Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/2346
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrahimi Brahim-
dc.contributor.authorMeraghni Djamel-
dc.contributor.authorNecir Abdelhakim-
dc.date.accessioned2013-04-18T11:41:18Z-
dc.date.available2013-04-18T11:41:18Z-
dc.date.issued2013-04-18-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/2346-
dc.description.abstractThe classical Hill estimator is the most popular estimator of the extreme value index of Pareto-type distributions in the case of complete data. Einmahl, Fils-Villetard and Guillou (2008, Bernoulli 14, no. 1, 207-227) adjusted this estimator (amongst others) to the case where the data are subject to random censorship. They established its asymptotic normality under three restrictive conditions, which produce an additional bias to the usual one. Making use of the empirical processes theory, we relax these conditions to only one and represent the adapted estimator in terms of Brownian bridges without the aforementioned bias. Link http://arxiv-web3.library.cornell.edu/abs/1302.1666v2en_US
dc.language.isoenen_US
dc.subjectBrownian bridges; Extreme value index; Hill estimator; Random censoring; Regularly varying distributions.en_US
dc.titleAsymptotic normality of the adapted Hill estimator to censored dataen_US
dc.typeArticleen_US
Appears in Collections:Publications Internationales

Files in This Item:
File Description SizeFormat 
Asymptotic normality of the adapted Hill estimator to censored data.pdf34,55 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.