Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/13647
Full metadata record
DC FieldValueLanguage
dc.contributor.authorsehel, faten-
dc.date.accessioned2019-11-03T06:55:10Z-
dc.date.available2019-11-03T06:55:10Z-
dc.date.issued2019-06-20-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/13647-
dc.description.abstractIn this work, we derive a stochastic maximum principle for optimal stochastic control of systems driven by forward-backward stochastic di¤erential equations (FBSDEs in short) without controlled di¤usion. Our Objectif is to minimize : J (u ( )) = E [ (y (0)] ; such that 8 >>>>>>>< >>>>>>>: dx(t) = f (t; x(t); u(t)) dt + (t; x(t))dW(t); dy(t) = g (t; x(t); y(t); z(t); u(t)) dt + z(t)dW(t) X (0) = x0; y(T) = h(x (T) In this work, the control domain is not assumed to be convex. The proof of the main result is based on spike perturbation and Itô formula. This resultat has been developped by Wensheng Xu (1995). Stochastic maximum principle for optimal control problem of forward and backward system. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 37, pp 172-185. Keywords. Forward-backward stochastic di¤erential equations, optimal stochastic control, Stochastic maximum principle. perturbation forte.en_US
dc.language.isofren_US
dc.titlePrincipe de maximum pour des équations di¤erentielles stochastiques progressives retrogradesen_US
dc.title.alternativeMathématiquesen_US
dc.typeMasteren_US
Appears in Collections:Faculté des Sciences Exactes et des Science de la Nature et de la vie (FSESNV)

Files in This Item:
File Description SizeFormat 
SEHEL_FATEN.pdf271,9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.