Please use this identifier to cite or link to this item:
http://archives.univ-biskra.dz/handle/123456789/24085
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | RECHID, NAIMA | - |
dc.date.accessioned | 2023-04-09T10:51:15Z | - |
dc.date.available | 2023-04-09T10:51:15Z | - |
dc.date.issued | 2004-10-20 | - |
dc.identifier.uri | http://archives.univ-biskra.dz/handle/123456789/24085 | - |
dc.description | Masters thesis | en_US |
dc.description.abstract | The most appropriate system to observe subject anatomy is nuclear magnetic resonance imaging (NMR), and a major issue of image processing is to segment automatically anatomy structures. This is the scope of our work. Our contribution has been to present an unsupervised segmentation method which the formalism is relied on hidden Markov field and chain theory. The originality of this method is, it takes into account structural information processed as flexible spatial. Our first results are very satisfactory. One can extend our method of segmentation to the other types of images. | en_US |
dc.description.sponsorship | Université Mohamed Khider - Biskra. | en_US |
dc.language.iso | ar | en_US |
dc.publisher | université de biskra | en_US |
dc.subject | LES CHAINES DE MARKOV CACHEES | en_US |
dc.subject | SEGMENTATION D’IMAGES | en_US |
dc.title | SEGMENTATION D’IMAGES TYPE RMN FIXE PAR LES CHAINES DE MARKOV CACHEES, APRENTISSAGE NON SUPPERVISE ET MINIISATION DE LA FONCTION D’ENERGIE | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Département de Génie Electrique |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PAGE DE GARDE.pdf | 19,7 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.