Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/3878
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFatima MEDDI-
dc.date.accessioned2014-10-25T05:10:06Z-
dc.date.available2014-10-25T05:10:06Z-
dc.date.issued2014-10-25-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/3878-
dc.description.abstractRecently Necir and Meraghni (2009) proposed an asymptoti- cally normal estimator for distortion risk premiums when losses follow heavy- tailed distributions. In this thesis, we propose a bias-corrected estimator of this class of risk premiums and establish its asymptotic normality. Our consi- derations are based on the high quantile estimator given by Matthys and Beirlant (2003).en_US
dc.language.isofren_US
dc.subjectBias reduction, High quantiles, Hill estimator, L-statistics, Order statistics, Risk Measure, Second order regular variation, Tail index.en_US
dc.titleEstimation des mesures de risques pour les distributions à queue lourdeen_US
dc.typeThesisen_US
Appears in Collections:Mathématiques

Files in This Item:
File Description SizeFormat 
math_d1_2014.pdf1,82 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.