Please use this identifier to cite or link to this item:
http://archives.univ-biskra.dz/handle/123456789/602
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SLATNIA, S | - |
dc.contributor.author | KAZAR, O | - |
dc.date.accessioned | 2013-12-30T12:25:20Z | - |
dc.date.available | 2013-12-30T12:25:20Z | - |
dc.date.issued | 2013-12-30 | - |
dc.identifier.uri | http://archives.univ-biskra.dz/handle/123456789/602 | - |
dc.description.abstract | We use an evolutionary process to seek a specialized powerful rule of Cellular Automata (CA) among a set of best rules for extracting edges in a given black-white image. This best set of local rules determines the future state of CA in an asynchronous way. The Genetic Algorithm (GA) is applied to search the best CA rules that can realize better the edge detection. | en_US |
dc.language.iso | en | en_US |
dc.subject | Genetics Algorithms | en_US |
dc.subject | Evolutionary Cellular Automaton | en_US |
dc.subject | Edge Detection | en_US |
dc.title | Images Segmentation based contour using EVCA approach, Evolutionary Cellular Automata | en_US |
dc.type | Article | en_US |
Appears in Collections: | CS N 09 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
15-Slatnia.pdf | 241,9 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.