Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/2254
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrahim Brahimi-
dc.contributor.authorDjamel Meraghni-
dc.contributor.authorAbdelhakim Necir-
dc.contributor.authorDjabrane Yahia-
dc.date.accessioned2013-04-11T11:41:16Z-
dc.date.available2013-04-11T11:41:16Z-
dc.date.issued2013-04-11-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/2254-
dc.description.abstractWe use bias-reduced estimators of high quantiles of heavy-tailed distributions, to introduce a new estimator for the mean in the case of infinite second moment. The asymptotic normality of the proposed estimator is established and checked in a simulation study, by four of the most popular goodness-of-fit tests. The accuracy of the resulting confidence intervals is evaluated as well. We also investigate the finite sample behavior and compare our estimator with some versions of Peng's estimator of the mean (namely those based on Hill, t-Hill and Huisman et al. extreme value index estimators). Moreover, we discuss the robustness of the tail index estimators used in this paper. Finally, our estimation procedure is applied to the well-known Danish fire insurance claims data set, to provide confidence bounds for the means of weekly and monthly maximum losses over a period of 10 years.Link http://www.sciencedirect.com/science/article/pii/S0378375812003692en_US
dc.language.isoenen_US
dc.subjectBias reductionen_US
dc.subjectExtreme valuesen_US
dc.subjectHeavy-tailed distributionsen_US
dc.subjectHill estimatoren_US
dc.subjectt-Hill estimatoren_US
dc.subjectMeanen_US
dc.subjectPeng estimatoren_US
dc.subjectRegular variationen_US
dc.subjectTail indexen_US
dc.titleA bias-reduced estimator for the mean of a heavy-tailed distribution with an infinite second momenten_US
dc.typeArticleen_US
Appears in Collections:Publications Internationales



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.