Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/2268
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrahim Brahimia-
dc.contributor.authorDjamel Meraghnia-
dc.contributor.authorAbdelhakim Necira-
dc.contributor.authorRičardas Zitikisb-
dc.date.accessioned2014-04-11T15:06:59Z-
dc.date.available2014-04-11T15:06:59Z-
dc.date.issued2014-04-11-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/2268-
dc.description.abstractThe distortion parameter reflects the amount of loading in insurance premiums. A specific value of a given premium determines a value of the distortion parameter, which depends on the underlying loss distribution. Estimating the parameter, therefore, becomes a statistical inferential problem, which has been initiated by Jones and Zitikis [Jones, B.L., Zitikis, R., 2007. Risk measures, distortion parameters, and their empirical estimation. Insurance: Mathematics and Economics, 41, 279–297] in the case of the distortion premium and tackled within the framework of the central limit theorem. Heavy-tailed losses do not fall into this framework as they rely on the extreme-value theory. In this paper, we concentrate on a special but important distortion premium, called the proportional-hazard premium, and propose an estimator for its distortion parameter in the case of heavy-tailed losses. We derive an asymptotic distribution of the estimator, construct a practically implementable confidence interval for the distortion parameter, and illustrate the performance of the interval in a simulation study. Link http://www.sciencedirect.com/science/article/pii/S016766871100059Xen_US
dc.subjectProportional-hazard premiumen_US
dc.subjectProportional-hazard transformen_US
dc.subjectDistortion risk measureen_US
dc.subjectDistortion parameteren_US
dc.subjectExtreme valueen_US
dc.subjectHeavy tailen_US
dc.subjectRisk aversion indexen_US
dc.titleEstimating the distortion parameter of the proportional-hazard premium for heavy-tailed lossesen_US
dc.typeArticleen_US
Appears in Collections:Publications Internationales



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.