potential can be written as [48–56]:

[
β1 p + m

]
� (x, t) = β0 (i∂0 − V0)� (x, t) (23)

where (β1,β0) are the DKP matrices and all their properties are listed in [48–50,53–
56].

To derive the continuity equation in the context of minimal length, we write the
equation in the x-representation with the use of (4):

[
−iβ1

(
∂x − 1

3α∂3
x

)
+ m

]
� = β0 (i∂0 − V0)� (24)

From these equations, it is easy to define the adjoint spinor �̄ = �+
(

2
(
β0
)2 − 1

)

and it verifies the following adjoint equation:

i
(
∂x − 1

3α∂3
x

)
�̄β1 + m�̄ + (i∂0 + V0) �̄β0 = 0 (25)

In consequence, from Eqs. (24) and (25), we obtain the following expression:

∂0

(
�̄β0�

)
+ ∂x

[
�̄β1� − 1

3α
(
∂2

x �̄β1� + �̄β1∂2
x � − ∂x �̄β1∂x�

)]
= 0 (26)

We note that the first and second terms in (26) represent the continuity equation of the
usual one-dimensional DKP equation with a scalar potential and the third α-dependent
term represents the correction due to the presence of the minimal length. This is similar
to the case of non-commutative theory [57], where physical results depend on the space
deformation parameter [58–60].

From these equations, we write the following continuity equation:

∂tρDK P + ∂x JDK P = 0 (27)

where charge and 1D current densities of the DKP particle are defined as follows:

ρDK P = �̄β0�, JDK P = J0DK P + α J1DK P (28)

J0DK P = �̄β1�, J1DK P = −1
3

[
∂2

x �̄β1� + �̄β1∂2
x � − ∂x �̄β1∂x�

]
(29)

It is remarkable to note that the time-component J0DK P is not positive definite and may
be interpreted as a charge density; it is positive for positive-energy states and negative
for negative-energy ones [61].

In what follows, we use the 1D stationary equation describing a DKP particle in a
step potential with the presence of minimal length (we put � (x,t) = e−i Et �̃ (x)):

[
−iβ1

(
∂x − 1

3α∂3
x

)
+ m

]
�̃ = β0 (E − V0) �̃ (30)
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4.1 DKP Equation for Spin-One

In this section, it is obvious to note that the deformed DKP equation, as a relativistic
equation, is fundamentally related to that of KG. Indeed, as we can see it, the equations
of system (23) are not completely independent. The wave function �̃ (x)T has ten
components (ϕ, A, B, C) where A, B, and C are vectors of dimension (3 × 1). It can
be decomposed as: φT = (A2, A3, B1), 
T = (B2, B3, A1), �T = (C3,−C2, ϕ)

where Ai , Bi and Ci (i = 1, 2, 3) are respectively the components of A, B and C.
Using the representation of DKP matrices (β1, β0) for the spin 1 case, the expres-

sions of the charge and current densities are:

ρDK P1 =2
 [φ+

]
, JDK P1 =−2


[
�+φ − α

3

(
∂2

x �+φ+∂2
x φ+�−∂x�

+∂xφ
)]

(31)
and according to (30), we obtain the following coupled system:

i
(
∂x − 1

3α∂3
x

)
φ = m� (32a)

m
 = (E − V0) φ (32b)

i
(
∂x − 1

3α∂3
x

)
� + mφ = (E − V0) 
 (32c)

The component C1 automatically vanishes (C1 = 0).
As is well known that in the case of (1 + 1) dimension, the relativistic DKP equation,

describing the mixture of two bosonic sectors of spin 0 and 1 with a total absence of the
spin effect is entirely equivalent to the KG equation which represents the fundamental
and basic equation in the description of the relativistic quantum phenomenons [35,
62,63], it is not difficult to verify that only φ(x) components of the predicted system
are independents and can be reduced directly to the massive Klein–Gordon equation,
which also represents the physical components of the DKP wave function for this kind
of problem. (

− 2
3α∂4

x + ∂2
x + (E − V0)

2 − m2
)

φ (x) = 0 (33)

The other components are determined by the following constraints equations:

(



�

)
= 1

m

(
(E − V0)

i
(
∂x − 1

3α∂3
x

)
)

⊗ φ (34)

Now, in the same way as for the KG case, we can obtain the following solutions:

φ< =
[
C �

i e
iki x + C �

r e−iki x + C �
l1 ekl1 x

]
V x < 0, (35a)

φ> =
[
C �+

t eikt x + C �−
t e−ikt x + C �

l2 e−kl2 x
]

V x > 0 (35b)
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where V is a constant vector of dimension (3 × 1) and with:

ki,t = k1,2

(
1 − α

3
k2

1,2

)
, kl1 = kl2 =

√
3

2α
(36a)

k2
1 = E2 − m2, k2

2 = (E − V0)
2 − m2 (36b)

By a direct calculation, it is easy to get the following final solutions:

⎛
⎝

φ




�

⎞
⎠

<

=
⎡
⎢⎣

⎛
⎜⎝

1
E

m
− ki

m

(
1 + α

3 k2
i

)

⎞
⎟⎠C �

i e
iki x +

⎛
⎜⎝

1
E

m
ki
m

(
1 + α

3 k2
i

)

⎞
⎟⎠C �

r e−iki x

+

⎛
⎜⎜⎜⎝

0
E

m
i

2m

√
3

2α

⎞
⎟⎟⎟⎠C �

l1ekl1 x

⎤
⎥⎥⎥⎦⊗ V (37)

⎛
⎝

φ




�

⎞
⎠

>

= 1√
6

⎡
⎢⎣

⎛
⎜⎝

1
(E − V0)

m
− kt

m

(
1 + α

3 k2
t

)

⎞
⎟⎠C �+

t eikt x +
⎛
⎜⎝

1
(E − V0)

m
kt
m

(
1 + α

3 k2
t

)

⎞
⎟⎠C �−

t e−ikt x

+

⎛
⎜⎜⎜⎝

0
(E − V0)

m−i

2m

√
3

2α

⎞
⎟⎟⎟⎠C �

l2 e−kl1 x

⎤
⎥⎥⎥⎦⊗ V (38)

where C �
i,r , C �

l1,l2
and C �±

t are the normalization constants.
In this case, the charge and current densities can be calculated from the expression

(31). For the first region x < 0, we have:

ρ(i,r)DK P1 = E

m

∣∣C �
i,r

∣∣2 , J<DK P1 = JiDK P1 + JrDK P1

= ki

m

(
1 + 4

3αk2
i

) (∣∣C �
i

∣∣2 − ∣∣C �
r

∣∣2) (39)

For the second region x > 0, we found also four cases as in KG theory:

(a, d)

{
ρ+

tDK P1
= (E−V0)

m

∣∣C �+
t

∣∣2
J+

tDK P1
= kt

m

(
1 + 4α

3 k2
t

) ∣∣C �+
t

∣∣2 , (b)

{
ρ±

tDK P1
= (E−V0)

m

∣∣C �±
t

∣∣2 e−2|kt |x
J±

tDK P1
= 0

,

(c)

{
ρ−

tDK P1
= (E−V0)

m

∣∣C �−
t

∣∣2
J−

tDK P1
= − kt

m

(
1 + 4α

3 k2
t

) ∣∣C �−
t

∣∣2 (40)
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If we use the limit α → 0, we will find the exact result of the ordinary vector DKP
equation with a step potential [53–56]:

⎛
⎝

φ




�

⎞
⎠

<

=
⎡
⎢⎣

⎛
⎜⎝

1
E

m
− k1

m

⎞
⎟⎠C �

i e
ik1x +

⎛
⎜⎝

1
E

m
k1
m

⎞
⎟⎠C �

r e−ik1x

⎤
⎥⎦⊗ V (41)

⎛
⎝

φ




�

⎞
⎠

>

=
⎡
⎢⎣

⎛
⎜⎝

1
(E − V0)

m
− k2

m

⎞
⎟⎠C �+

t eik2x +
⎛
⎜⎝

1
(E − V0)

m
k2
m

⎞
⎟⎠C �−

t e−ik2x

⎤
⎥⎦⊗ V (42)

4.2 DKP Equation for Spin-Zero

In this case, we proceed in the same way as in the case of spin 1 particle, by putting
�̃ (x)T = (η1, η2, η3, η4, η5). With these components, the expressions of charge and
current densities (28) (29) can be written as:

ρDK P0 =2
 [η∗
1η2
]
, JDK P0 =−2


[
η∗

3η1 − 1
3α
(
∂2

x η∗
3η1+∂2

x η∗
1η3 − ∂xη

∗
3∂xη1

)]

(43)
and the equation system (32) is reduced to the following one with η4 = η5 = 0:

i
(
∂x − 1

3α∂3
x

)
η1 = mη3 (44a)

mη2 = (E − V0) η1 (44b)

i
(
∂x − 1

3α∂3
x

)
η3 + mη1 = (E − V0) η2 (44c)

Using the correspondences η1 → φ, η2 → 
, η3 → � and (η4, η5) → C1, the
solutions of the system (44) are deduced from those of spin 1 case (32):

(
η2
η3

)
= 1

m

(
(E − V0)

i
(
∂x − α

3 ∂3
x

)
)

⊗ η1 (45)

with

η1< =
[
C ��

i eiki x + C ��
r e−iki x + C ��

l1ekl1 x
]
, x < 0 (46a)

η1> =
[
C ��+

t eikt x + C ��−
t e−ikt x + C ��

l2 e−kl2 x
]
, x > 0 (46b)

where C ��
i,r , C ��

l1,l2
and C ��±

t are the normalization constants.
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In the same way as before, we can arrive to the final results:

⎛
⎝

η1
η2
η3

⎞
⎠

<

=
⎡
⎢⎣

⎛
⎜⎝

1
E

m
− ki

m

(
1 + α

3 k2
i

)

⎞
⎟⎠C ��

i eiki x +
⎛
⎜⎝

1
E

m
ki
m

(
1 + α

3 k2
i

)

⎞
⎟⎠C ��

r e−iki x

+

⎛
⎜⎜⎜⎝

0
E

m
i

2m

√
3

2α

⎞
⎟⎟⎟⎠C ��

l1ekl1 x

⎤
⎥⎥⎥⎦ (47)

⎛
⎝

η1
η2
η3

⎞
⎠

>

=
⎡
⎢⎣

⎛
⎜⎝

1
(E − V0)

m
− kt

m

(
1 + α

3 k2
t

)

⎞
⎟⎠C ��+

t eikt x +
⎛
⎜⎝

1
(E − V0)

m
kt
m

(
1 + α

3 k2
t

)

⎞
⎟⎠C ��−

t e−ikt x

+

⎛
⎜⎜⎜⎝

0
(E − V0)

m−i

2m

√
3

2α

⎞
⎟⎟⎟⎠C ��

l2 e−kl1 x

⎤
⎥⎥⎥⎦ (48)

For the first region x < 0, the charge and current densities are given by:

ρ(i,r)DK P0 = E

m

∣∣C ��
i,r

∣∣2 , J<DK P0 = JiDK P0+JrDK P0 = ki

m

(
1+ 4

3
αk2

i

)(∣∣C ��
i

∣∣2−∣∣C ��
r

∣∣2)

(49)
And for the second region x > 0, we get:

(a, d)

{
ρ+

tDK P0
= (E−V0)

m

∣∣C ��+
t

∣∣2
J+

tDK P0
= kt

m

(
1 + 4α

3 k2
t

) ∣∣C ��+
t

∣∣2 , (b)

{
ρ±

tDK P0
= (E−V0)

m

∣∣C ��±
t

∣∣2 e−2|kt |x
J±

tDK P0
= 0

,

(c)

{
ρ−

tDK P0
= (E−V0)

m

∣∣C ��−
t

∣∣2
J−

tDK P0
= − kt

m

(
1 + 4α

3 k2
t

) ∣∣C ��−
t

∣∣2 (50a)

We arrive now at the stage of determining transmission
(
T ±

DK P1, T ±
DK P0

)
and reflection

(RDK P1, RDK P0) coefficients of the step potential for both scalar and vector cases
and we proceed in a similar manner as in the KG case; we obtain the following results:

(a, d)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RDK P1 = RDK P0 =
(

k1−k2
k1+k2

)2 (
1 − 4α

3 k1k2
)

T −
DK P1 = T −

DK P0 = 0
T +

DK P1 = T +
DK P0 = 4k1k2

(k1+k2)
2

(
1 + α

3 (k1 − k2)
2)

where RDK P1 + T +
DK P1 = 1, RDK P0 + T +

DK P0 = 1

,
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(b)

⎧
⎪⎪⎨
⎪⎪⎩

RDK P1 = RDK P0 =
∣∣∣∣ (ki −i |kt |)2

k2
i +k2

t

∣∣∣∣
2

= 1

T −
DK P1 = T −

DK P0 = 0
T +

DK P1 = T +
DK P0 = 0

,

(c)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RDK P1 = RDK P0 =
(

k1+k2
k1−k2

)2 (
1 + 4α

3 k1k2
)

T −
DK P1 = T −

DK P0 = 4k1k2
(k1−k2)

2

(
1 + α

3 (k1 + k2)
2)

T +
DK P1 = T +

DK P0 = 0
where RDK P1 − T −

DK P1 = 1, RDK P0 − T −
DK P0 = 1

(51)

From the unitarity of the case c, we have RDK P(1,0) > 1 and we conclude that the
Klein paradox exists also for the DKP theory deformed with a minimal length.

Once again if we use the limit α → 0, we recover the exact results of the scalar
DKP equation for a spin 0 particle with a step potential without a minimal length
[42,53–56]:

⎛
⎝

η1
η2
η3

⎞
⎠

<

=
⎡
⎢⎣

⎛
⎜⎝

1
E

m
− k1

m

⎞
⎟⎠C ��

i eik1x +
⎛
⎜⎝

1
E

m
k1
m

⎞
⎟⎠C ��

r e−ik1x

⎤
⎥⎦ (52)

⎛
⎝

η1
η2
η3

⎞
⎠

>

=
⎡
⎢⎣

⎛
⎜⎝

1
(E − V0)

m
− k2

m

⎞
⎟⎠C ��+

t eik2x +
⎛
⎜⎝

1
(E − V0)

m
k2
m

⎞
⎟⎠C ��−

t e−ik2x

⎤
⎥⎦ (53)

Before ending this section, we will study the Klein paradox for a massless vec-
tor DKP particle m → 0, i.e., photons. Then, in order to exhibit how the Maxwell
equations of photons which propagate along the positive x-direction appear as a
zero-mass limit of the DKP equation. We use the wave function form �̃ (x)T [64]
which is defined as (−imϕ, imA, E,−B) where A is vector of dimension (3×1),and
E, B represents respectively the electric and magnetic fields. It can be decomposed
as: φT = (A2, A3, 0), 
T = (Ey, Ez, 0), �T = (−Bz, By, 0) where Ai , Ei and Bi

(i = 1, 2, 3) are respectively the components of A, E and B.
Which leads us directly to the following equations system

(
∂x − 1

3α∂3
x

)
φ = −� (54)


 = i (ω − V0) φ (55)(
∂x − 1

3α∂3
x

)
� = −i (ω − V0) 
 (56)

The component ϕ, A1, Ex and Bx automatically vanishes. (where we have put
� (x,t) = e−iωt �̃ (x) with ω is the angular frequency)

Within this system, it is not difficult to verify that only 
(x) components are
independent and satisfy the following one-dimensional massless KG type equation:
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(
− 2

3α∂4
x + ∂2

x + (ω − V0)
2
)

φ (x) = 0 (57)

Now, in the same way as for the massive KG case, we can obtain the following
solutions:

φ< =
[
C �

i e
iκi x + C �

r e−iκi x + C �
l1 eκl1 x

]
V x < 0, (58)

φ> =
[
C �+

t eiκt x + C �−
t e−iκt x + C �

l2 e−κl2 x
]

V x > 0 (59)

And the other components of �̃ (x) are determined by the following expressions:

⎛
⎝

φ




�

⎞
⎠

〈
=
⎡
⎣
⎛
⎝

1
iω

−iκi
(
1 + α

3 κ2
i

)

⎞
⎠C �

i e
iκi x +

⎛
⎝

1
iω

iκi
(
1 + α

3 κ2
i

)

⎞
⎠C �

r e−iκi x

+
⎛
⎜⎝

1
iω

−1

2

√
3

2α

⎞
⎟⎠C �

l1 eκl1 x

⎤
⎥⎦⊗ V (60)

⎛
⎝




�

φ

⎞
⎠

〉
=
⎡
⎣
⎛
⎝

1
i (ω − V0)

−iκi
(
1 + α

3 κ2
i

)

⎞
⎠C �+

t eiκt x +
⎛
⎝

1
i (ω − V0)

iκi
(
1 + α

3 κ2
i

)

⎞
⎠C �−

t e−iκt x

+
⎛
⎜⎝

1
i (ω − V0)

1

2

√
3

2α

⎞
⎟⎠C �

l2 eκl1 x

⎤
⎥⎦⊗ V (61)

where V is a constant vector of dimension (2 × 1) and:

κi,t = κ1,2

(
1 − α

3
κ2

1,2

)
, κl1 = κl2 =

√
3

2α
(62)

κ1 = ω, κ2 = (ω − V0) (63)

In the ordinary massless vector DKP equation, there is no forbidden energy band
and the particle can penetrate the potential barrier for any height, but in the massless
deformed case the number of energetic bands of preceding case is decreased to the
three region as follows:

– For k2
i 〈0 (damped mode) which corresponding a forbidden band according to:

E < −
√

3

2α
and

√
3

2α
< E .

– For k2
i > 0 (propagative mode) which corresponding a allowed band according

to:
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−
√

3

2α
< E <

√
3

2α

We note here, that the study of behavior of a massless vector DKP particle in inside a
potential step in the deformed space, i.e., at high energy, showed that the new results
of energetic bands that depends entirely on the deformation parameter α is similar to
that of Ghosh in [43].

At this stage, we proceed in a similar manner as the massive vector particle DKP
case, we obtain the following transmission T ±

M DK P1 and reflection RM DK P1 coef-
ficients for the dynamics of a massless DKP spin 1 (MDKP1) particle in inside a
potential step:

(a, d)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RM DK P1 =
(

κ1−κ2
κ1+κ2

)2 (
1 − 4α

3 κ1κ2
)

T −
M DK P1 =0

T +
M DK P1 = 4κ1κ2

(κ1+κ2)2

(
1+ α

3 (κ1 − κ2)
2)

where RM DK P1+T +
M DK P1 =1

, (b)

⎧⎪⎪⎨
⎪⎪⎩

RM DK P1 =
∣∣∣∣ (κi −i |κt |)2

κ2
i +κ2

t

∣∣∣∣
2

= 1

T −
M DK P1 =0

T +
M DK P1 =0

,

(c)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

RM DK P1 =
(

κ1+κ2
κ1−κ2

)2 (
1 + 4α

3 κ1κ2
)

T −
M DK P1 = 4κ1κ2

(κ1−κ2)2

(
1 + α

3 (κ1+κ2)
2)

T +
M DK P1 =0

where RM DK P1 − T −
M DK P1 = 1

(64)

From the case c of this result, we have RM DK P1 > 1, where we can concluded
that the Klein paradox exists also for the deformed relativistic theory of the MDKP
(photons) with the presence of a minimal length. We also note that this paradox exists
in the ordinary case of MDKP contrary to the result obtained by Ghose et al via the
Kemmer–Duffin–Chandra formalism [41].

5 Conclusion

In this paper, we have exposed an explicit calculation of the solutions in the position
space representation of the one dimensional modified KG and DKP (spin 0 and 1)
equations for the step potential in the presence of a minimal length. For both relativistic
equations, we were obtained exact solutions and new expressions for the transmission
and reflection coefficients with corrections depending on the deformation parameter
α. This is not surprising since the modification of the Heisenberg algebra introduces
new effects in physical results. The limiting case is then deduced when α → 0 and
we have obtained, by using it, the results of ordinary relativistic quantum mechanics.

For the wave functions, in addition to corrections made to the usual solutions
(these corrections are proportional to the parameter α as it should), we have shown
that the deformation generates a new wave after interacting with the potential wall.
This new solution describes an evanescent wave or a damping mode and is absent in
the usual relativistic theory. It vanishes quickly because its depth is proportional to
the deformation parameter and so, in view of the limits for this parameter from the
literature, it is difficult to test it experimentally.
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Looking at the side of the coefficients of transmission and reflection, we have
also calculated the corrections to their expressions from the relativistic theory and
this to the first order in the deformation parameter. We have demonstrated that these
corrections preserve unitarity for the different relations in all cases considered, whether
the KG theory or DKP theory for both spins 0 and 1. However, it is remarkable that
in the presence of minimal length, the time-components of the conserved four-current
ρ−

tK G
, ρ−

tDK P0
, ρ−

tDK P1
are not positive definite and can be interpreted as charge densities.

The fact that the α-corrections make no change to the emission relations (reflection
and transmission) on the wall potential, but only modify them, lead us to conclude that
the Klein paradox also exists in relativistic bosonic theories deformed by the minimum
length and that our results are consistent with those of Cardoso et al. [42] in the DKP
case and that they disapprove the statement of Ghose et al. [41].

Referring to the fact that the reflection coefficient, in all cases, is greater than
unity for large values of the potential, we say that the so-called Klein paradox can be
explained by considering that the potential, when it exceeds certain limits given by
the theory considered, causes the phenomenon of pair creation and so the phenom-
enon should rather be called Klein pair creation (or production [65]) instead of Klein
paradox.
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