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Abstract: - This paper explores the application of evolutionary computation technics for evolving behaviours of 
virtual creatures inhabiting a realistic virtual environment. Our approach uses a computational model of gene 
regulatory network, which is inspired of cell control mechanism of real cells. Usually used to control virtual 
cells in developmental models, recent works showed that gene regulatory networks are also capable to control 
various kinds of agents. This paper details how a gene regulatory network is evolved to control range of 
articulated virtual creatures. To do so, the inputs and outputs of the network are directly mapped to the 
creatures’ sensors and actuators. To evaluate this approach, we have compared its performance to one of the 
most recent successful evolutionary method, the NEAT algorithm. The results show the gene regulatory 
network model may possibly be a viable solution for evolving control solutions for physical machines. 
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1. Introduction 
Gene regulatory networks are usually used to 
control cell behaviours in developmental models 
through the production of internal and external 
proteins. Over the past few years, regulatory 
networks have been proved efficient as a central 
system for cell based developmental models such as 
established in [1-6] Recently, many modern 
computational models of these networks have been 
used in a wide range of problem and have proven 
their capacity to simulate biologically plausible gene 
regulatory networks [7-9] and to control agents [10-
12]. More specifically, we think that Gene 
regulatory networks can successfully learn how to 
generate behaviours in 3D virtual creatures acting in 
a physically realistic environment to fulfil a specific 
task, forming a large space of behaviors and more 
complex control task than in domains where GRN 
was previously tested. In the literature, evolution of 
autonomous creatures was pioneered by Karl Sims 
in 1994 [13, 14]. Sims was the first to introduce the 
idea of using evolutionary methods to automatically 
generate 3D virtual creatures. His creatures inhabit a 
three-dimensional world with simulated physical 
laws and are controlled by a series of neural 
networks distributed along the body of the creatures. 
Since these publications, several researchers have 
re-implemented Sims’ work in controlling creatures 
adopting different evolutionary approaches [15-29]. 

In this work, we investigate the possibility of 
using Genetic regulatory networks to evolve three-
dimensional self-controlling virtual creatures; as a 
step toward devising an evolutionary approach for 
the emergence of locomotive behaviours that 
utilizes technique inspired by biological 
evolutionary systems. In this paper, the subjects of 
our experiments are virtual articulated creature 
placed in a virtual 3D environment with simulated 
physics using rigid-body dynamics. Controller of 
the creature is subject to optimization by evolution 
in four independent experiments: crawling, arm-
based moving, somersaulting and running. We 
demonstrate whether the GRN improve the 
performance of evolutionary search by comparing it 
to the one of the most recent successful algorithm 
for the evolution of neural networks: 
NeuroEvolution of Augmenting Topologies (NEAT 
[30]), a well-known method for optimizing both 
structure and weights of a neural network. NEAT 
outperforms the best fixed-topology neuroevolution 
method on a challenging benchmark reinforcement 
learning task [30]. NEAT algorithm has been shown 
to be effective in many applications such as pole 
balancing [31], robot control [32], vehicle control 
[33], and character control in a video game [34-36], 
etc.  To our knowledge, this work is the first attempt 
to use a gene regulatory network to generate 



locomotion behaviours for virtual creatures 
inhabiting within a physical 3D environment. 
The rest of the paper is organized as follows. 
Section 2 introduces the computation model we 
have used in this work. Section 3 describes how the 
GRN is connected to the creature sensors and 
actuators and how the GRN is trained with a genetic 
algorithm to produce a basic controller. Following 
which, section 4 provides background about NEAT. 
Section 5 then describes the setup of our 
experiments, fitness evaluation and discussing the 
details of the creature morphologies. Results of 
experiments are provided in section 6. We then 
bring some discussion by comparing the 
effectiveness of both methods on experiments using 
in our work, and present an idea to improve this 
model. Finally, section 8 concludes with a summary 
of this work together with some possible future 
works.  
 
 
2. Our Gene Regulatory Networks 

model 
The gene regulatory network used to develop 
locomotive strategies in this paper is simplified 
model based on Banzhaf’s model [9]. It has already 
been successfully used in other applications. It is 
capable of developing modular robot morphologies 
[1], producing 2-D image [37], controlling cells 
designed to optimize a wind farm layout [38],  
controlling reinforcement learning parameters in 
[39] and driving virtual racing car [40]. This model 
has been designed for computational purpose only 
and no to simulate a biological network.  

This model is composed of set of abstract proteins. 
The protein pr is composed of three tags: 
- The protein tag ���� that identifies the protein, 
- The enhancer tag ��ℎ�� that defines the 

enhancing matching factor between two 
proteins. 

- The inhibitor tag ��ℎ�� that defines the 
inhibiting matching factor between two 
proteins. 

These tags are coded with an integer in [0, p] where 
the upper bound p can be tuned to control the 
precision of the network. In addition to these tags, a 
protein is also defined by its concentration that will 
vary over time with particular dynamics described 
later. A protein can be of three different types: 
- Input, a protein whose concentration is provided 

by the environment, which regulates other 
proteins but is not regulated, 

- Output, a protein with a concentration used as 
output of the network, which is regulated but 
does not regulate other proteins, and 

- Regulatory, an internal protein that regulates 
and is regulated by others proteins. 

With this structure, the dynamics of the GRN are 
computed by using the protein tag. They determine 
the productivity rate of pairwise interaction between 
two proteins. For this, the affinity of a protein  �	
 
for another protein �	� is given by then enhancing 
factor �������  and the inhibiting factor  �������  
calculated as follows: 
 

������� = � − ���ℎ�� − ������; 
 									������� = � − ���ℎ�� − ������     (1) 

 
The proteins are then compared pairwise according 
to their enhancing and inhibiting factors. For a 
protein	�	
, the total enhancement ���	and 
inhibition ℎ�� are given by: 
 

��� = ��∑ �����(������
� �� !� )����    ;  

  ℎ�� = ��∑ ������(������
# �� !# )����      (2) 

 
Where N is the total number of proteins in the 
network, ��� is the concentration of the protein	�	�, 
�$
%�  is the maximum observed enhancing factor, 
�$
%�  is the maximum observed inhibiting factor 
and &  is a control parameter which will be detailed 
hereafter. At each time step, the concentration of a 
protein �	
 change with the following differential 
equation: 
 

'(��
') =

*+,���-��.
∅      (3) 

 
where ∅ is normalization factor to ensure the sum 
total of the output and regulatory protein 
concentration is equal to 1. &  and 0 are two scaling 
factor that influence the reaction rates of the 
network. &	affects the importance of the matching 
factors and 0 is used to modify the production level 
of the proteins in the differential equation. In 
summary, the lower both values are, the smoother 
the regulation is; the higher the values are, the more 
sudden the regulation is. 
 
 

 
 



3. Using a GRN for evolving 
behaviourisms in virtual creatures 
 
 

3.1. Linking the GRN to the creature 
sensors and actuators 

The creatures have sensors to collect data from the 
environment and feed the data to the GRN which 
return values to solve the problem it is applied to. 
Table 1 presents the variety of sensors employed in 
this simulation as well as the range of values that the 
sensors are able to detect. 

To use the gene regulatory network for evolving 
behaviourisms in virtual creatures, we convert the 
input and output signals into normalized 
concentration values and to find a proper way of 
connecting the creature actuators to the GRN. 
Before being computed by the GRN, the 
environmental data collected by the sensors is 
normalized to [0,1] with the following formula: 
 

�1	2(345647�8) = 	
9:;<:=�8�$>6:;<:=�8
$
%:;<:=�8�$>6:;<:=�8

     (4) 

 
where 345647�8 	is the value of sensor (i) to normalize 
2��45647�8 is the minimum value of the sensor and 
2?@45647�8 	is the maximum value of the sensor.  

Once the GRN input protein concentrations are 
updated, the GRN’s dynamics are run one time in 
order to propagate the concentration modification to 
the whole network. The concentration of the output 
proteins are then fed directly to the inputs of 
actuators which convert it into a desired speed by 
linearly scaling the effectors inputs to the inputs 
range as shown in table 2. The maximum 
force/torque is predetermined for each type of 
actuator, and is designed to be similar to several 
common types of DC electric motors.  
Depending on the type of joint used, the actuators 
exert a pulling/pushing force or a flexion/extension 
force in any of the degree of freedom of joint. 
Therefore, two proteins, A� for pushing or flexion 
force and A� for pulling or extension force, are 
necessary to determine the final values of desired 
motor velocity provided to the creatures’ actuators 
that computed as follows: 
 

3�B1��CD = ((E�)�((E#)((E�)�((E#)     (5) 

 
Table 2 Representation of effector data 

Actuator/ 
Joint 

Max Force/ 
Torque 

Input Range 

Hinge 800 g-cm  [-10,10] rad/sec 
Slider 1200 g-cm  [-100,100] cm/sec 
Ball/socket 600 g-cm  [-10,10] rad/sec 
 

Sensor 
Type 

Output 
Range 

Sensor 
Type 

Output 
Range 

Hinge [-pi,pi] 
Angular 
Velocity 

[-100, 
100] 

Slider [-1,1] Height [0, 1000] 
Ball/Socket [-pi,pi] Direction [0,2pi] 

Linear 
Velocity 

[-300,300] Touch on / off 

 

 
Table 1 Representation of sensory data 

Fig. 1 Organization of the protein chromosome and link to the creature sensors and actuators. 



where	�(1∗) is the concentration of the output 
protein	1∗. Figure [1] shows the connection of the 
GRN to the virtual creature. 
The use of two output proteins to control one 
motor’s velocity also allows for the GRN to produce  
an output compatible with the virtual creature's 
effectors, which also require data to be presented in 
a bipolar format. The continual cycle of input and 
output to and from the GRN is the mechanism that 
can produce intelligent behaviours. 
 
 
3.2. GRN’s genetic encoding  
The GRN’s genetic encoding scheme is designed to 
allow corresponding protein genes to be easily lined 
up when two genomes are crossed over during 
mating. Each genome includes two independent 
chromosomes. The first one is defined as a variable 
length chromosome of indivisible proteins. Each 
protein is encoded with three integers between 0 and 
p that correspond to the three tags. In this particular 
work, p is set at 32 and the genome proteins are 
organized with the input proteins first followed by 
the output proteins and then regulatory proteins. The 
inputs and outputs presented in the previous section 
will be always being linked to the same protein, as 
represented in Figure 1. The second chromosome is 
encoded as two double precision floating point 
values that correspond to the two scaling factor 
presented in previous section.  
Before it can control the creatures, the regulatory 
network needs to be optimized. In this work, we use 
a genetic algorithm GA with particular crossover 
and mutation operators represented in Figure 2 to 
optimize the first chromosome: 
Crossover can only occur between two proteins and 
never between two tags of the same protein; this 
ensure the integrity of both sub-networks when the 
GRN is subdivided into two networks. When 

assembling another GRN, local connections are kept 
with this operator and only new connections 
between the two networks are created.  
Mutation in this GRN model can change both tag 
within a randomly selected protein and network 
structures. Protein tags are mutated as in standard 
mutation, with one tag randomly chosen either 
perturbed or not at each generation. Structural 
mutation occurs in two ways each mutation expands 
or shrinks the size of the genome by adding or 
removing protein(s). In the add protein mutation, a 
single new regulatory protein with random 
identifier, enhancing and inhibiting factors values is 
added to the first chromosome, in the remove 
protein mutation, an existing regulatory protein is 
removed from the first chromosome. 
 
 

4. Neuroevolution of Augmenting 
Topologies (NEAT) 

This type of neuroevolution methods uses direct 
encoding to describe the network structure and 
connection weights. NEAT’s networks provide three 
key features: it marks all genes with a unique 
identifier, allowing tracing where the genes come 
from, thus carry out effective crossover. NEAT’s 
network uses the speciation of its individuals and 
protects innovation. NEAT starts from a population 
of simple networks with no hidden neurons and 
increasingly growing its complexity by the gradual 
addition of neurons and connections over the 
evolution to match the complexity of the problem 
which results in significant performance gains. 
The structure of a NEAT genome consists of list of 
neuron genes which describes the function of the 
neuron in the network that is an input neuron, an 
output neuron, a hidden neuron, or a bias, and a list  
of connections genes which contains information on 
two connected neurons, the weight associated with 

Fig. 2 Crossover and mutation operators applied to the protein chromosome 



this connection, a flag to indicate whether the link is 
activated, a flag to indicate if the link is recurrent, 
and an unchangeable innovation number that allows 
to find the corresponding genes. 
In crossover, NEAT’s network performs alignment 
of genes of two different genomes to produce new 
offspring; genes that have the same innovation 
number are randomly selected from one of the 
parents. Genes of the fit parent with innovation 
numbers not found in the other parent are inherited 
by the offspring as well. Innovation numbering 
tackles the competing conventions problem by 
avoiding the inheritance of same genes [30].The 
mutation in Neural networks NEAT can change 
both connection weights and network topology. The 
connection weights mutate as in any system of 
neuroevolution, while structural changes are 
provided by two special mutation operators. The 
first consists to add a new connection between two 
previously unconnected neurons and the second to 
add new neuron to network. Adding new structures 
usually initially decreases the fitness of the network, 
thus newly created structures are less likely to 
survive long enough to be optimized. This problem 
is solved by speciation which divides the population 
into separate niches of similar genomes. The 
individuals’ fitness of each species must be adjusted 
before any selection occurs. This ensures that the 
similar individuals in the population are punished to 
maintain diversity. Speciation allows new 
innovations to be optimized without facing 
competition from individuals with different 
structures. A full description of the NEAT method is 
presented in [30]. 
 
 
5. Experiments  
In this particular work, the creatures’ morphology is 
completely predetermined. Four different 
morphologies are introduced into simulation; each 
one is used in independent experimentation. The 
results of the four experiments allow us from one 
hand to evaluate the generalization capabilities of 
the GRN’s process in its ability to evolve efficient 
locomotive behaviours when it is applied on variety 
of morphologies, and from a second hand to prove 
that the system is able of controlling a variety of 
joints and structures that exist in the natural world.  
 
 
5.1. Virtual environment and physics 

engine 
Virtual environments play a crucial role in the 
evolution of autonomous virtual creatures. The 

environment must accurately model the physical 
laws that exist in nature to ensure that the creatures 
existing in the virtual environment are unable to 
generate movements or forces that are impossible to 
produce in the real world. To ensure this realism, 
the virtual environment employs a physics engine, 
open dynamic engine (ODE), to accurately simulate 
certain physical system, such as rigid body 
dynamics, joint, contacts/collisions, friction, inertia 
and gravity. The world in which the creatures live 
within is 3D physically simulated environment 
whose its ground is flat terrain completely barren 
with coefficient of friction similar to that of asphalt. 
This ground upon which the virtual creatures can 
use their members to generate force. 
 
 
5.2. Creature morphology 
The different morphologies we have used in this 
work are: 
 
5.2.1. Crawler 
The first species of creature introduces a 
morphology that is composed of two appendages 
protruding from the front of the main body part. 
These appendages are attached via 1-DOF hinge 
joints as shown in Figure 3a. This morphology was 
designed so that the creature would use its 
appendages to crawl forward. This morphology was 
introduced to show that the gene regulatory network 
is an effective method to train simple creatures to 
perform tasks that involve manipulating a simple 
control system. 
 
 
5.2.2. Arm-based creature 
The second creature design consists of two complex 
"arm-like" structures protruding from the top of its 
main body, as shown in Figure 3b. Each complex 
"arm-like" is composed of three rigid bodies 
interconnected with hinge joints and connected to 
the main body with a hinge joint. The "hands" are 
shaped like paddles to provide greater contact area 
with the ground. This creature was designed so that 
it would learn how to alternate their "arm" 
movements to allow each "arm" to pull the torso 
forward and time their movements. This 
morphology was introduced to see how well the 
gene regulatory network copes with a more 
morphologically complex creature and to determine 
if it would be able to learn how to effectively 
manipulate complex articulated members composed 
of multiple rigid bodies and joints.  
 



     

  

     

(a) (b) 

(c) 
 

(d) 

5.2.3. Hopper 
The third creature is designed to elicit somersault 
behaviours which represent the most complex 
movement behaviour of all species. This creature 
would require at least some knowledge of projectile 
motion and be able to determine where is will land 
after each successive jumping motion. Hopper 
creature is composed of two legs that attach to the 
underside of the main body part via hinge joints. 
Each "leg" is composed of two rigid bodies 
interconnected via a slider joint, as shown in Figure 
3c. The slider joint gives the legs the ability to 
quickly extend. This morphology was introduced to 
determine if the gene regulatory network would be 
able to cope with a more complex behaviour and 
learn how to effectively manipulate lot of 
information from its environment.   
 
 
5.2.4. Runner 
The forth creature morphology is composed of two 
"arm-like" appendages protruding from either side 
of the main body, as shown in Figure 3d. The two 
appendages are connected to the torso via ball and 
socket joints that provide three degrees of freedom 
for each "arm". Due to the two additional degrees of 
freedom, this creature is required to process 

significantly more information than the Crawler 
creatures utilizing hinge joints with only one degree 
of freedom. This morphology was introduced to 
demonstrate the effectiveness of GRN algorithm at 
evolving efficient behaviors in virtual creatures 
employing complex joints.  
In each experiment, the performance of GRN was 
compared to the performance of NEAT 
neuroevolution method in order to show whether 
GRN improves the performance of the evolutionary 
search. For each experiment, the two algorithms 
have been tested. The fitness graphs are 
representative of the average of 20 simulation runs 
per morphology. 
 
 
5.3. Fitness Evaluation 
In order to assess the performance of GRN and 
NEAT on the problem of evolving locomotive 
strategies for a virtual creature, the creatures are 
evaluated by the total distance travelled in feet, 
minus a penalty for traveling off course, in the time 
period of 7.5 seconds. 

��G(H	>) = I(−D − DJ) − (|@ − @J|L)     (6) 

where @J and DJ represent the initial starting 

Fig. 3 Virtual creature morphology: Crawler (3a), Arm-based creature (3b), Hopper (3c) and Runner (3d). 



position of the creature on X and Y, respectively, I 
the multiplication factor for the distance travelled 
and M is the penalty factor. Therefore, the fitness 
function of each creature is defined as follows:  

N�C��GG = 	 O��G(H	>)		�P							��G(H	>) > 00																�P						��G(H	>) = 0     (7) 

 
 
5.4. Parameter settings 
The same experimental settings for each method are 
used in all experiments; they were not tuned 
specifically for any particular experiment. These 
values are chosen empirically through a series of 
test cases. Each configuration was tested in 20 runs. 
Each run was stopped after 300 generations. 
Significance levels were computed using Student’s 
t-test. This section presents the experimental setting 
we have used in this work. 
 
 
5.4.1. GRN parameter settings 
Population size of 80 GRNs was used. In each 
generation, the probability of mating two genomes 
was 70% and mutation was 80%. The minimum and 
maximum number of regulatory proteins in each 
chromosome is 4 and 20 respectively. Both scaling 
factor & and 0 are evolved in the interval [0.5; 2]. 
Values under 0.5 produce unreactive networks 
whereas values over 2 produce very unstable 
networks.  
 
 
5.4.2. NEAT parameter settings 
The four experiments used a population of 80 
NEAT networks. The multipliers used to tweak the 
final score of measuring compatibility were C1= 1.0, 
C2=1.0, and C3=0.4. In all experiments, 
compatibility threshold 0)= 0.26. If the maximum 
fitness of a species did not improve in 15 
generations, the networks in the stagnant species 
were not allowed to reproduce. The leader of each 
species transferred to the new population without 
mutation; this provides per species elitism. In each 
generation, the probability of mating two genomes 
was 80%. In each species, the probability of a new 
node mutation was 3% and the probability of adding 
a new link was 7%. There was a 10% chance of a 
genome having its connection weights mutated, in 
which case each weight had a 10% chance of being 
assigned a new random value and a 90% chance of 
being uniformly perturbed.  

We used a bipolar sigmoid transfer function: 

P(@) = S
��5#! − 1. 

By employing this transfer function, the NEAT 
network is able to effectively process the bipolar 
sensory data and generate bipolar output necessary 
for the correct operation of the virtual creatures’ 
actuators.  
 
 

6.  Results and measuring 
performance 

In the crawling experiment, both GRN and NEAT 
were able to consistently find effective solutions 
(see Figure 4a and 4b) allowing the Crawler 
creature to learn how to use its two front 
appendages to pull itself forward. GRN achieved a 
score of 80.85 within 300 generations of evolution 
and NEAT achieved a score of 63.20 within 300 
generations of evolution. GRN thus outperformed 
NEAT by 21.78% (student’s t-test p-value < 0.005), 
confirming that training simple virtual creatures to 
perform tasks that involve manipulating a simple 
control system is favorable to gene regulatory 
networks. 

With the arm-based creature, both methods 
failed to simultaneously learn how to alternate their 
"arm" movements to allow each "arm" to pull the 
torso forward and time their movement. Controller 
evolved by GRN and NEAT allow to the arm-based 
creature to use only one "arm" to pull itself forward 
by digging their "hand" into the ground and pulling 
their torso forward. Performance of the NEAT with 
score of 202.20 was in this case better than GRN 
which achieved score of 147.42 (although the 
difference was statistically significant; p-value < 
0.0001). Illustrations (5a) and (5b) show us the 
scores achieved by Arm-based creatures produced 
by GRN and NEAT.  

In the somersaulting experiment, both GRN 
and NEAT were able to consistently find good 
solutions enabling the Hopper to learn how to 
control their summersaults and performing 
numerous summersaults in a row. GRN achieved a 
score of 303.69 within 300 generations of evolution 
and NEAT achieved a score of 221.97 within 300 
generations of evolution– GRN performed 26.9% 
better than NEAT during the 300 generation. 
However, differences between GRN and NEAT 
were not statistically significant (p-value > 0.2) due 
to a large standard deviation in this particular 
experience but the GRN outperforms NEAT out of 
the 20 runs.  



 
(a) Gene Regulatory Network  

 
(b) NeuroEvolution of Augmenting Topologies  
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Fig. 4 Fitness graph of the first variety “crawler”. The evolution of the population's best, worst and average 
fitness for the GRN experiment (4a) and for the NEAT experiment (4b) averaged over 20 run. 

The results, as evidenced in Figure (6a) and (6b), 
demonstrate a type of evolution known as 

punctuated equilibrium. In punctuated equilibrium, 
the population undergoes long periods of stasis, with 
short and dramatic increases in fitness between 
these longer periods of stasis. 
Once again, GRN have successfully demonstrated 
its ability to evolve complex locomotive behaviours. 
This creature was able successfully learn how to 
apply force to its actuators in order to precisely time 
the rotation of its body perfectly to allow the feet to 
impact upon landing, so that it can immediately 
perform another summersault sequence and control 
its trajectory. 

In the Running experiment, both GRN and 
NEAT were able to consistently find effective 
solutions (see Figure 7a and 7b) enabling the 
Runner creature to learn how to manipulate both 
arms by simultaneously swinging them forward, 

placing them on the ground and thrusting them back 
to produce forward motion. GRN achieved a score 

of 85.82 within 27 generations of evolution and 
NEAT achieved a score of 146.59 within 254 
generations of evolution– NEAT thus outperformed 
GRN by 41.45%. Differences between two methods 
are extremely statistically significant (p-value < 
0.0001). Although, this simulation demonstrates that 
neural networks NEAT are more efficient than GRN 
at evolving behaviours in autonomous creatures 
employing complex joint with up to 3 degrees of 
freedom. GRN show its ability to generate 
behaviour in a reasonable amount of time for 
morphologies involving appendages connected via 
joint, very much how human arms or legs are 
attached.   

 
 
 



 
(a) Gene Regulatory Network 

 
(b) NeuroEvolution of Augmenting Topologies 
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Fig. 5 Fitness graph of the second variety “Arm-based creature”. The evolution of the population's best, worst 
and average fitness for the GRN experiment (5a) and for the NEAT experiment (5b) averaged over 20 run. 

7. Discussion 
The results of the experiments show that using GRN 
to evolve behaviours in a virtual environment is 
feasible. Creatures based on GRN controller display 
the ability to process and make use of the sensory 
data coming back from the joints and input sensors 
to produce effective locomotion solutions, and in 
doing so, they are able to learn to adapt to their 
environment. The results from the simulation show 
that GRN is an effective method of training simple 
virtual creatures to perform tasks that involve 
manipulating a simple control system. The most 
surprising results were obtained with the hopper 
morphology, which turned out to be the most 
difficult morphology to evolve a locomotion 
solution for. GRN look more efficient when trait 
examples that require lot information from its 
environment. Crawling experiment demonstrates 

that when the joint is highly complex, GRN fails to 
provide significant benefit over NEAT. In other 
hand, Arm-based experiment also shows that when 
the creature’s morphology is composed of a 
complex structure with similar part where the 
behavioural system is required to coordinate its 
movement to generate the desired behaviour, GRN 
fails to provide efficient locomotive solution. This 
drop in performance can be explain by the 
genotype-phenotype mapping that usually works 
with simple problems, but cannot process domains 
with very large phenotypic solutions that contain 
similar parts. This problem could be handled by 
finding an appropriate generative encoding for 
GRN’s genome that enables it to compress the 
description of the solution such that information can 
be reused  and allowing the final solution to contain 
more components than the description itself. Based 
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Fig. 6 Fitness graph of the fourth variety “Hopper”. The evolution of the population's best, worst and average 
fitness for the GRN experiment (6a) and for the NEAT experiment (6b) averaged over 20 run. 

on four experimentations, we concluded that GRN 
improves upon NEAT in control creature domain 
for a relatively simple creature’s morphology, but 
that the benefit disappeared as the morphology is 
complicated. 
 
 

8. Conclusion and future work 
The contribution presented in this paper is the 
proposal of a novel approach for the evolution of 
autonomous articulated creatures. The proposed 
algorithm is inspired by GRN – an algorithm for 
controlling cell behaviours in developmental 
models. We demonstrated advantages and 
disadvantages of GRN on four tasks: crawling, arm-
based moving, somersaulting and running. Results 
from the arm-based moving and Running 
experiment have confirmed that GRN does not 
provide an advantage for tasks where creature 

consists of complex structures with similar parts and 
employing complex joints. However, crawling and 
somersaulting experiments have shown that if the 
morphology of creature is composed of simple 
structure and the joint that was used to attach this 
structure are simple than the GRN algorithm 
significantly outperforms NEAT even whether the 
behavior to be generated are complex or need a lot 
of information about its environment. The results of 
our experiences using the GRN as a creature's 
controller also emphasize that this approach can be 
used in many agent-based applications, the only 
requirement is to be able to convert the input and 
output signals into normalized concentration values 
and finding a proper way of linking the agent 
sensors and actuators to the GRN. The major 
contribution of this work is not simply a good result, 
but rather a new research direction for evolving 
effective methods of locomotion through direct 
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Fig. 7 Fitness graph of the fourth variety “Runner”. The evolution of the population's best, worst and average 
fitness for the GRN experiment (7a) and for the NEAT experiment (7b) averaged over 20 run. 

 

encoding.  Future developments should take into 
consideration new improvements in this GRN model 
in order to handle the problem of controlling 
complex morphologies and enhancing its 
performance to control complex joints which will 
allow exploring the possibility of evolving ever 
more complex behaviours such as path following 
and competition amongst the creatures. 
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