Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/24085
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRECHID, NAIMA-
dc.date.accessioned2023-04-09T10:51:15Z-
dc.date.available2023-04-09T10:51:15Z-
dc.date.issued2004-10-20-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/24085-
dc.descriptionMasters thesisen_US
dc.description.abstractThe most appropriate system to observe subject anatomy is nuclear magnetic resonance imaging (NMR), and a major issue of image processing is to segment automatically anatomy structures. This is the scope of our work. Our contribution has been to present an unsupervised segmentation method which the formalism is relied on hidden Markov field and chain theory. The originality of this method is, it takes into account structural information processed as flexible spatial. Our first results are very satisfactory. One can extend our method of segmentation to the other types of images.en_US
dc.description.sponsorshipUniversité Mohamed Khider - Biskra.en_US
dc.language.isoaren_US
dc.publisheruniversité de biskraen_US
dc.subjectLES CHAINES DE MARKOV CACHEESen_US
dc.subjectSEGMENTATION D’IMAGESen_US
dc.titleSEGMENTATION D’IMAGES TYPE RMN FIXE PAR LES CHAINES DE MARKOV CACHEES, APRENTISSAGE NON SUPPERVISE ET MINIISATION DE LA FONCTION D’ENERGIEen_US
dc.typeThesisen_US
Appears in Collections:Département de Génie Electrique

Files in This Item:
File Description SizeFormat 
PAGE DE GARDE.pdf19,7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.