
Courrier du Savoir – N°14, Novembre 2012, pp.89-94

Université Mohamed Khider – Biskra, Algérie, 2012

MEMORY REQUIREMENTS FOR HARDWARE IMPLEMENTATION OF THE

H.264 ENCODER MODULES

KAMEL.MESSAOUDI*, EL-BAY BOURENNANE*, SALAH TOUMI**, OUASSILA LABBANI*
* LE2I Laboratory - Burgundy University - Dijon Cedex, France
**LERICA Laboratory - Annaba University - Sidi Amar, Algeria

kamel.messaoudi@u-bourgogne.fr

ABSTRACT

For a hardware implementation of any image processing algorithm, it is necessary to study the input/output of each processing
module even before studying the internal architecture of these modules. And that to prepare a simulation platform, with
internal and external memory, necessary to load and to prepare the input for the modules. These memories are also used as
intermediate component between the different modules to provide the possibility of parallelism. In this work we give the
architecture of internal and external memory used by the H.264 encoder in order to develop a simulation platform for
processing modules. This platform can be realized in FPGA platform chosen according to the memory requirements.

KEYWORDS: H.264/AVC encoder, Memory management, Hardware implementation, ML501 platform.

1 INTRODUCTION

The H.264/AVC is the result of the collaboration between
the ISO/IEC Moving Picture Experts Group and the ITU-T
Video Coding Experts Group. This great video codec is the
latest standard for video coding recommended for any new
application.

The H.264 encoder combines several efficient algorithms,
and the two groups of standarization have paid attention to
the concatenation of these algorithms. Indeed, the greatest
improvement of H.264 is that the decoder is used in the
coding channel, in order to manipulate the same images in
the encoder as in the decoder at the disadvantage of
increased complexity of processing. Another improvement
in H.264 is the utilization of macroblocks (MBs) with
different sizes ranging from 4x4 pixels to 16x16 pixels for
the luminance signal. In this work, we seek to express the
memory requirements (in inputs) of each processing module
of the encoder, in order to define a complete simulation
platform for a hardware implementation of the H.264.

The paper is organized as follows. Section 2 presents an
overview of the H.264 codec architecture. Section 3
decribes the organization of the sequence of images in a
GOP and the organization of the image into a set
macroblock. In section 4 a simulation platform for the H.264
encoder is given. Section 5 describes the functionality
mapping of the H.264 encoder onto the external memory of
images sequence and the local memories details for each
precessing modules. Section 6 shows the results of
simulation with ModelSim, discussions are also given.
Finally, Section 7 concludes the proposal.

2 THE H.264 ENCODER

The new visual standard H.264 shares a number of devices
with old standards [1], including the H.263 and MPEG-4.
H.264 is based on a hybrid model for Adaptive Differential
Pulse Code Modulation (ADPCM) and a transformation
based on the coding of integers, similar to discrete cosine
transform (DCT) used in earlier standards [2]. This complex
coding is done to take advantage of the temporal and spatial
redundancy occurring in successive visual images [3]. The
diagram of the encoder H.264 is shown on the following
basis [4]:

Figure 1: H.264 encoder hardware architecture

To show the connection of the different encoder modules
with the different images of the sequence and to separate the
intra-prediction mode and the inter-mode prediction, we
propose the following scheme for the H.264 encoder. This
diagram shows that both intra and inter modes are applied

K.MESSAOUDI & al.

 90

on two different images (I and P) and two different times
(they must finish the intra processing to begin inter
processing). In addition to this diagram shows the modules
directly connected with the imput images of sequence.
Subsequently in this paper we conclude that these images
will be stored in external memory if we want a real-time
implementation of the encoder.

I

B

B

B

P
t

Intra Prediction

Motion
estimation

Intra

inter

Core coding

 Transform

Motion
Compensation

Quantization
Entropy
Coder

Rate
Distortion
Control

Inverse
Quantization

Inverse
Transform

Storage
Reconstructed

frame « I’ »

Deblocking
Filter

Intra
Decoding

Network
Packetize

Bit
Stream

Motion vector & Inter mode

Intra mode

Memory

+

-

+
-

+
+

Decoder blocs

Voisinage

voisinage

Figure 2: Detailed H.264 encoder hardware architecture

Given the number and the variety of applications requiring
the use of the H.264 encoder, and given the number of
techniques and algorithms used in series or in parallel in the
encoder, the MPEG and ITU founders offer and define a set
of three profiles, each supporting a particular set of coding
functions. The Baseline Profile supports intra and inter-
coding (using I-slices and P-slices) and entropy coding with
context-adaptive variable-length codes (CAVLC). The Main
Profile includes support for interlaced video, inter-coding
using B-slices, inter coding using weighted prediction and
entropy coding using context-based arithmetic coding
(CABAC). The Extended Profile does not support interlaced
video or CABAC but adds modes to enable efficient
switching between coded bitstreams (SP- and SI-slices) and
improved error resilience (Data Partitioning) [5][6].

Figure 3: H.264/AVC profiles and corresponding tools

3 GOP AND MACROBLOCKS IN THE H.264
ENCODER

H.264 supports coding and decoding of 4:2:0 progressive or
interlaced video. An H.264 video sequence consists of
several frame types structured as GOP (Group Of Pictures).
A GOP is a sequence of frames which are coded according
to three methods: intra-frame coding (I-image), predictive-
frame or inter-frame coding (P-image) and bidirectional-
frame coding (B-image). For example, a GOP may be in the
form of IBBBPBBBPBBB [7].

I B B B P B B B P B B B P

Slice

Macroblocks

P-image

GOP

Figure 4: The 3 frame type structured as GOP

A coded frame consists of a number of macroblocks, each
containing 16x16 luma samples and associated chroma
samples (8x8 Cb and 8x8 Cr samples). I-macroblocks are
predicted using intra prediction. A prediction is formed
either for the complete 16x16 macroblock according to four
modes, or for each 4x4 macroblock according to nine
modes. P-macroblocks are predicted using inter prediction
from reconstructed reference picture (I’). An inter coded
macroblock may be divided into macroblock partitions, i.e.
macroblocks of size 16x16, 16x8, 8x16 or 8x8 luma samples
(and associated chroma samples). If the 8x8 partition size is
chosen, each 8x8 sub-macroblock may be further divided
into sub-macroblock partitions of size 8x8, 8x4, 4x8 or 4x4
luma samples (and associated chroma samples). Finally, B-
macroblocks are predicted using inter prediction from
reference frames (I’ and P’) [4].

4 SIMULATION PLATFORM FOR THE H.264
ENCODER

In figure 5, we present the principle of an implementation
platform of a codec, the image is initially captured, stored in
memory, processed, stored and displayed at the end
(complete chain of video processing). it is also possible to
register intermediate parameters and images during
processing.

Memory requirements for hardware implementation of the H.264 encoder modules

 91

Simulation Platform

V
ideo source

Interface
H.264 CODEC

Modules Interface

Memory

Interface

A
ffichage

enregistrem
ent

Figure 5: Simulation platform for H.264 modules

Processing modules in a codec are generally applied to
macroblock for different sizes of recorded images, not for
entire images. In addition to treating some types of images
in a sequence, it is necessary to save previous images, which
require us to record multiple images at once. Therefore, it is
necessary to use an external memory.

5 MEMORY REQUIREMENT FOR EACH
MODULE

Usually in a video CODEC, the local memory is used for
storing the coefficients and intermediate data, and the
external memory is reserved for recording images of the
sequence and output files. Only for the baseline profile of
the H.264 encoder with I-image and P-image only, it is
possible to use local memory for saving parameters and
images (depending on the uses platform prototype) [3].

With the use of external memory for storage, processing is
applied independently for each GOP. The intra processing
starts immediately after loading of the first picture (I-type),
and inter processing starts directly after loading of the fifth
picture (the first P-Frame). Then follows begin the
bidirectional processing of the three B-type images. The
same for other images of the same GOP:

I B1 B2 B3 P1 B4 B5 B6 P2 B7 B8 B9

Intra treatment Inter treatment (P1)

Bi-treatment B2, B1, B3

Inter treatment (P2)

Bi-treatment B5, B4, B6

I

Time axis
Figure 6: The order and the duration of each treatment between

different images in a GOP

Note that different processing is applied to the MBs of
different sizes (not to the full images). In the flow diagram,
we present the modules in direct contact with the external
memory and their memory requirements acording to the
image type and the processing mode.

E
xt
er

na
l m

em
or

y

MB
 4x4 pixels

13 pixels

Intra-
prediction

16x16 pixels

16x16 pixels or
Search window

Inter-
prediction

I

I’

MB

MB

P

I’

Deblocking
filter MB

 4x4 pixels

I’

M
od

ul
es
 o
f t

he

H
.2
64

 e
nc

od
er

Figure 7: Modules of the H.264 encoder in direct contact with the

external memory

For other modules of the H.264 encoder, we propose the use
of other local memories between each two processing
modules in order to have a pipelined architecture. Generally
these memories have a 4x4 pixels size. Infact, the modules
of the encoder (DCT/IDCT, Q/IQ, deblocking filter and the
entropy coding) process MBs of 4x4 pixels size:

MB

 4x4 pixels

Intra/Inter
prediction

Multiple stage of pipeline

DCT/Q MB

Entropy
encoder

MB

IDCT/IQ MB

 4x4 pixels

 4x4 pixels

MB

Figure 8: The intermediate memories used between the different

modules of the H.264 encoder

For this architecture, we can calculate the percentage of
occupency of internal and external memory used by the
H.264 encoder. This memory design step allows us to
choose the FPGA and to build the prototype platform.

6 SIMULATIONS RESULTS

The aim of this work is to calculate and to implement the
various internal and external memories required for an
hardware implementation of the H.264 encoder, and to find
a strategy for loading the various internal memory from
external memory that contain the images of sequence. In
simulation, a test bench file is written to replace the image
capture part, and the file must provide the image pixels at a
frequency (fpixels) calculated according to the type of input
video sequence format CIF with 352x288 pixel/image and
10 images/Second, the pixel frequency is given by
352x288x10Hz. The following figure shows the method for
reading pixels from the image file to the external memory:

K.MESSAOUDI & al.

 92

Figure 9: Simulation for the read pixels from image to external memory

Figure10 shows a reading of 4 lines of an image from
external memory and the recording of these lines in an
internal memory (mem_4row).

Reading from external memory to local memory is
performed periodically as required H.264 encoder modules.
For example, the intra4x4 module of the encoder is needed
for each intra prediction of a 4x4 pixels macroblock and 13
pixels neighborhood. The 4x4 macroblock is read directly
from the external memory to the local memory and the
neighborhood pixels are reused from previous calculations.
So at the end of each calculation of a 4x4 MB, it saves the
pixels that are as near to other MBs. The figure 12 shows the
reading of a 4x4 MB and the designation of neighboring
pixels.

Similarly for other modes of intra prediction and inter-
prediction. So our proposal method that supplies
periodically modules of the H.264 encoder by macroblocks
from the sequence of prerecorded images at the local
memory.

The calculation of memory allows us to choose the
necessary FPGA platform for implementation of the
encoder. In our case we choose the Virtex5 ML501 platform
from Xilinx (available at the laboratory LE2I) which appear
rich in memory and programmable logic resources to satisfy
a hardware implementation of H.264 encoder. The table1
shows the percentage use of memory resources for two types
of image sequence:

Figure 11: Read memory for the 4x4 pixels intra-prediction

Local memory to external memory

Image to local memory

Memory requirements for hardware implementation of the H.264 encoder modules

 93

Figure 10: Reading of 4 lines of an image from external memory

TABLE 1: The external and local memory percentage

External memory used Local memory used
Profile

CIF Image HDTV Image CIF Image HDTV Image

Capacity 297 KB 2,637 MB 101,875 Kb 240,25 Kb
Baseline

percentage 0,113% 1,03% 5,89 % 13,90 %

Capacity 1,16 MB 10,747 MB 101,875 Kb 240,25 Kb
Main

percentage 0,453% 4,12% 5,89 % 13,90 %

K.MESSAOUDI & al.

 94

7 CONCLUSION

In this work we have shown the needs of memories for
different the H.264 encoder modules with the goal of a
hardware implementation of these modules in a real
simulation platform, estimation of the memory space
(internal and external) necessary for this implementation
has been calculated for two types of image sequences CIF
(352x288 pixels - 10 fps) and HDTV (1280x720 - 30
frames / sec). The maximum memory used on the ML501
platform Virtex5 Xilinx, is 13.90% which makes it
possible to use this platform for a hardware
implementation of H.264 encoder. Simulation results
concerning the filling of internal memories from an
external memory of the platform are also given.

REFERENCES
[1] ISO/IEC 14496–10:2003, “Coding of Audiovisual

Objects-Part 10: Advanced Video Coding,” 2003,
also ITU-T Recommendation H.264 “Advanced video
coding for generic audiovisual services”.

[2] K. Babionitakis, G. Doumenis, G. Georgakarakos, G.
Lentaris, K. Nakos, D. Reisis, I. Sifnaios, and N.

Vlassopoulos, “A real-time H.264/AVC VLSI
encoder architecture,” Springer, Real-Time Image
Proc, pp.43–59, 2009.

[3] K. Messaoudi, S. Toumi, E. Bourennane, “Material
architecture proposition for the block matching
method of motion estimate in H264 standard,”
ICTTA’08, Damascus, Syria, Jul. 2008.

[4] K. Messaoudi, S. Toumi, E. Bourennane, “Proposal
and study for an architecture hardware/software for
the implementation of the standard H264,” CISA’08,
Mediterranean Conference on Intelligent Systems and
Automation- Proceeding editor AIP (American
Institute of Physics), Annaba-Algeria, jun. 2008.

[5] J. Ostermann, J. Bormans, P. List, D. Marpe, M.
Narroschke, F. Pereira, T. Stockhammer, and T.
Wedi, “Video coding with H.264/AVC: Tools,
Performance, and Complexity,” IEEE, Circuits and
Systems Magazine, pp. 7-28, First Quarter 2004.

[6] T. Chen, C. Lian and L. Chen, “Hardware
Architecture Design of an H.264/AVC Video Codec,”
IEEE – 7D-3, pp. 750-757, 2006.

[7] I. E. G. Richardson, “H.264 and MPEG-4 Video
Compression,” 2003, The Robert Gordon University,
Aberdeen, UK, WILEY edition 2003.

