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ABSTRACT 

When modeling speech with traditional Gaussian Mixture Models (GMM) a major problem is that one need to fix a priori the 
number of GMMs. Using the infinite version of GMMs allows to overcome this problem. This is based on considering a 
Dirichlet process with a Bayesian inference via Gibbs sampling rather than the traditional EM inference. The paper 
investigates the usefulness of the infinite Gaussian modeling using the state of the art SVM classifiers. We consider the 
particular case of the speaker identification under limited data condition that is very short speech sequences. Basically, 
recognition rates of 100% are achieved after only 5 iterations using training and test samples less than 1 second. Experiments 
are carried out over NIST SRE 2000 corpus. 
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1 INTRODUCTION 

We consider the problem of text independent speaker 
identification. The standard approach to this problem is to 
model the speaker using a Gaussian Mixture Model (GMM) 
[2] [4] [6 [10] [12] [17] [26] [34] [35] [36] (34) (35) (36). 

From another hand, the Support Vector Machine (SVM) 
discriminative classifier is currently one among the most 
robust classifiers in speaker identification and verification 
[7] [20]  as well as in many other areas where data has to be 
classified in an efficient way [7][15][31][37]. Furthermore, 
it has been also successfully combined with GMM to 
increase accuracy [6] [15] [16] [37]. 

Though dealing with GMMs especially when combined 
with SVMs is an attractive way to model systems, one has 
to fix a priori the number of Gaussians involved, then to 
optimize this number using cross validation technique for 
example.  

This has been an open problem for many years and some 
research works were carried out in order to estimate the 
optimal number [1] [22] [25]. 

Within this work we use an Infinite version of GMMs 
proposed by Rasmussen in his original paper [28] within a 
general framework of the so-called Dirichlet Process 
Mixture (DPM) model. Literature on Dirichlet Process and 
Gibbs sampling is abundant (see for example [14] [28] 
[29]). 

Despite its important consequence which is overcoming the 
Gaussian number problem, the Infinite GMM modeling has 
not been combined to SVM classifiers. And to our 
knowledge, the IGMM-SVM based method proposed 
within this paper is a novelty by itself. 

For experiments we used very short speech sequences for 
training and testing which is a practical issue. This is 
justified by the fact that in many cases in practice there is 
only limited data for speaker modeling and testing. 

According to (Reynolds & Rose, 1995), typically we need 
utterances longer than 2 s to achieve adequate accuracy in 
speaker identification [32]. We show that with our proposed 
hybrid IGMM-SVM method for the speaker identification, 
this assumption is no longer true. In the present work, 
limited data denotes the case when having speech data less 
than one second per utterance.  

The outline of the paper is as follows. Sections 2 and 3 
describe the basic theoretical framework respectively for 
SVMs and IGMMs. We present also in section 3 the main 
principle behind Gibbs sampling. In section 4 we outline 
jointly the IGMM supervector and the global scheme for 
our IGMM-SVM speaker identification system. The 
potential of the approach is verified by applying it to a 
NIST speaker recognition evaluation 2000 task and 
comparing it to some results in [32]. This is done by 
conducting the experiments of Section 5. The high 
recognition rates obtained show clearly that our new 
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method is efficient for performing speaker identification in 
real situations with limited data. Finally, comments are 
given in a general conclusion. 

 

2 SUPPORT VECTOR MACHINE  

An SVM [5] [30] is a two class-classifier based on a 
hyperplane separators. This separator is chosen in order to 
maximize the distance between the hyperplane and the 
closest training vectors. These training vectors are called 
support vectors. SVMs usually operate in a high 
dimensional feature space (potentially with infinite 
dimension), nonlinearly related with a mapping 

function .to the original input feature space X. Given an 

observation Xx  and a mapping function , an SVM 
discriminator function is given by : 
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The function ),( ji xxK is the kernel function and is 

constrained to have some properties (Mercer conditions) so 
that (.,.)K  can be expressed as : 
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Here )(x   is a mapping from the input space (where x  

lives) to a possibly infinite dimensional space. The kernel is 
required to be positive semi-definite. The Mercer condition 
ensures that the margin concept is valid and the 
optimization of the SVM is bounded (5). The “kernel trick” 
avoids evaluating the mapping function (.) [30]. 

The kx ’s in [1] are the support vectors and the ky  ’s are the 

corresponding target class values  1. M is the number of 
support vectors and the k ’s are obtained through a training 

process. 

Hence, an SVM makes separation with maximal margin in 
a high dimensional space defined by a kernel function. This 
is performed by minimizing : 


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Subject to: 
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C  is the penalty parameter which represents the constraint 
violation of the data points occurring on the wrong side of 
the SVM boundary i measures the degree of 

misclassification of ix  

The three main kernel functions that are often used are the 
Linear, the Polynomial and the Radial Basis Function 
(RBF). We used the radial kernel because it’s a 

generalization of the two others and has only 2 adjustable 
parameters, it is defined as: 
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(With kernel parameters  , C )  

C  is the cost parameter and the parameter   shows the 
width of Gaussian functions. 

In order to obtain optimal values of these parameters, there 
is no general rule about the optimization. Some strategies 
such as grid algorithm or genetic algorithm (8) have been 
used. This is beyond the scope of this paper and may be a 
future extension. 

 

3 INFINITE GAUSSIAN MIXTURE MODELING 

The infinite GMM belongs to the family of Dirichlet 
Process Mixtures and can be derived in a number of 
different ways [33]. A comprehensive discussion of 
alternative perspectives on the Dirichlet process mixtures 
can be found in [14] [21] .Within this paper, the concept is 
introduced through the finite Gaussian mixture model, 
whose mixing weight is given by a Dirichlet Process prior. 
The infinite Gaussian mixture model is then derived by 
considering the situation where the number of mixtures 
tends to infinity. The inference of the infinite GMM 
parameters is implemented using Gibbs sampling. 

 

3.1 Finite Gaussian Mixtures  

In a Finite Gaussian Mixture Model, the probability density 
function of data  nxxx ,...,1  can be modeled by finite 

mixtures of Gaussian distributions with k  components: 
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Where  k ,...,1   are the means,  ksss ,...,1  

are the precisions (inverse variances),  k ,...,1  are 

the mixing weights (which must be positive and sum to 
one) and G  is a Gaussian distribution. 

The classical approach to estimating the GMM 

parameters, ),,(  s , is to maximize the data likelihood 
using the expectation-maximization (EM) algorithm. The 
EM algorithm guarantees to converge to a local maximum, 
with the quality of the maximum being heavily dependent 
on the random initialization of the algorithm. On the 
contrary, the Bayesian approach defies prior distributions 
over the GMM parameters, and the inference is performed 
with respect to the posterior probability of the parameters. 
As opposed to achieving an ”optimal” estimate of the 
parameters, Bayesian inference uses the Monte Carlo 
method to generate samples from the posterior distribution, 
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|

and by averaging over the Monte Carlo samples, the 
problem of local maximum can be overcome [33]. 

In general, the priors are specified via “hyper-parameters”, 
which themselves are given higher level priors [33]. 

The component means are given Gaussian priors: 

),|( 1rp j   (8) 

Where prior mean     and prior precision , are hyper- 
parameters that are common to all components. The hyper- 
parameters themselves are given vague Gaussian and 
Gamma hyper-priors : 
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Where x  and 2
x are the mean and the variance of the 

data points. 

To make inferences with respect to component means, the 
conditional posterior distributions from are obtained by 

multiplying the likelihood [7] by the prior [8] ), resulting in 
a Gaussian distribution : 
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Where jx  and jn are the mean and the number of data 

points belonging to mixture j, respectively. Similarly, the 
condition posterior for   and r can be obtained by the 
multiplication of their likelihoods and hyper-priors to 
enable Monte Carlo sampling. 

The component precisions are given Gamma priors: 

),(~),|( 1 Gasp j   (12) 

Where   and  are again hyper-parameters with priors 

given by: 

 

)1,1()( 1 Gap   (13) 

),1()( 2
xGap     (14) 

The conditional posterior precisions are obtained by 
multiplying likelihood and prior: 

)
)(

,(

~),,,,|(

:

2 





jCii

j
i

j
j

jj

x

n
nGa

xcsp








  

(Here  nicc i ...1,   is introduced to indicate that the 

data point ix  belongs to mixture ic . The conditional 

posteriors for hyper-parameters,  and , can also be 
obtained by multiplying the respective likelihoods and 
hyper-priors. 

As for the general case of mixture models the mixing 
weights are given Dirichlet priors with concentration 

parameter 
k


[33]  

),....,(~)/,..( 1 kk
dirichletp k

  (16)  

Sampling for the mixing weights can be indirectly realized 
by sampling for the indicators, whose probability is 
conditional on the mixing weights: 
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By integrating out the mixing weights as a result of the 
properties of the Dirichlet integral, the prior for the 
indicators is only dependent on . Furthermore, to use 
Gibbs sampling for the discrete indicators, , the 
conditional prior for a single indicator, given all the other 
indicators, is required and can be obtained as follows: 
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Where the subscript i   indicates all indices except i  and 

jin ,  is the number of data points, excluding ix  , that 

belong to mixture j . The posteriors are given by the 

multiplication of the likelihood and the prior: 
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3.2 Gibbs Sampling  

Markov Chain Monte Carlo samples can be generated 
iteratively to approximate the posteriors for the parameters 
and hyper-parameters defined above. For finite mixtures of 
Gaussians, Gibbs sampling proceeds as follows: 

1. Sample  ; sample c given new . Le    given 

new   and r .  

2. Sample   and r  ; samp. 

3. Sample   and ; sample s given new   and . 

4. Repeat step 1) – 3) until maximum number of 
iterations is reached. 
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3.3 Infinite Gaussian Mixtures  

The computation with infinite mixtures is finite through the 
use of “represented” and “unrepresented” mixtures. 
Represented mixtures are those that have training data 
associated with them whilst unrepresented mixtures, which 
are of infinite number, have no training data associated with 
them. By using unrepresented mixtures, the task of selecting 
the number of mixtures is avoided. 

With the exception of the indicators, the conditional 
posteriors for the infinite limit, for all the other model 
parameters/hyper-parameters, are obtained by substituting in 

, the number of represented mixtures, for  in the above 

equations. For the indicators, let in (20), and the 
conditional prior will give the limits: 
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The above priors allow the indicators to be associated with 
unrepresented mixtures. Therefore there is a finite number 
of represented mixtures and an infinite number of 
unrepresented mixtures.  

Similarly to the finite mixtures, the posteriors for the 
indicators are given by: 
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The likelihood with respect to the unrepresented mixtures is 
an integral over the prior for the mixture parameters. 
However this integral is not analytically tractable. 
Rasmussen followed Neal (1998) [28] who suggested to 
sample from priors (which are Gaussian and Gamma 
shaped) in order to generate an efficient Monte Carlo 
sampling strategy to approximate this integral, allowing the 
number of represented mixtures to vary according to the 
data along with the MCMC iterations. Therefore the 
complete sampling procedure for infinite mixtures of 
Gaussians is similar to that for finite mixtures, except for 
the sampling for the indicators. 

 

4 MODULAR REPRESENTATION OF THE 
EXPERIMENTAL PROCESS 

Figure 1 illustrates the main steps leading to the 
construction of the IGMM supervector. In our case the 
supervector is made of Gaussian’s means which model the 
speaker utterance. 
The global scheme of the speaker identification operation is 
depicted by Figure. 2. 
 

Silence Removal 

Band-Pass 

19th order PLP  features calculation 

Normalisation 

IGMM modelization 

k: Gaussian’s       
number                     

Means (Supervector) 

FIgure1: Calculation of GMM supervectors. 

 

 Data Set 

Preprocessing 

Trained SVM Classifier 

Training Testing 

Training Set Testing Set 

Feature Selection  
(Supervector’s Construction) 

 
Figure 2: Modular representation of the speaker identification 

process 
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5 EXPERIMENTS  

We performed experiments on the (2000) NIST data base. 
TIMIT contains a total of 6300 sentences, 10 sentences 
spoken by each of 630 speakers from 8 major dialect 
regions of the United States. All the dialect regions are 
represented in both subsets, with males and females 
speakers from each dialect. The amount of overlap of text 
material in the two subsets is minimized; almost the texts 
are not identical. All the phonemes are covered in the test 
material. All phonemes occur multiple times in different 
contexts. 

Roughly 30% of the corpus is used for testing and the 
remaining 70% for training. In this work, for every speaker 
10 recording files are used seven for training and three for 
testing. 

We adopt the assumption in [32] that is in general, one 
would identify people participating in conversations such as 
meetings and debates. In our experiments, we assume the 
maximum number of participants is 20. 

We used for the implementation an RBF kernel because it 
can handle the nonlinearities between class labels and 
attributes. For the two parameters ),( C to be tuned we 

used the two following values: 10C and 5.0  found in 

the literature [29] as yielding to good results for speech 
applications. 

In the following we describe and comment the different 
experiences performed to underline the advantages of the 
new IGMM-SVM method. First, we return back to the 
over-fitting problem then we present the results of 
experiments showing the evolution of the recognition rate 
according to the amount of data and the number of 
iterations respectively. 

 

5.1 Recognition rate according to the amount of data 

The GMM needs sufficient data to model the speaker well 
to yield good recognition rate [30] . So we were interested 
in investigating the effectiveness of our IGMM-SVM based 
method for very short speech sequences. 

The significance of the amount of speech data for speaker 
modeling and testing has been studied for example by 
Prasanna & al (2006) [30]  and it has been demonstrated 
experimentally that when the speech data for training is 
less, then the performance is poor due to poor speaker 
modeling and insufficient speech data to make reliable 
decision during testing. This is illustrated by Figure.3 
where is depicted the recognition rate according to the 
amount of training/testing data. The results are obtained by 
using progressive amounts of data for each speaker. For this 
purpose three training/testing sets are used. The first set 
corresponds to five females within the first dialect (New 
England region). The second set corresponds to ten 
speakers from the first dialect (five females and five males) 
and the third one concerns ten male speakers equally 
distributed between the first and the second dialect 
(Northern region). 

 
Figure. 3: Speaker recognition rates for different  sizes of training 

and testing data less than 1 second 

 

We notice the recognition rate is better for the set 2 and 3 
than for set 1 corresponding to 250ms. This is due to the 
fact that the whole data belonging to ten speakers is much 
more than the one belonging to only five speakers and 
hence the recognition rate must be greater. 

A comparable work in [32] investigating the relation 
between the error rate and the length of short utterances, 
was conducted over utterances less than 2s. Three speaker-
identification methods (conventional GMM, GMM with 
LDA, and a new method) were applied on various lengths 
of speech data (0.25, 0.5, 1, and 2-s spontaneous 
utterances). The best recognition rate in [32] was 85% 
accuracy while with our method 100% recognition rate is 
achieved with less than 1s-term utterance.  

 

 

 
Figure. 4: Evolution of the recognition rate according to IGMM 

iterations (20 speakers) 
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Apart this experience, in all the remaining of the paper, the 
results are obtained after 5 iterations. 

 

5.2 Recognition rate according to the number of 
iterations 

We have noticed that convergence is reached after a small 
number of iterations namely 5 iterations. Figure 4 illustrates 
the recognition rate according to the iterations number of 
the IGMM algorithm for three training/testing sets. The first 
set corresponds to 10 speakers taken from the first dialect, 
the second set corresponds to 10 speakers taken from the 
third dialect (North Midland region) and the third one 
corresponds to 20 female speakers equally chosen from 
four dialects (the fourth dialect belongs to the South 
Midland region). 

 

6 CONCLUSION  

This paper explored the effectiveness of combining the 
Infinite GMM to SVM in a speaker recognition context. 

Recognition rates of 100% were obtained after only 5 
iterations using training and test samples less than 1second. 

Gaussians is used for the modeling. This is not the case 
with the traditional GMM modeling based on maximum 
likelihood where often the cluster number or the 
dimensionality of the feature vector is increased in order to 
increase the likelihood, leading to an over tuning of the 
parameters. 

The method is hence useful for detecting speakers from 
very short segments in speech indexing applications as well 
as for improved performance for rapid speaker 
identification. The method promises also good performance 
for longer data segments. This will be a future extension of 
the present work. Another interesting perspective will be 
the investigation into the tuning of the SVM parameters in 
order to optimize the convergence as well as the recognition 
rates. 

The good results obtained are mainly due to the fact that 
with Infinite GMM, only the right number of Gaussians is 
used for the modeling. This is not the case with the 
traditional GMM modeling based on maximum likelihood 
where often the cluster number or the dimensionality of the 
feature vector is increased in order to increase the 
likelihood, leading to an over tuning of the parameters. 

The method is hence useful for detecting speakers from 
very short segments in speech indexing applications as well 
as for improved performance for rapid speaker 
identification. The method promises also good performance 
for longer data segments. This will be a future extension of 
the present work. Another interesting perspective will be 
the investigation into the tuning of the SVM parameters in 
order to optimize the convergence as well as the recognition 
rates. 
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