Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/2259
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElias Ould Saïd-
dc.contributor.authorDjabrane Yahia-
dc.date.accessioned2013-04-11T12:26:51Z-
dc.date.available2013-04-11T12:26:51Z-
dc.date.issued2013-04-11-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/2259-
dc.description.abstractWe consider the estimation of the conditional quantile when the interest variable is subject to left truncation. Under regularity conditions, it is shown that the kernel estimate of the conditional quantile is asymptotically normally distributed, when the data exhibit some kind of dependence. We use asymptotic normality to construct confidence bands for predictors based on the kernel estimate of the conditional median.DOI:10.1080/03610926.2010.489171 Link http://www.tandfonline.com/doi/abs/10.1080/03610926.2010.489171en_US
dc.subjectAsymptotic normalityen_US
dc.subjectConditional quantileen_US
dc.subjectKernel estimateen_US
dc.subjectStrong mixingen_US
dc.subjectTruncated dataen_US
dc.titleAsymptotic Normality of a Kernel Conditional Quantile Estimator Under Strong Mixing Hypothesis and Left-Truncationen_US
dc.typeArticleen_US
Appears in Collections:Publications Internationales



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.